
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 6, 2020

Enhanced Pre-processing and Parameterization
Process of Generic Code Clone Detection Model for

Clones in Java Applications
Nur Nadzirah Mokhtar1, Al-Fahim Mubarak-Ali2, Mohd Azwan Mohamad Hamza3

Faculty of Computing, Universiti Malaysia Pahang
26300 Gambang, Pahang, Malaysia

Abstract—Code clones are repeated source code in a
program. There are four types of code clone which are: Type 1,
Type 2, Type 3 and Type 4. Various code clone detection models
have been used to detect code clone. Generic Code Clone model is
a model that consists of a combination of five processes in
detecting code clone from Type-1 until Type-4 in Java
Applications. The five processes are Pre-processing,
Transformation, Parameterization, Categorization and Match
Detection process. This work aims to improve code clone
detection by enhancing the Generic Code Clone Detection
(GCCD) model. Therefore, the Preprocessing and
Parameterization process is enhanced to achieve this aim. The
enhancement is to determine the best constant and weightage
that can be used to improve the code clone detection result. The
code clone detection result from the proposed enhancement
shows that private with its weightage is the best constant and
weightage for the Generic Code Clone Detection Model.

Keywords—Code clone; code clone detection model; java
applications; computational intelligence

I. INTRODUCTION
Duplicated codes or better known as code clone are similar

source codes that exist in a program [1-3]. Code clone brings
maintenance issues in software. The more source codes are
cloned in a program, the more memory and time needed in
processing the software. At times, it also happens due to the
software developer code writing practices [4]. Apart from that,
if a source code contains bugs copied to the other parts of the
software, the same bugs will be copied together throughout the
program. This compromises the security of the software [3].
Code clone occurrence also depends on the deficiency of a
programming language. As an instance, the Java programming
language. Java is a worldwide open-sourced programming
language used to develop open-source applications. In an
experiment conducted to see the occurrence of code clones in
Java applications, a total of 6% out of 512 000 lines of codes or
30 720 lines of codes from tested Java applications contains
clones. One of the reasons for this occurrence is due to the
absence of generic modules in Java [5].

At the initial stages of code clone detection, various
approaches have been introduced. The approaches include text-
based approach [6] [7], metric-based approach [8-10], tree-
based approach [11-14], token-based approach [15-17] and
graph-based approach [18-20]. The drawback of existing
approaches is the lack of detecting all types of code clones

[21]. In order to overcome this issue, code clone detection
models were introduced to detect code clones that causes bad
effect to the software. Code clone detection models is a model
with combinatorial and structured processes that helps to detect
and display detection result of code clone. Code clone
detection models are recent development in the field of
software clone and very little in terms of availability as tool,
yet the existing code clone detection models have been a
frontal movement in terms of having a combined process that
detects code clone nevertheless of the diverse code clone
jargons and programming languages.

As mentioned before, a model is an effort of unifying
different processes to detect all code clone types. The effort
can be seen through the Unified Clone Model [22] although
this model is still in the design phase. Generic Pipeline Model
[23-24] is a code clone detection model that detects on exact
which is Type-1 and near-exact clones which is Type-2 in Java
applications. An enhanced was proposed for this model by
proposing a concatenation process, but it more focused on
improving the time rather than improving the clone detection
[25]. The disadvantage of this model is it only detect clones for
Type-1 and Type-2. The state of the art model can be referred
to as the Generic Code Clone Detection Model [26]. This
model detects clones from Type-1 until Type-4 in Java
applications. Type-3 refers to the source code that has modified
semantically and Type-4 refers to the source code that has been
modified further compared to Type-3.

This work focuses on improving code clone detection by
enhancing the Generic Code Clone Detection Model through
determining the best constant and weightage for Generic Code
Clone Detection Model. Section 2 describes the Generic Code
Clone Detection Model. Section 3 shows the implementation of
the proposed enhancement while Section 4 discusses the
findings of this work. This paper is summarized and concluded
in Section 5.

II. GENERIC CODE CLONE DETECTION MODEL
Generic Code Clone Detection is a model that was

designed and developed with an objective of detecting code
clone from Java programming language [26]. It was designed
into five processes which are elaborated in detail in upcoming
sections. Fig. 1 illustrates the diagrammatic view of the model
together with a brief narrative of the processes involved.

570 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 6, 2020

Fig. 1. Illustration of Generic Code Clone Detection Model [26].

A. Pre-Processing Process [26]
This model is initiated through this process. Source code

alludes to the codes written in a source document of an
application. It fills in as the contribution for the procedure. The
source codes need to experience five joined rules used to
accomplish the point of this process. Table I shows the
rundown of these five rules. The yield of this process is
standardized source codes or otherwise called source units. The
source unit is still as source code. Each source unit speaks to a
component of the source code.

B. Transformation Process [26]
This process is after the pre-processing process. The main

objective of this process is changing the output of the previous
process which is the source units into a more calculable format.
The calculable format which is in the form of numbers are
called as transformed source units and serves as the input in the
determination of the parameters that will be used in the next
process. The numerical form for this process is acquired from a
letter to number substitution concept. The substitution is done
based on the location of the alphabet. As an example, b is the
third alphabet in the vocabulary sequence; therefore, b is
changed to 02. This change is done on other alphabets.

The yield for this process is source units that has been
transformed in number form. The source units that has been
transformed are split to two branch which are the header (h)
and body (b). Header refers to the transformed source unit that
starts at the very first of the line of code and ends before the
start of the body part of a transformed source unit. The body
(b) is the body of a transformed source unit. As an instance in
explaining the concept of a header (h) and body (b) in a Java
function, assume a Java function named Function C with the
written composition of:

 public static void myMet ()

 {

 System.out.println("I love java");

 }

After going through the initial pre-processing process, the
source unit of Function C appear as:

public static void myMet systemoutprintln i love java

Therefore, the header and body of a function of Function C:

header (h): public static void myMet

body (b) : systemoutprintln i love java

C. Parameterization Process
This process starts after the transformation process. The

transformed source units from the previous process serves as
the input for this process. The attribute or parameter used for
clone detection in this model is the average ratio for both
header and body. Before demonstrating the step by step
calculation for the average ratio header and body of a function,
four important metrics is extracted from transformed source
units. Table II shows attained metrics from the transformed
source units.

To gain an average ratio of a function, the ratio of the
header (h) and body (b) of the respective function must be
gained initially. From the previous transformation process, the
access modifier of all the function or method that has been
changed to the value of public. Therefore, all the functions that
has been changed to transformed source unit consist the equal
access modifier value after going through the previous process.
By using the value of public as the standard value, respective
source units are divided with this standard value. It is done so
that the header and body ratio value of each code of the
transformed source unit is acquired. As an instance in
calculating the average ratio for each transformed source unit,
let's presume a transformed source unit contains a header,
TSUXa, with body, TSUXb.

TABLE I. FIVE PRE-PROCESSING RULES

Pre-processing Rule Description

PR-1 Import and package lines are excluded.

PR-2 Comment lines are excluded.

PR-3 Empty statements are excluded.

PR-4 Access modifier of a function is replaced with
public.

PR-5 All the written source code lines is changed to
lowercase format.

TABLE II. METRIC EXTRACTED FROM TRANSFORMED SOURCE UNITS

Metrics Description

header code count Total source code count in the header

body code count Total source code count in the body

header ratio header (h) ratio

body ratio body (b) ratio

average header ratio header (h) average ratio

average body ratio body (b) average ratio

571 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 6, 2020

Therefore, the ratio of the transformed source unit is:

𝑅𝐴 = (𝐴1,𝐴2,𝐴3…𝐴𝑛)
𝑃1

 (1)

𝑅𝐵 = (𝐵1,𝐵2,𝐵3…𝐴𝑛)
𝑃1

 (2)

in which;

P1 is public access modifier value

RA is ratio value of header for each source units that has been
transformed

RB is ratio value of body for each source units that has been
transformed

A1, A2 A3..An is value of header in source units that has been
transformed

B1, B2, B3.. Bn is value of body in source units that has been
transformed

Once each function acquired the ratio of header and body,
the next step is the calculation of the average ratio header and
average ratio body of each transformed source unit. The
formula of average ratio header and average ratio body in each
transformed source units are:

𝐴𝑉𝑅𝐴 = (𝑅𝐴)
𝐶𝐴

 (3)

𝐴𝑉𝑅𝐵 = (𝑅𝐵)
𝐶𝐵

 (4)

in which:

AVRA is the value of average ratio for header in a transformed
source unit

AVRB is the value of average ratio for body in a transformed
source unit

CA is the total count of source code for header in a
transformed source unit

CB is the total count of source code for body in a transformed
source unit

The output of this process is the mentioned metrics; in
which will be used in the next categorization process.

D. Categorization Process [26]
This process starts after parameterization process. The

objective of this process is to pool the source units that has
been transformed into a pool of code clones based on the exact
ratio value of average ratio header and body for respective
functions. This process uses metrics acquired from the
parameterization process as input. The categorization is
completed by grouping it into three pools using the average
ratio value of the header and body of source units that has been
transformed.

The first pool is for transformed source units for different
functions that has the same value of header. As an instance, if
transformed source unit for function E has the same header
average ratio value with transformed source unit B, therefore
these two transformed source units are categorized into the
same group. This process will be continued until all the
transformed source units that have the same average value of
the header are categorized in the same pool. The second pool is
for transformed source units for different functions that has the
same value of body.

After the first pooling process, if transformed source unit
for function E has the same body average ratio value with
transformed source unit B, therefore these two transformed
source units are grouped into the same category. This process
will be continued until all the transformed source units that
have the same average value of the body are categorized in the
same pool. The remaining transformed source units is
categorized into another category or better known as the third
pool.

E. Match Detection Process [26]
This process comes after categorization process and it is the

last process in this model. The main objective of this process is
detecting code clone. The pool from the previous process is
utilized as input for this process. Combination of exact
matching and Euclidean Distance is used to detect code clone
for this model. Exact matching is used on the first two pools to
detect Type-1 and Type-2 clone. Once the detection is done for
Type-1 and Type-2 from the first and second pools, the
remaining transformed source units from the first and second
pools is combined together with the third pool. As for the
remaining average ratio header and body value in the third
pool, Euclidean distance is used for Type-3 and Type-4 clone
detection. As for the Euclidean distance application in this
process, presume there are two transformed source units which
are M and N. Therefore, the Euclidean distance, ED, between
transformed source unit M and transformed source unit N is
calculated as:

EDMN = (ℎ𝑒𝑎𝑑𝑒𝑟𝑀 − ℎ𝑒𝑎𝑑𝑒𝑟𝑁)2 + (𝑏𝑜𝑑𝑦𝑀 − 𝑏𝑜𝑑𝑦𝑁)2 (5)

where;

EDMN is Euclidean distance of transformed source unit M
and N

headerM is the average ratio header value of M

bodyM is average ratio body value of M

headerN is average ratio header value of N

bodyN is average ratio body value of N

572 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 6, 2020

As for the remaining body and header value in the final
pool, the mathematical equation which is the Euclidean
distance is utilized. Once the equation is utilized upon the
remaining average ratio values of the functions, all the
functions is gathered to Type-3 and Type-4 depending on the
distance value that is gained. Range 0f 0.85 to 1 is categorized
as Type-3 while the rest is categorized as Type-4.

III. PROPOSED ENHANCEMENT
The enhancement of the Generic Code Clone Detection

Model [26] is focused on two of its process which is Pre-
processing and Parameterization Process.

A. Enhancement on Pre-Processing Process
Pre-processing is a process that normalizes source code to

produce better source units to be processed for clone detection.
The enhancement done in this process is the removal of
function regularization rule; which is PR-4: Regularize
function access keyword to public. This is to maintain the
original function keyword of a function. Therefore, the
enhanced pre-processing remains with four pre-processing
rules. Fig. 2 shows the enhanced Pre-processing process is
elaborated in the form of pseudo code.

B. Enhancement on Parameterization Process
This process aims to create parameters or metrics that will

be used for the categorization and match detection process.
Therefore, the enhancement done in this process is the change
of value access function based on three access functions and
their respective weightage. The three access function is public
with the weightage of 162102120903, private with the
weightage of 16180922012005 and protected with the
weightage of 161815200503200504. These values are based on
the concept of the alphabet to number that has been explained
in the Transformation Process. Fig. 3 shows the enhanced
parameterization process is elaborated in the form of pseudo
code.

Fig. 2. Enhanced Pre-Processing Process Pseudo Code.

Fig. 3. Enhanced Parameterization Process Pseudo Code.

IV. RESULT AND DISCUSSION
This section is divide into three subsections. The first

subsection describes the result of the overall clone pair for Java
applications from Bellon’s benchmark data [27]. The second
subsection describes the result of the overall clone pair based
on the clone type for Java applications from Bellon’s
benchmark data [27]. The third subsection discusses the
obtained results.

A. Overall Clone Pair in Java Application
Fig. 4 shows the overall clone pair for Java applications

from Bellon’s benchmark data. Based on Fig. 4, the highest
overall clone pair detected for Eclipse-ant is from protected
weightage with 7681 clone pairs. The second highest overall
clone pair detected for Eclipse-ant is from private weightage
with 4454 clone pairs. It is 42% lower compared to the overall
clone pairs detected from the protected weightage, that is, the
highest overall clone pair detected for Eclipse-ant. The third
overall clone pair detected for Eclipse-ant is from the existing
GCCD with 2688 clone pairs. It is 65% lower compared to the
overall clone pairs detected from the protected weightage, that
is, the highest overall clone pair detected for Eclipse-ant. The
lowest overall clone pair detected for Eclipse-ant is from public
weightage with 2654 clone pairs. It is 65.4% lower compared
to the overall clone pairs detected from the protected
weightage, that is, the highest overall clone pair detected for
Eclipse-ant.

573 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 6, 2020

As for the Eclipse-jdtcore application, the highest overall
clone pair detected for Eclipse-jdtcore is from protected
weightage with 39974 clone pairs. The second highest overall
clone pair detected for Eclipse-jdtcore is from private
weightage with 15406 clone pairs. It is 61.5% lower compared
to the overall clone pairs detected from the protected
weightage, that is, the highest overall clone pair detected for
Eclipse-jdtcore. The third overall clone pair detected for
Eclipse-jdtcore is from the existing GCCD with 11268 clone
pairs. It is 71.8% lower compared to the overall clone pairs
detected from the protected weightage, that is, the highest
overall clone pair detected for Eclipse-jdtcore. The lowest
overall clone pair detected for Eclipse-jdtcore is from public
weightage with 10767 clone pairs. It is 73.1% lower compared
to the overall clone pairs detected from the protected
weightage, that is, the highest overall clone pair detected for
Eclipse-jdtcore.

As for the j2sdk1.4.0-javax-swing application, the highest
overall clone pair detected for j2sdk1.4.0-javax-swing is from
protected weightage with 56312 clone pairs. The second
highest overall clone pair detected for j2sdk1.4.0-javax-swing
is from private weightage with 8993 clone pairs. It is 84%
lower compared to the overall clone pairs detected from the
protected weightage, that is, the highest overall clone pair
detected for j2sdk1.4.0-javax-swing. The third overall clone
pair detected for j2sdk1.4.0-javax-swing is from public
weightage with 7393 clone pairs. It is 86.9% lower compared
to the overall clone pairs detected from the protected
weightage, that is, the highest overall clone pair detected for
j2sdk1.4.0-javax-swing. The lowest overall clone pair detected
for j2sdk1.4.0-javax-swing is from the existing GCCD with
7281 clone pairs. It is 87.1% lower compared to the overall
clone pairs detected from the protected weightage, that is, the
highest overall clone pair detected for j2sdk1.4.0-javax-swing.

As for the Netbeans-javadoc application, the highest overall
clone pair detected for Netbeans-javadoc is from private
weightage with 937 clone pairs. The second highest overall
clone pair detected for Netbeans-javadoc is from protected
weightage with 654 clone pairs. It is 30.2% lower compared to
the overall clone pairs detected from the private weightage;
which is the highest overall clone pair detected for Netbeans-
javadoc. The lowest overall clone pair detected for Netbeans-
javadoc is from the existing GCCD and the public weightage
with 595 clone pairs. It is 36.5% lower compared to the overall
clone pairs detected from the private weightage; which is the
highest overall clone pair detected for Netbeans-javadoc. The
next subsection discusses the overall clone pair based clone
type for each Java application from the Bellon benchmark data.

B. Overall Clone Pair based on Clone Type
Table III shows the overall clone pair based on the clone

type for Java applications from Bellon benchmark data. As for
Eclipse-ant application, the highest number of Type-1 clone
pairs in Eclipse-ant was produced through the protected
weightage which is 424 clone pairs. The second highest
number of Type-1 clone pairs in Eclipse-ant was produced
through the private weightage which is 246 clone pairs. The
existing GCCD produced 185 clone pairs for Type-1; which is
the same as the enhancement of the GCCD done using public
weightage. This is the lowest amount of clone pair for Type-1

in Eclipse-ant. As for Type-2 clone in Eclipse- ant, the highest
Type-2 clone pair in Eclipse-ant was produced through
protected weightage with 916 clone pairs. The second highest
Type-2 clone pair in Eclipse-ant was produced through private
weightage with 750 clone pairs. The third highest Type-2 clone
pair in Eclipse-ant was produced through protected weightage
with 648 clone pairs. The lowest Type-2 clone pair in Eclipse-
ant was produced through the existing GCCD with 552 clone
pairs. As for Type-3 clone in Eclipse- ant, the highest Type-3
clone pair in Eclipse-ant was produced through protected
weightage with 2296 clone pairs. The second highest Type-3
clone pair in Eclipse-ant was produced through private
weightage with 2481 clone pairs. The third highest Type-3
clone pair in Eclipse-ant was produced through the existing
GCCD with 581 clone pairs. The lowest Type-3 clone pair in
Eclipse-ant was produced through the public weightage with
578 clone pairs. As for Type-4 clone in Eclipse-ant, the highest
Type-4 clone pair in Eclipse-ant was produced through
protected weightage with 4225 clone pairs. The second highest
Type-4 clone pair in Eclipse-ant was produced through the
existing GCCD with 1370 clone pairs. The third highest Type-
4 clone pair in Eclipse-ant was produced through the public
weightage with 1243 clone pairs. The lowest Type-4 clone pair
in Eclipse-ant was produced through the private weightage
with 977 clone pair.

As for the Eclipse-jdtcore application, the highest Type-1
clone pair in Eclipse-jdtcore was produced through protected
weightage with 1008 clone pairs. The second highest Type-1
clone pair in Eclipse-jdtcore was produced through the private
weightage with 766 clone pairs. The third highest Type-1 clone
pair in Eclipse-jdtcore was produced through the public
weightage with 627 clone pairs. The lowest Type-1 clone pair
in Eclipse-ant was produced through the existing GCCD with
626 clone pairs. As for Type-2 clone in Eclipse-jdtcore, the
highest Type-2 clone pair in Eclipse-ant was produced through
protected weightage with 2952 clone pairs. The second highest
Type-2 clone pair in Eclipse-jdtcore was produced through the
existing GCCD with 2886 clone pairs. The third highest Type-
2 clone pair in Eclipse-jdtcore was produced through the public
weightage with 2882 clone pairs. The lowest Type-2 clone pair
in Eclipse-jdtcore was produced through the private weightage
with 2660 clone pairs. As for Type-3 clone in Eclipse-jdtcore,
the highest Type-3 clone pair in Eclipse-jdtcore was produced
through protected weightage with 22854 clone pairs. The
second highest Type-3 clone pair in Eclipse-jdtcore was
produced through the private weightage with 9634 clone pairs.
The third highest Type-3 clone pair in Eclipse-jdtcore was
produced through the existing GCCD with 4265 clone pairs.
The lowest Type-3 clone pair in Eclipse-jdtcore was produced
through the public weightage with 3866 clone pairs. As for
Type-4 clone in Eclipse-jdtcore, the highest Type-4 clone pair
in Eclipse-jdtcore was produced through protected weightage
with 13169 clone pairs. The second highest Type-4 clone pair
in Eclipse-jdtcore was produced through the existing GCCD
with 3491 clone pairs. The third highest Type-4 clone pair in
Eclipse-jdtcore was produced through the public weightage
with 3392 clone pairs. The lowest Type-4 clone pair in Eclipse-
jdtcore was produced through the private weightage with 2346
clone pairs.

574 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 6, 2020

Fig. 4. Overall Clone Pair for Java Applications from Bellon Benchmark Data.

TABLE III. OVERALL CLONE PAIR BASED ON CLONE TYPE FOR JAVA APPLICATIONS FROM BELLON BENCHMARK DATA

Java Application Clone Type Existing GCCD public weightage private weightage protected weightage

Eclipse-ant

Type-1 185 185 246 424

Type-2 552 648 750 916

Type-3 581 578 2481 2296

Type-4 1370 1243 977 4225

Eclipse-jdtcore

Type-1 626 627 766 1008

Type-2 2886 2882 2660 2952

Type-3 4265 3866 9634 22845

Type-4 3491 3392 2346 13169

j2sdk1.4.0-javax-swing

Type-1 877 891 1021 1330

Type-2 3697 3713 3709 4259

Type-3 1710 1774 1977 27316

Type-4 997 1015 2286 23407

Netbeans-javadoc

Type-1 99 99 120 182

Type-2 341 341 393 425

Type-3 102 102 304 11

Type-4 53 53 120 36

As for the j2sdk1.4.0-javax-swing application, the highest
Type-1 clone pair in j2sdk1.4.0-javax-swing was produced
through protected weightage with 1330 clone pairs. The second
highest Type-1 clone pair in j2sdk1.4.0-javax-swing was
produced through the private weightage with 1021 clone pairs.
The third highest Type-1 clone pair in j2sdk1.4.0-javax-swing
was produced through the public weightage with 891 clone
pairs. The lowest Type-1 clone pair in j2sdk1.4.0-javax-swing
was produced through the existing GCCD weightage with 877
clone pairs. As for Type-2 clone in j2sdk1.4.0-javax-swing, the

highest Type-2 clone pair in j2sdk1.4.0-javax-swing was
produced through protected weightage with 4259 clone pairs.
The second highest Type-2 clone pair in j2sdk1.4.0-javax-
swing was produced through the public weightage with 3713
clone pairs. The third highest Type-2 clone pair in j2sdk1.4.0-
javax-swing was produced through the private weightage with
3709 clone pairs. The lowest Type-2 clone pair in j2sdk1.4.0-
javax-swing was produced through the existing GCCD with
3697 clone pairs. As for Type-3 clone in j2sdk1.4.0-javax-
swing, the highest Type-3 clone pair in j2sdk1.4.0-javax-swing
was produced through protected weightage with 27316 clone

575 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 6, 2020

pairs. The second highest Type-3 clone pair in j2sdk1.4.0-
javax-swing was produced through the private weightage with
1977 clone pairs. The third highest Type-3 clone pair in
j2sdk1.4.0-javax-swing was produced through the public
weightage with 1774 clone pairs. The lowest Type-3 clone pair
in j2sdk1.4.0-javax-swing was produced through the existing
GCCD with 1710 clone pairs. As for Type-4 clone in
j2sdk1.4.0-javax-swing, the highest Type-4 clone pair in
j2sdk1.4.0-javax-swing was produced through protected
weightage with 23407 clone pairs. The second highest Type-4
clone pair in j2sdk1.4.0-javax-swing was produced through the
private weightage with 2286 clone pairs. The third highest
Type-4 clone pair in j2sdk1.4.0-javax-swing was produced
through the public weightage with 1015 clone pairs. The
lowest Type-4 clone pair in j2sdk1.4.0-javax-swing was
produced through the existing GCCD with 997 clone pairs.

As for the Netbeans-javadoc application, the highest Type-
1 clone pair in Netbeans-javadoc was produced through
protected weightage with 182 clone pairs. The second highest
Type-1 clone pair in Netbeans-javadoc was produced through
the private weightage with 120 clone pairs. The lowest Type-1
clone pair in Netbeans-javadoc was produced through the
private weightage and the existing GCCD with 99 clone pairs.
As for Type-2 clone in Netbeans-javadoc, the highest Type-2
clone pair in Netbeans-javadoc was produced through
protected weightage with 425 clone pairs. The second highest
Type-2 clone pair in Netbeans-javadoc was produced through
the private weightage with 393 clone pairs. The lowest Type-2
clone pair in Netbeans-javadoc was produced through the
private weightage and the existing GCCD with 341 clone pairs.
As for Type-3 clone in Netbeans-javadoc, the highest Type-3
clone pair in Netbeans-javadoc was produced through private
weightage with 304 clone pairs. The second highest Type-3
clone pair in Netbeans-javadoc was produced through the
public weighthage and the existing GCCD with 102 clone
pairs. The lowest Type-3 clone pair in Netbeans-javadoc was
produced through the protected weightage with 11 clone pairs.
As for Type-4 clone in Netbeans-javadoc, the highest Type-4
clone pair in Netbeans-javadoc was produced through private
weightage with 120 clone pairs. The second highest Type-4
clone pair in Netbeans-javadoc was produced through the
public weightage and the existing GCCD with 53 clone pairs.
The lowest Type-4 clone pair in Netbeans-javadoc was
produced through the protected weightage with 36 clone pairs.

C. Discussion
The main aim of this work is to improve the code clone

detection for Java applications by enhancing the Pre-processing
and Parameterization process in the Generic Code Clone
Detection Model. The pre-processing rule has been reduced
from five rules to four rules by removing the regularization of
function access modifiers. After that, the Parametrization
process was enhanced with three different access functions and
weightage. The three access functions are public with the
weightage of 162102120903, private with the weightage of
16180922012005 and protected with the weightage of
161815200503200504. These values are based on the concept
of the alphabet to number that has been explained in the
Transformation Process. The result from these changes has
been described in subsection 4.1 and subsection 4.3. Based on

the result shown, the protected with the weightage of
161815200503200504 has shown more clone pair detection in
three Java applications compared to the other success function.
The three Java applications are Eclipse-ant, Eclipse-jdtcore and
j2sdk1.4.0-javax-swing. The remaining Java application which
is Netbeans-javadoc has more clone pair revealed through
private with the weightage of 16180922012005 but has the
second most clone pair detected through protected with the
weightage of 161815200503200504.

This happens due to the enhancement made to the GCCD
model. First is the removal keyword regularization rule from
the pre-processing process. As mentioned previously, the pre-
processing process of the GCCD at the start does the process of
removing source code from uninteresting information. The
uninteresting information is removed through the five rules
previously that had been adopted in this process. The rules
include removing packages and import statements, removing
comments, removing empty lines, regularizing function access
keyword to public and regularizing source codes to lowercase.
These rules were set after taking into consideration in not
making many changes to the original source codes. Too many
changes in the source codes may cause critical information to
be changed or removed; therefore, keeping a minimum set of
rules ensures the most of the information of the source code
such as the source code line and length is intact. The idea of
removing the keyword regularization rule is to minimize the
change of a function by sustaining original source code of a
function. Furthermore, the different weightage of a constant
influence the result. Based on the result, the higher the
weightage value, the more clones are detected.

V. CONCLUSION
The idea of this work is to improve code clone detection in

Java applications by enhancing the Generic Code Clone
Detection Model. The enhancement involves by enhancing the
Pre-processing and Parameterization Process. Based on the
result shown, it can be concluded that the best constant and
weightage for Generic Code Clone Detection Model is
protected with a weightage value of 161815200503200504.

ACKNOWLEDGMENT
The authors would like express gratitude to Ministry of

Higher Education Malaysia and Universiti Malaysia Pahang in
supporting this work through the Fundamental Research Grant
Scheme (FRGS Grant ID: RACER/1/2019/ICT01/UMP//1).

REFERENCES
[1] J. Yang, Y. Xiong and J. Ma, "A function level Java code clone

detection method," 2019 IEEE 4th Advanced Information Technology,
Electronic and Automation Control Conference (IAEAC), Chengdu,
China, 2019, pp. 2128-2134.

[2] D. K. Kim, “Enhancing code clone detection using control flow graphs,
” International Journal of Electrical and Computer Engineering (IJECE),
Vol.9, No.5, October 2019, pp. 3804~3812.

[3] M. S. Rahman and C. K. Roy, "On the Relationships Between Stability
and Bug-Proneness of Code Clones: An Empirical Study," 2017 IEEE
17th International Working Conference on Source Code Analysis and
Manipulation (SCAM), Shanghai, 2017, pp. 131-140.

[4] M. Pyl, B. van Bladel and S. Demeyer, "An Empirical Study on
Accidental Cross-Project Code Clones," 2020 IEEE 14th International
Workshop on Software Clones (IWSC), London, ON, Canada, 2020, pp.
33-37.

576 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 6, 2020

[5] M. Dagenais, J. F. F. Patenaude, E. Merlo, and B. Lagu¨e, “Clones
occurrence in Java and Modula-3 software systems,” Advances in
Software Engineering, 2002, pp. 95–110.

[6] E. Kodhai, S. Kanmani, A. Kamatchi, R. Radhika and B. V. Saranya,
"Detection of Type-1 and Type-2 Code Clones Using Textual Analysis
and Metrics," 2010 International Conference on Recent Trends in
Information, Telecommunication and Computing, Kochi, Kerala, 2010,
pp. 241-243.

[7] A. Marcus and J. I. Maletic, "Identification of high-level concept clones
in source code," Proceedings 16th Annual International Conference on
Automated Software Engineering (ASE 2001), San Diego, CA, USA,
2001, pp. 107-114.

[8] Vishwachi and S. Gupta, "Detection of near-miss clones using metrics
and Abstract Syntax Trees," 2017 International Conference on Inventive
Communication and Computational Technologies (ICICCT),
Coimbatore, 2017, pp. 230-234.

[9] Z. Li and J. Sun, "An iterative, metric space based software clone
detection approach," The 2nd International Conference on Software
Engineering and Data Mining, Chengdu, 2010, pp. 111-116.

[10] M. Sudhamani and L. Rangarajan, "Code clone detection based on order
and content of control statements," 2016 2nd International Conference
on Contemporary Computing and Informatics (IC3I), Noida, 2016, pp.
59-64.

[11] Y. Yang, Z. Ren, X. Chen and H. Jiang, "Structural Function Based
Code Clone Detection Using a New Hybrid Technique," 2018 IEEE
42nd Annual Computer Software and Applications Conference
(COMPSAC), Tokyo, 2018, pp. 286-291.

[12] L. Büch and A. Andrzejak, "Learning-Based Recursive Aggregation of
Abstract Syntax Trees for Code Clone Detection," 2019 IEEE 26th
International Conference on Software Analysis, Evolution and
Reengineering (SANER), Hangzhou, China, 2019, pp. 95-104.

[13] J. Zhang, X. Wang, H. Zhang, H. Sun, K. Wang and X. Liu, "A Novel
Neural Source Code Representation Based on Abstract Syntax Tree,"
2019 IEEE/ACM 41st International Conference on Software
Engineering (ICSE), Montreal, QC, Canada, 2019, pp. 783-794.

[14] H. Yu, W. Lam, L. Chen, G. Li, T. Xie and Q. Wang, "Neural Detection
of Semantic Code Clones Via Tree-Based Convolution," 2019
IEEE/ACM 27th International Conference on Program Comprehension
(ICPC), Montreal, QC, Canada, 2019, pp. 70-80.

[15] T. Kamiya, S. Kusumoto, and K. Inoue, “CCFinder: a multilinguistic
tokenbased code clone detection system for large scale source code,”
IEEE Transactions on Software Engineering. 28(7), pp. 654–670.

[16] W. Toomey, "Ctcompare: Code clone detection using hashed token
sequences," 2012 6th International Workshop on Software Clones
(IWSC), Zurich, 2012, pp. 92-93.

[17] P. Wang, J. Svajlenko, Y. Wu, Y. Xu and C. K. Roy, "CCAligner: A
Token Based Large-Gap Clone Detector," 2018 IEEE/ACM 40th
International Conference on Software Engineering (ICSE), Gothenburg,
2018, pp. 1066-1077.

[18] C. M. Kamalpriya and P. Singh, "Enhancing program dependency graph
based clone detection using approximate subgraph matching," 2017
IEEE 11th International Workshop on Software Clones (IWSC),
Klagenfurt, 2017, pp. 1-7.

[19] Y. Higo, U. Yasushi, M. Nishino and S. Kusumoto, "Incremental Code
Clone Detection: A PDG-based Approach," 2011 18th Working
Conference on Reverse Engineering, Limerick, 2011, pp. 3-12.

[20] P. Gautam and H. Saini, "Type-2 software cone detection using directed
acyclic graph," 2017 Fourth International Conference on Image
Information Processing (ICIIP), Shimla, 2017, pp. 1-4.

[21] J. Harder, "The limits of clone model standardization," 2013 7th
International Workshop on Software Clones (IWSC), San Francisco,
CA, 2013, pp. 10-11.

[22] C. J. Kapser, J. Harder and I. Baxter, "A common conceptual model for
clone detection results," 2012 6th International Workshop on Software
Clones (IWSC), Zurich, 2012, pp. 72-73.

[23] B. Biegel and S. Diehl, “Highly Configurable and Extensible Code
Clone Detection,”. 2010 17th Working Conference on Reverse
Engineering, 2010, pp. 237–241.

[24] B. Biegel and S. Diehl, “JCCD: a flexible and extensible API for
implementing custom code clone detectors,” Proceedings of the 2010b
Proceedings of the IEEE/ACM International Conference on Automated
Software Engineering (ASE '10), 2010, pp. 167-168.

[25] A. Mubarak-Ali, S. Sulaiman and S. M. Syed-Mohamad, "An enhanced
generic pipeline model for code clone detection," 2011 Malaysian
Conference in Software Engineering, Johor Bahru, 2011, pp. 434-438.

[26] A. Mubarak-Ali and S. Sulaiman, “Generic Code Clone Detection
Model for Java Applications,” IOP Conference Series: Materials Science
and Engineering, Volume 769, The 6th International Conference on
Software Engineering & Computer Systems, 25-27 September 2019,
Pahang, Malaysia.

[27] S. Bellon, R. Koschke, G. Antoniol, J. Krinke and E. Merlo,
"Comparison and Evaluation of Clone Detection Tools," in IEEE
Transactions on Software Engineering, vol. 33, no. 9, pp. 577-591, Sept.
2007.

577 | P a g e
www.ijacsa.thesai.org

https://iopscience.iop.org/journal/1757-899X
https://iopscience.iop.org/journal/1757-899X
https://iopscience.iop.org/volume/1757-899X/769
https://iopscience.iop.org/issue/1757-899X/769/1
https://iopscience.iop.org/issue/1757-899X/769/1
https://iopscience.iop.org/issue/1757-899X/769/1

	I. Introduction
	II. Generic Code Clone Detection Model
	A. Pre-Processing Process [26]
	B. Transformation Process [26]
	C. Parameterization Process
	D. Categorization Process [26]
	E. Match Detection Process [26]

	III. Proposed Enhancement
	A. Enhancement on Pre-Processing Process
	B. Enhancement on Parameterization Process

	IV. Result and Discussion
	A. Overall Clone Pair in Java Application
	B. Overall Clone Pair based on Clone Type
	C. Discussion

	V. Conclusion

