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Abstract—Metagenomic data is a novel and valuable source
for personalized medicine approaches to improve human health.
Data Visualization is a crucial technique in data analysis to
explore and find patterns in data. Especially, data resources
from metagenomic often have very high dimension so humans
face big challenges to understand them. In this study, we
introduce a visualization method based on Mean-shift algorithm
which enables us to observe high-dimensional data via images
exhibiting clustered features by the clustering method. Then,
these generated synthetic images are fetched into a convolutional
neural network to do disease prediction tasks. The proposed
method shows promising results when we evaluate the approach
on four metagenomic bacterial species abundance datasets related
to four diseases including Liver Cirrhosis, Colorectal Cancer,
Obesity, and Type 2 Diabetes.
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I. INTRODUCTION

Human healthcare has been moving towards step by step
to personalized medicine which using genetic insights and
technologies. In 2020, the outbreaks of SARS-CoV-2 raises
questions about the advantages of personalized medicine in
general and metagenomics in particular. Personalized medicine
also commonly referred to as precision medicine is the most
promising approach for effective medical treatment of the
individual patients based on their genetic information and med-
ical symptoms. By combining with the traditional approaches
which are based upon a policy of “one size fits all” applying the
same treatments to whom with the same diseases, personalized
medicine may be used to analyze and treat the disease by
personalizing medicines to make them more specific, effective,
and thereby improving treatment outcomes. Summarily, per-
sonalized medicine is a new approach in disease management,
focusing on four essential premises: prediction, prevention,

personalization, and participation [1]. Following the premises
of personalized medicine, the appearance of SARS-CoV-2 may
be explored based on acting on risk factors, cultures, and
social determinants (prediction), constrain on evolution of
the virus (prevention), analyzing the genetic and molecu-
lar of each the patient and giving them their personalizing
medicines (personalization), requiring the investment for the
infrastructure, human resource training, and the cooperation of
the patients (participation) [2]. Several studies have indicated
that many diseases are originally from genotypic so that
personalized medicine is an effective treatment and can reduce
the disadvantages of side effects. Many of the advantages of
personalized medicine within healthcare detect and diagnose
diseases, prevention of disease, and reduction of trial-and-error
prescriptions.

Metagenomics that is the study of the metagenome, an
application of modern genomic techniques, explores directly
the communities of microbial in their natural habitats [3]. The
emergence of high-throughput sequencing technology such as
deep metagenomic sequencing has generated an amount of
data that allowed the researchers to study both taxonomic and
functional effects of microbiota on hosts [4]. The uncultured
microorganisms represent the huge majority of organisms
in most habitats on this planet proving by the analysis of
16rRNA sequences, it is the beginning for the development of
metagenomics and led to the discovery of vast new lineages of
microbial life [4], [5], [6]. The importance of understanding
the microbiome has been repeatedly emphasized, thousands
of human microbiome projects that have focused on the
bacterial cell structure of the microbiome. The metagenomic
analysis revealed variations in niche-specific abundance within
the microbiome. Several studies presented the advantages of
metagenomics in diagnostics and evidence-based medicine.
Analyzing of Big data play a specific role in determining
the causality of clinical diseases by bacteria and treating by
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a suitable medicine. Therefore, in the Personalized Medicine
field, metagenomics is an efficient tool to deal with numerous
pressing issues and the relatives [7], [8].

II. RELATED WORK

Metagenomic analysis has become an exciting subject for
the scientific community, the primary effort on the analysis of
the microbiome is the identification of microbial communities
for disease or host phenotype prediction [9], [10].

Diagnostic metagenomics can be used to identify pathogens
on clinical samples, outbreaks of disease or novel variant
viruses. Recently, the first genome sequence of SARS-CoV-
2 was conducted with metagenomic RNA sequencing, an
unbiased and high-throughput method of sequencing multiple
genomes [8]. As an indicator of the benefits and problems
of broad screens in clinical microbiology, the well-developed
blood culture contamination literature has numerous researches
to conduct clinical utility studies of diagnostic metagenomics,
and demonstrate associations with increased hospital costs,
hospitalizations, antibiotics, surgeries, and laboratory tests
[11], [12], [13], [14], [15], [16].

The study in [17] proposed a method that can detect the
overlapping clusters on metagenomic sequencing data by the
Bayesian multinomial matrix factorization model. The authors
stated under the Bayesian framework, the number of clusters is
determined by the algorithm and improving the interpretability
of their detection from the available information gained from
a rank tree of microbes. The cluster structures are built
hierarchically based on Dirichlet-multinomial mixtures with
the purpose to indicate the relative abundance of taxa through
a set of latent variables. By given the binary matrix, the priors
are assorted hierarchically to characterize the heterogeneity via
latent features. Summarily, this approach can handle the natural
microbiome data and describes the generating process of data
by the Bayesian model.

DeepMicrobes is described as a state-of-the-art metage-
nomics tool and the first deep learning architecture that
incorporates self-attention mechanisms for DNA sequence
analysis. DeepMicrobes facilitates taxonomic classification for
cohorts of interest using newly discovered species in large-
scale metagenomic assembly studies. The DNA sequence was
encoded into numeric matrices, these are one-hot encoding
as and k-mer embedding. The convolution model, hybrid
convolutional, and recurrent model take DNA sequence one-
hot encoding as an input layer whereas the other as the first
layer of deep neural networks. For one-hot encoding, DNA
was converted into 4 × L matrix. For k-mer embedding, a
DNA sequence of length L was split into a list of substrings
of length K with a stride of S. The authors used a stride of
none for their final model, ending up with L−K+1 substrings.
The length of K was chosen to reach a balance between the
model’s fitting capacity and computational resources [18].

The different approach, phylogenetic tree embedded is an
interesting approach for metagenomics data analysis. Essen-
tially, the phylogenetic tree is a 2D matrix populated with
the relative abundance of microbial taxa in a metagenomic
sample, then, to be used as an input for the CNN [19]. With
this method, the constructed matrices provide better spatial

and quantitative information in the metagenomic data. Be-
sides, the authors also proposed the convolutional neural net-
works, namely the PopPhy-CNN and Cytoscape-a visualization
method used to facilitate the examination and interpretation
of the retrieved taxa on the phylogenetic tree. The authors
demonstrated the feasibility of extracting features can improve
the performance of SVMs compared to the other models. They
also indicated the conventional vector input 1D−CNN does
not take advantage of the biological knowledge in the phylo-
genetic tree. The phylogenetic information was also utilized in
sparse linear discriminant models with the simultaneous use of
intermediate nodes and leaves on a phylogenetic tree [20].

PhyloPhlAn 3.0 is a framework for large-scale microbial
genome characterization and phylogenetic analysis on a large
number of features, it scales to large phylogenies comprising
> 17, 000 microbial species and assign genomes from iso-
late sequencing or MAGs to species-level genome bis built
from > 230, 000 publicly available sequences. Generally, this
framework is to use available references genomes, retrieve
the phylogenetic markers, perform taxonomic assignment and
refinement, adopt specific choices for very large scale phylo-
genies, and provide additional information obtained from the
resulting phylogenies [21].

The data is the most limitation in machine learning, many
learning algorithms require large amounts of data for the train-
ing section. However, with the data augmentation method, the
performance and generalization can be improved. The authors
in [22] proposed an approach for generating microbiome data
by using a conditional generative adversarial network (CGAN).
Additionally, synthetic datasets generated using GAN models
have shown to be able to boost the performance of prediction
based tasks through data augmentation [23]. CGANs are an
extension of the GAN and allow the generation of samples
that have certain conditions or attributes. The authors in [22]
have shown this approach can improve the performance of
logistic regression and MultiLayer Perceptron in predicting
host phenotype. They also stated the selecting CGAN model
is the limitation of this approach, it is a subjective and may
miss the optimal model.

The identification based on statistical analysis to detect
the different abundant taxa between disease. The authors in
[24] presented a new deep learning approach, namely PopPhy-
CNN, a novel convolutional neural networks (CNN) learning
architecture that effectively exploits phylogenetic structure in
microbial taxa. The microbial taxonomic abundance profiles
have been transformed into a structured data by using a phy-
logenetic tree, their approach is using “Operational Taxonomic
Units” (OTUs) then converting OTU vector into an input
matrix for their model. OTUs are generated by clustering
sequences according to a computed distance between two
similar sequences and a threshold. OTUs clustering can pro-
duce high quality groups precisely due to amplicon sequences
are by definition taxa-specific and different between species
[25]. The clustering performance depends on the choice of
threshold due to sequencing errors. Furthermore, the analysis
and biologically meaningful can be problematic [26].

In this study, we present a metagenomic data visualization-
based Mean-Shift algorithm to cluster features in images
prepared for prediction tasks, the contributions include:
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◦ We present a features clustering approach with Mean-
Shift algorithm and compare to the other visualization
methods including Fill-up with phylogenetic ordering
[27] and t-Distributed Stochastic Neighbor Embedding
(t-SNE) [27], [28].

◦ The efficient of the proposed visualization methods is
evaluated on four diseases including Liver Cirrhosis
(CIR), Colorectal Cancer (COL), Obesity (OBE), Type
2 diabetes (WT2) [9], [27]. The performance on the
datasets with the considered diseases obtains better
results in prediction tasks comparing to the-state-of-
the-art such as MetAML [9], Fill-up with phyloge-
netic ordering and t-SNE using transparent rates with
alpha = 0.5 and alpha = 1.

◦ We also test visualizations with a vast of colormaps in-
cluding jet, rainbow, gray and customized colormaps.
These color spaces exhibit various results. Color im-
ages perform the best on Liver Cirrhosis dataset and
samples of Colorectal Cancer while gray scale reveals
good results for Obesity and Type 2 Diabetes samples.

The remaining of this study, we introduce the visualization
approaches for metagenomic data including Fill-up approach
and Fill-up with Mean-Shift clustering algorithm for arranging
features in Section III. In Section IV, metagenomic bacte-
rial species abundance datasets used in the experiments are
described in detail. Moreover, we present the Convolutional
Neural architecture for the proposed visualization method and
settings for the learning. The performance of our approach is
compared to the state-of-the-art in this section. We discuss and
summarize the experimental results in Section V.

III. FEATURES ARRANGEMENT BASED ON MEAN-SHIFT
CLUSTERING IN FILL-UP METHOD

Data visualization is a strong method to interpret data. Each
visualization method will be used to represent the abundance
or presence of data. In this study, we propose a visualization
method based on Mean-shift clustering algorithm to arrange
features in images, thereby making it easier for observing the
distribution of the features. Therefore, we expect to improve
the performance of disease prediction task with the proposed
visualizations.

A. Metagenomic Visualization by Fill up Approach

Fill-up [27] is an effective solution for visualizing metage-
nomic data into images. The main idea of this method is to
arrange features into a square matrix which has minimum
size to fit all features and contains arranged abundance or
presence values in a right-to-left order by row top-to-bottom.
The order to arrange species can follow the phylogenetic-
sorting or another type of ordering.

t-SNE is also a technique for visualizing metagenomic
data. t-SNE not only captures the local structure of the higher
dimension but also preserves the global structures of the data
like clusters.

In order to convert continuous values into discrete values
(for coloring features on images), we use a binning technique.
Binning is a data pre-processing method, the key goal is
to reduce the effects of minor observation errors, it has a

smoothing effect on the input data and may also reduce the
chances of overfitting in case of small datasets. In this study,
Species Bin (SPB) [27] is implemented and investigated to pre-
process values before visualizing them onto an image. With the
binning technique, the features were visualized into images by
Fill-up with phylogenetic-sorting or t-Distributed Stochastic
Neighbor Embedding (t-SNE) in [27].

B. Mean-shift Clustering in Fill-up Method

Algorithm 1 Algorithm for features clustering based on Mean-
shift algorithms
Input:
◦ D: a data matrix where each row is a sample and each

column represents a feature
Output:
◦ B: an array containing a list of strings combining

between the labels of generated clusters and order of
features sorted by phylogenetic ordering.

Begin
Step 1: Sort D so that features along with their data
follow phylogenetic ordering. Save the list containing
the order of features according to phylogenetic
ordering to P .

Step 2: Transpose D: D1 = t(D). Because we want
to group features into clusters, we transpose D so
that each feature at this time is considered as a “data
point” for clustering.

Step 3: Run Mean-shift clustering algorithm on D1 to
indicate clusters for features. Each feature is assigned
to a cluster. A cluster can contain one or more features.

. The labels of clusters contained features are saved
to L. L includes information on clusters which each
feature belongs to. For example, the 1st feature
belongs to cluster 5, the 2nd feature is labeled to
cluster 1, and so on.

Step 4:
. We concatenate labels of clusters for features L
and their phylogenetic ordering:

B[i] = string(L[i]) +′ ′ + string(P (i))

With : i = 0..#features

Return B

End

Mean-shift [29] is an unsupervised learning algorithm. In
principle, the algorithm iteratively assigns each data point
towards the closest cluster centroid and direction to the closest
cluster centroid is determined by where most of the points
nearby are at. So each iteration each data point will move
closer to where the most points are at, which is or will lead
to the cluster center. When the algorithm stops, each point is
assigned to a cluster. Assume we have:
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Fig. 1. Liver Cirrhosis samples (CIR dataset, details in Table I) Visualization comparison using various features arrangements including (left-to-right)
Mean-shift, t-SNE, and features ordered based on phylogenetic information. The first row: global images. The second row: visualizations of a sample.

Fig. 2. Visualization of the global maps from Liver Cirrhosis samples (CIR dataset) using various color spaces including custom, jet, rainbow and gray scale
with Mean-shift clustering.
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◦ Initial estimate x.

◦ Gaussian kernel function:

K(xi − x) = e−c‖xi−x2‖

This function determines the weight of nearby points
for re-estimation of the mean.

The weighted mean of the density in the window determined
by K is:

m(x) =

∑
xi∈N(x)

K(xi − x)xi∑
xi∈N(x)

K(xi − x)

Where:

◦ N(x) is the neighborhood of x.

m(x) − x is called mean shift [29] and x ← m(x), and
repeats the estimation until m(x) converges.

Fig. 3. Visualization comparison between rainbow colormap and gray scale
images using t-SNE on Liver Cirrhosis samples. Top: t-SNE with

alpha = 0.5. Bottom: t-SNE with alpha = 1.

The synthetic metagenomic images are generated by Fill-
up and t-SNE method in [27]. In this study, use of Mean-
shift algorithm, we expect to improve the performance by
finding regions containing a high density of data and group
them into a cluster with smallest non-overlapping boundaries.
This approach is performed as shown in Algorithm 1. After
clustering, we obtain an array B which contains the arranged
features order by the labeled clusters along with information on
phylogenetic ordering. Information on phylogenetic embedded
in synthetic metagenomic images is based on the alphabetical
order as described in [27]. In our method, if features are in
the same cluster, we consider the alphabetical order of features
to place them close together. By combining between order of
features sorted by cluster labels and phylogenetic ordering,
we expect to improve the quality of visualizations as well as

the prediction performance of deep learning algorithm on the
proposed visualizations.

In order to visualize features, we use 10 colors in gray-
scale, rainbow, jet, and custom colormap [27]. In Fig. 1 dis-
plays the comparison between clustered features on global and
sample images from Liver Cirrhosis samples (CIR dataset, see
details in Table I) based on mentioned visualization methods
in rainbow colormap. The global map which is an image
visualizing average value of each feature of all samples in
training set. From left-to-right and top-to-bottom, the first
two images in Fig. 1 shows the global and sample image
visualized by Fill-up combining the clustering method, in the
middle contains images represent the global map and a sample
visualization of t-SNE embedding. The last ones are visualized
by Fill-up with phylogenetic ordering. We only use samples
from training set to cluster features and build coordinates for
all features. These coordinates are carried out to generate all
images for samples of both training set and test sets.

Fig. 2 illustrates the representation of clustered features in
different colors. The images in Fig. 2 are global images from
CIR dataset which mentioned above with Fill-up and clustering
method, from left-to-right custom, jet, rainbow, and gray
colormaps. More specific, the custom colormap is built based
on jet combined to black with distinctive colors. Furthermore,
we also visualize the global images with t-SNE exhibited in
Fig. 3, the images on the top are generated by t-SNE with
alpha = 0.5 while the second row shows the images with
alpha = 1. The first column, we use rainbow colormap while
gray scale is applied for images in the other. The difference
between t-SNE with alpha = 0.5 and alpha = 1 is the
problem of the overlapped points. t-SNE suffers overlapped
issues where the visualization exists numerous points which
are hidden by other points. In order to reduce this negative
affect, the alpha value is deployed in the RGBA color space
to indicate the transparency of a colour. The alpha value ranges
from 0 to 1 where 0 is completely transparent while alpha value
of 1 is not transparent at all. By choosing alpha = 0.5, the
futures are mixed-up if they are overlapped. Otherwise, with
alpha = 1, some features can be hidden by other features.

IV. EXPERIMENTAL RESULTS

A. Benchmark Datasets

We evaluated our approach on four bacterial species abun-
dance datasets [9], [27] which are related to four diseases
including Liver Cirrhosis (CIR), Colorectal Cancer (COL),
Obesity (OBE), and Type 2 diabetes samples from western
women (WT2). Details are in Table I. For each sample, species
abundance (feature) is represented as a real number and the
total abundance of all species in a sample sums to 1:

k∑
i=1

fi = 1

With:

◦ k is the number of features for a sample.

◦ fi is the value of the i-th feature.

Table I presents the details of all considered datasets
including the numbers of features, samples, and some extra
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TABLE I. FOUR CONSIDERED BACTERIAL SPECIES ABUNDANCE DATASETS DESCRIPTION

Diseases Liver Cirrhosis Colorectal Cancer Obesity Type 2 diabetes
Datasets name CIR COL OBE WT2
#Features 542 503 465 381
#Samples 232 121 253 96
#Patients 118 48 164 53
#Controls (healthy) 114 73 89 43
Ratio of patients 0.51 0.40 0.65 0.55
Ratio of Controls (healthy) 0.49 0.60 0.35 0.45
Minimum size of images 24× 24 23× 23 22× 22 20× 20

Fig. 4. A shallow convolutional Neural Network Architecture for metagenomic images on color images of WT2 samples.

Fig. 5. Performance Comparison of different colormaps on all considered metagenomic datasets using Mean-shift for features arrangement in metagenomic
visualization

information. We calculate the ceiling of Square Root of the numbers and then of features to feed into a 2D matrix. For
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instant, on CIR dataset we have 542 features, so the 2D matrix
shape should be 24 × 24 to contain 542 features because√
542 = 23.28 and the ceiling of 23.28 is 24.

B. Learning Model and Settings

Our classification tasks are carried out by a shallow deep
learning network, a Convolutional Neural Network (CNN) as
illustrated in Fig. 4. The architecture contains one Convolu-
tional layer with 64 kernels of 3 × 3, followed by a Max-
Pooling layer of 2 × 2 (stride 2) and a Fully Connected
layer. CNN is implemented with Adam optimizer, the default
learning rate is 0.001, and the network uses a batch of size 16.
The architecture is suggested from [27]. To avoid overfitting
issues, if the loss is not improved after every consecutive 5
epochs, we will stop the training section by using the Early
Stopping method. In the opposite case, training can run up to
500 epochs. To evaluate the performance, we compute average
accuracy (ACC) on 10-fold-cross-validation. The same folds
are used for all classifiers. We calculate the accuracy which is
the fraction of true predictions by the following formula:

Accuracy = TP+TN
TP+TN+FP+FN

Where:

◦ TP: True Positive

◦ TN: True Negative

◦ FP: False Positive

◦ FN: False Negative

C. Disease Classification of Mean-shift Clustering with Fill
up on Various Diseases

The efficiency of arranging features based on Mean-shift
is evaluated in various colormaps, namely gray, jet, rainbow,
and custom. The last one is combined between black and
jet colormap. Fig. 5 illustrates the average accuracy of the
methods on four considered datasets. Generally, each colormap
gives a satisfying result each individual dataset. The the jet
colormap exhibits a quite good and reaches the highest average
performance on four datasets while gray scale works well on
OBE and WT2 and the rainbow achieves the highest perfor-
mance on COL while the custom colormap gives exceptional
results on CIR with the performances of 0.926.

D. State-of-the-art Comparison

The performance comparison of Mean-shift clustering, t-
SNE, and phylogenetic ordering [27] are illustrated in Fig. 6
and Fig. 7. The chart in Fig. 7 reveals the accuracy on four
considered datasets using rainbow colormap while the results
with gray images are shown in the other. As observed, the in
Fig. 6 features arrangements based on Mean-shift clustering
demonstrates its advantages on 3 out of 4 datasets using both
rainbow in comparing to phylogenetic ordering.

Furthermore, we also summarize the result with results of
the jet and custom colormaps, and compare to MetAML [9],
a computation framework for metagenomic analysis based on
classic machine learning algorithms such as Random Forests
and Support Vector Machines in Table II. On CIR dataset,
Mean-shift clustering method reaches the accuracy of 0.926

Fig. 6. Performance of different visualization approaches using rainbow
colormap on four considered datasets (details in Table II).

Fig. 7. Visualization methods Comparison in ACC on the considered
datasets using gray scale images (details revealed in Table II).

while MetAML, t-SNE (alpha = 1) and Fill-up using phylo-
genetic ordering reveal the results of 0.877, 0.853 and 0.897
respectively. The color images which are jet, rainbow, and
custom give quite better results than gray images on Liver
Cirrhosis and Colorectal Cancer samples while the results with
gray scale are slight better for OBE and WT2 datasets.

We also compute the average accuracy on four investigated
datasets for the comparison in the last column of Table II. In
general, as shown in the table, visualization methods with Fill-
up based on Mean-shift clustering algorithm (including average
values of 0.771, 0.777, 0.784, 0.788 with customized, rain-
bow, gray scale, and jet colormaps, respectively) outperform
MetAML, t-SNE and Fill-up using phylogenetic ordering with
the values of 0.757 of MetAML, 0.774 and 0.741 being the
best results of Fill-up with phylogenetic ordering and t-SNE,
respectively. Jet colormap appears to be the most efficiency
while custom colormap with customized distinctive colors
shows the worst among the considered color spaces. However,
we noted that the best accuracy is on CIR dataset with an
average accuracy of 0.926 using custom colormap.
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TABLE II. COMPARISON WITH THE-STATE-OF-THE-ART. BOLD RESULTS ARE BETTER PERFORMANCE THAN THE METHOD OF FILL-UP WITH
PHYLOGENETIC ORDERING.

Approaches Color space CIR COL OBE WT2 AVG
MetAML [9] - 0.877 0.805 0.644 0.703 0.757

t-SNE with alpha = 1 [27] gray 0.870 0.795 0.656 0.674 0.749
Fill-up phylogenetic ordering [27] gray 0.905 0.793 0.680 0.705 0.770

Our approach gray 0.901 0.790 0.696 0.749 0.784
t-SNE with alpha = 1 [27] jet 0.879 0.748 0.661 0.660 0.737

Fill-up phylogenetic ordering [27] jet 0.903 0.798 0.681 0.713 0.774
Our approach jet 0.913 0.799 0.695 0.745 0.788

t-SNE with alpha = 1 [27] rainbow 0.878 0.748 0.660 0.676 0.741
Fill-up phylogenetic ordering [27] rainbow 0.893 0.775 0.668 0.712 0.762

Our approach rainbow 0.909 0.820 0.690 0.687 0.777
t-SNE with alpha = 1 [27] custom 0.853 0.771 0.660 0.661 0.736

Fill-up phylogenetic ordering [27] custom 0.897 0.782 0.673 0.707 0.765
Our approach custom 0.926 0.791 0.656 0.712 0.771

V. DISCUSSION AND CONCLUSION

We presented an approach to visualize high-dimensional
data using features arrangement with Mean-shift and compare
the results to the state-of-the-art. The method reveals encourag-
ing results. We obtain better results on all considered datasets
compared to Fill-up with phylogenetic ordering and t-SNE
images classified by deep learning algorithm and MetAML
with a classic machine learning algorithm. As seen from the
experiments, features which are clustered to arrange close
together show benefits to improve the performance both in
visualizations and in classification tasks. Although t-SNE also
groups similar features, it suffers the issue of overlapped
points. However, for gray images on Colorectal cancer sam-
ples, t-SNE achieves a slightly better result comparing to
others. Further research can work on t-SNE to investigate
approaches to enhance performance.

Various colormaps are carried out to compare different
methods. The results depend on different datasets for the clas-
sification tasks. Customised colors obtain the highest average
accuracy with 0.926 on CIR dataset while it shows only an
average accuracy of 0.656 on OBE dataset. It is clear that
visualization methods are good solutions for Liver Cirrhosis,
Colorectal Cancer prediction but Predicting Obesity and Type
2 diabetes is still facing challenges with metagenomic data.
However, the performance on Cirrhosis samples and Colorectal
cancer samples also reveal great potentials of metagenomic in
disease prediction with personalized medicine.

Our study only runs the classification tasks with shallow
deep learning architectures. Advancements in deep learning
techniques have been increasing their efficiency on numerous
fields. In the future, further research should investigate on
deeper architectures and more sophisticated techniques to
improve the performance on synthetic metagenomic visualiza-
tions classification tasks.

REFERENCES

[1] Sagner M, McNeil A, Puska P, Auffray C, Price ND, Hood L, et
al. The P4 health spectrum - a predictive, preventive, personalized and
participatory continuum for promoting healthspan. Prog Cardiovasc Dis.
2017;59:506–521. doi: 10.1016/j.pcad.2016.08.002. 2016.

[2] Crisci, Carlos D et al. “A Precision Medicine Approach to SARS-CoV-
2 Pandemic Management.” Current treatment options in allergy, 1-19. 8
May. 2020, doi:10.1007/s40521-020-00258-8. 2020.

[3] Chen K, Pachter L. Bioinformatics for whole-genome shotgun sequenc-
ing of microbial communities. PLoS Comput Biol. 2005;1(2):106-112.
doi:10.1371/journal.pcbi.0010024

[4] Handelsman J. Metagenomics: application of genomics to uncul-
tured microorganisms. Microbiol Mol Biol Rev. 2004;68(4):669-685.
doi:10.1128/MMBR.68.4.669-685.2004

[5] Ma, Bing & France, Michael & Ravel, Jacques. (2020). Meta-
Pangenome: At the Crossroad of Pangenomics and Metagenomics.
doi10.1007/978-3-030-38281-0 9.

[6] Jang SJ, Ho PT, Jun SY, Kim D, Won YJ. Dataset supporting de-
scription of the new mussel species of genus Gigantidas (Bivalvia:
Mytilidae) and metagenomic data of bacterial community in the host
mussel gill tissue. Data Brief. 2020;30:105651. Published 2020 Apr 29.
doi:10.1016/j.dib.2020.105651. 2020

[7] Alfredo D. Guerron et al. “Performance and Improvement of the DiaRem
Score in Diabetes Remission Prediction - A Study with Diverse Procedure
Types”, May. 2020, doi:https://doi.org/10.1016/j.soard.2020.05.010. 2020.

[8] Hongyu Chen, Sanjeev Kumar Awasthi, Tao Liu, Zengqiang Zhang.
Mukesh Kumar Awasthi, “An assessment of the functional enzymes and
corresponding genes in chicken manure and wheat straw composted with
addition of clay via meta-genomic analysis”, Industrial Crops and Prod-
ucts, vol. 153, 2020, doi:https://doi.org/10.1016/j.indcrop.2020.112573

[9] Pasolli et al. “Machine Learning Meta-analysis of Large
Metagenomic Datasets: Tools and Biological Insights”. PLoS
Comput. Biol. 2016;12(7):e1004977. Published 2016 Jul 11.
doi:10.1371/journal.pcbi.1004977. 2016.

[10] Syed Hamid Jalal Shaha, Aamir Humayun Malik, Bing Zhang, Yiming
Bao, Javaria Qazi, “Metagenomic analysis of relative abundance and
diversity of bacterial microbiota in Bemisia tabaci infesting cotton crop in
Pakistan”, May 2020, doi:https://doi.org/10.1016/j.meegid.2020.104381

[11] Hasman, Henrik et al. “Rapid whole-genome sequencing for de-
tection and characterization of microorganisms directly from clinical
samples.” Journal of clinical microbiology vol. 52,1 (2014): 139-46.
doi:10.1128/JCM.02452-13. 2014.

[12] Self WH, Speroff T, Grijalva CG, et al. Reducing blood culture
contamination in the emergency department: an interrupted time se-
ries quality improvement study. Acad Emerg Med. 2013;20(1):89-97.
doi:10.1111/acem.12057

[13] Hall KK, Lyman JA. Updated review of blood culture contamination.
Clin Microbiol Rev. 2006;19(4):788-802. doi:10.1128/CMR.00062-05

[14] Gander RM, Byrd L, DeCrescenzo M, et al. Impact of blood cultures
drawn by phlebotomy on contamination rates and health care costs in

www.ijacsa.thesai.org 59 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 6, 2020

a hospital emergency department. J Clin Microbiol. 2009;47:1021–1024.
2009. DOI:10.1128/JCM.02162-08

[15] Bates DW, Goldman L, Lee TH. Contaminant blood cultures and re-
source utilization. The true consequences of false-positive results. JAMA.
1991;265(3):365-369.

[16] van der Heijden YF, Miller G, Wright PW, Shepherd BE, Daniels TL,
Talbot TR. Clinical impact of blood cultures contaminated with coagulase-
negative staphylococci at an academic medical center. Infect Control Hosp
Epidemiol. 2011;32(6):623-625. doi:10.1086/660096

[17] Fangting Zhou, Kejun He, Qiwei Li, Robert S. Chapkin, Yang Ni,
“Bayesian biclustering for microbial metagenomic sequencing data via
multinomial matrix factorization,” arXiv:2005.08361, May 2020

[18] Qiaoxing Liang, Paul W Bible, Yu Liu, Bin Zou, Lai Wei, DeepMi-
crobes: taxonomic classification for metagenomics with deep learning,
NAR Genomics and Bioinformatics, Volume 2, Issue 1, March 2020,
lqaa009, https://doi.org/10.1093/nargab/lqaa009

[19] D. Reiman, A. Metwally, J. Sun and Y. Dai, “PopPhy-CNN: A Phylo-
genetic Tree Embedded Architecture for Convolutional Neural Networks
to Predict Host Phenotype from Metagenomic Data,” in IEEE Journal
of Biomedical and Health Informatics, doi: 10.1109/JBHI.2020.2993761.
2020.

[20] Fukuyama J, Rumker L, Sankaran K, et al. Multidomain analyses
of a longitudinal human microbiome intestinal cleanout perturbation
experiment. PLoS Comput Biol. 2017;13(8):e1005706. Published 2017
Aug 18. doi:10.1371/journal.pcbi.1005706. 2017.

[21] Asnicar, F., Thomas, A.M., Beghini, F. et al. Precise
phylogenetic analysis of microbial isolates and genomes from
metagenomes using PhyloPhlAn 3.0. Nat Commun 11, 2500 (2020).
https://doi.org/10.1038/s41467-020-16366-7. 2020.

[22] Reiman, Derek and Dai, Yang, “Using Conditional Generative

Adversarial Networks to Boost the Performance of Machine
Learning in Microbiome Datasets,” bioXiv:2020.05.18.102814,
https://doi.org/10.1101/2020.05.18.102814, May 2020.

[23] Che, Z., Cheng, Y., Zhai, S., Sun, Z., & Liu, Y. (2017). Boosting
Deep Learning Risk Prediction with Generative Adversarial Networks for
Electronic Health Records. 2017 IEEE International Conference on Data
Mining (ICDM), 787-792.

[24] D. Reiman, A. Metwally, J. Sun and Y. Dai, ”PopPhy-CNN: A Phylo-
genetic Tree Embedded Architecture for Convolutional Neural Networks
to Predict Host Phenotype from Metagenomic Data,” in IEEE Journal
of Biomedical and Health Informatics, doi: 10.1109/JBHI.2020.2993761.
2020.

[25] Soueidan, Hayssam and Macha Nikolski. “Machine learning for metage-
nomics: methods and tools.” arXiv: Genomics (2015): n. pag.

[26] (2014). Molecular Markers in Phylogenetic Studies-A Review. Jour-
nal of Phylogenetics & Evolutionary Biology. 02. 10.4172/2329-
9002.1000131.

[27] Thanh Hai Nguyen, Edi Prifti, Nataliya Sokolovska, Jean-Daniel
Zucker. Disease Prediction using Synthetic Image Representations of
Metagenomic data and Convolutional Neural Networks. The 13th IEEE-
RIVF International Conference on Computing and Communication Tech-
nologies 2019, Da Nang 20-22/03/2019; pp 231-236; 2019; ISBN 978-1-
5386-9313-1. IEEE Xplore. 2019.

[28] Maaten, Laurens van der and Geoffrey E. Hinton. “Visualizing Data
using t-SNE.” (2008).

[29] K. Fukunaga and L. Hostetler, “The estimation of the gradient of
a density function, with applications in pattern recognition,” in IEEE
Transactions on Information Theory, vol. 21, no. 1, pp. 32-40, January
1975, doi: 10.1109/TIT.1975.1055330.

www.ijacsa.thesai.org 60 | P a g e


