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Abstract—Currently, network communication is more suscep-
tible to different forms of attacks due to its expanded usage,
accessibility, and complexity in most areas, consequently imposing
greater security risks. One method to halt attacks is to identify
different forms of irregularities in the data transmitted and
processed during communication. Detection of anomalies is a vital
process to secure a system. To this end, machine learning plays a
key role in identifying abnormalities and intrusion in communica-
tion over a network. The term regularization is one of the major
aspects of training machine learning models, in which, it plays
a primary role in several successful Artificial neural network
models, by inducing regularization in the model training. Then,
this technique is integrated with an Artificial Neural Network
(ANN) for classifying and detecting irregularities in network
communication efficiency. The purpose of regularization is to
discourage learning a more flexible or complex model. Thus, the
machine learning model generalizes enough to perform accurately
on unseen data. For training and testing purposes, NSL-KDD,
CIDDS-001 (External and Internal Server Data), and UNSW-
NBI15 datasets were utilized. Through extensive experiments, the
proposed regularizer reaches higher True Positive Rate (TPR) and
precision compared L1 and L2 norm regularization algorithms.
Thus, it is concluded that the proposed regularizer demonstrates
a strong intrusion detection ability.

Keywords—New regularizer; anomaly detection; NSL-KDD
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I. INTRODUCTION

Now-a-days, network communication’s threats and attacks
are growing as it is widely utilized in every field. To prevent
such attacks, it is a crucial and necessary task to classify
network communication as normal and suspicious. Such task
is generally known as anomaly detection, dealing with unlikely
events in network communication. The standard approach
to detect an anomaly is computing the accurate mathemat-
ical model of normal data. Every new receiving instance
is compared with the model of normality and, accordingly,
an anomaly score is computed. The score will describe the
deviations of the new instance compared to the average data
instance and, if the deviation is relatively high, then the
instance will be considered as suspicious and classified as
anomalous and hence processed adequately [1] [2] [3].

In machine learning, generally, we are looking for the best-
fitting model among other models in a large solution space.
Similarly, in the context of ANN, solution space is defined
as the space of all approximated or precise functions that a
network can represent.

Network depth and activation functions are used to determine
the size of this solution space. One hidden layer with an
activation function makes the space of functions very huge, so

this space grows exponentially when the depth of the network
is increased; hence, finding a most-fit solution becomes a
difficult task.

Multiple optimizer functions tend to minimize the loss
function, of which Stochastic Gradient Descent (SGD) being
very common. Using SGD as an optimizer, one can seek a
solution by moving in the opposite direction of the gradient of
loss function. Due to complexity and richness of the solution
space, this method of learning might overfit the learning model
and affects the generalization error or performance signifi-
cantly on unseen data while giving good results on training
data [4]. To solve this issue, the concept of regularization is
introduced in machine learning to avoid the complexity of the
learning model. There are different regularization algorithms
used to avoid overfitting of the machine learning model [4]. For
example, in iterative learning, the most common regularization
algorithm is early stopping, and, in the neural network, the
commonly used regularization algorithm is a dropout. Gener-
ally, in statistics and machine learning, the regularization term
is used in combination with the loss or error function. This
method is beneficial as it incorporates the model complexity
into the function to be minimized. Such methods are used in
many algorithms such as Support Vector Machines (SVMs) [5]
as optimization problems.

However, the existing regularization algorithms come with
drawbacks due to the nature of the regularizers. In a challeng-
ing setting, where the number of features is greater than the
number of samples and correlated, the existing regularization
algorithms either do not promote sparsity or poorly perform
because of the absence of relevant information.

The purpose of this paper is to implement a new regular-
ization algorithm to search for the optimal solution in a large
solution space by taking into consideration the relationship
between weight matrix entries. Hence, the limit of space is
increased and can be controlled by squeezing and expanding
this space based on the penalty term A. Consequently, it
provides the ability to find the least complex learning model.
To differentiate between normal and various malicious con-
nections, we plan to examine the algorithm from a multiclass
classification perspective.

In this paper, we introduced new regularization design
considerations and a general outline of an intrusion detection
technique based on using the standard deviation to decay
the weight matrices in order to get the regularization term.
Compared with well-known regularization techniques, we em-
bedded the proposed regularizer with ANN model for classifi-
cation tasks and employed NSL-KDD, CIDDS-001 (External
and Internal Server Data), and UNSW-NB15 datasets with
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separate testing and training sets to evaluate the efficiency in
detecting anomalies.

The main contributions of this paper are summarized as
follows:

1)  We present the design and implementation of an ANN
intrusion detection system based on a new regularizer.

2)  We study the performance of the model with different
regularization parameters impacting accuracy.

The outline of the paper is as follows: We provide the
related works in Section II. Then, we give background and
formalization in Section III. Next, we present the used datasets
in Section IV. In the same section, we also study anomaly
detection and the new regularization technique. In Section
V, results and discussion are presented. The limitation of
proposed regularization technique provided in Section VI.
Finally, we conclude our study in Section VII.

II. RELATED WORKS

The first IDS or anomaly detection system was introduced
by Dr. Dorothy in SRI international, and it is still an actively
and heavily researched topic due to its broad applications in
network communication ([6],[7]). Supervised learning tech-
niques are popular methods for solving such problems. These
techniques give more satisfactory results when statistical and
regression techniques are incorporated [21].

A novel intrusion system and a multilevel hybrid classifier
were proposed in [8]. The proposed system is combined the
unsupervised Bayesian clustering with the supervised tree
classifiers to detect the intrusions. Based on the Modular
Multiple Classifier System (MCS), the authors in [9] proposed
an unlabeled network anomaly IDS, where every module
was created to model network services or a specific group
of similar protocols. Moreover, they conducted experimental
studies on the KDD Cup 1999 dataset, which revealed that the
proposed anomaly IDS was able to accomplish high attack
detection along with the low rate of false alarm. In [10],
authors developed an intrusion detection system based on the
AdaBoost algorithm. Within this algorithm, the decision rules
were provided for the continuous and categorical features
and the decision stumps were used as weak classifiers. The
combination of the weak classifiers for the continuous and
categorical features with the strong classifier allowed handling
the relation between these features without the need for any
forced conversations. According to the authors’ experimental
analysis, they reported that the algorithm had low error rates
and computational complexity. Data mining techniques were
utilized in [11]; the authors devised a novel framework for
intrusion detection accordingly. For building classifiers, the
authors proposed a classification algorithm which uses fuzzy
association rules. However, the outcomes regarding the unseen
attacks were not promising. In [12], the authors used a super-
vised learning classifier system for intrusion detection. To learn
signatures for network intrusion detection, they presented a
biologically inspired computational approach which can learn
adaptively and dynamically. For the futuristic establishment
of the intrusion detection system, authors in [13] presented
a reference for the comparison of the efficiency of different
machine learning techniques, including SVM and the tree
classification. Moreover, the authors proposed a method to
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compute the mean value through sampling different ratios
within the normal data for every measurement, resulting in
obtaining a better rate of accuracy when observing the data in
the real world. A novel machine-learning algorithm was pro-
posed in [14], namely, Boosted Subspace Probabilistic Neural
Network (BSPNN), which combined a semiparametric and an
adaptive boosting approach to attain better trade-off between
the generality and the accuracy. Hence, the method depicted
prominent improvements with respect to detection accuracy,
comparatively low computational complexity, and negligible
false alarms. A new approach for intrusion detection was
proposed in [15]. This approach is based on ANN and fuzzy
clustering (FC-ANN). To evaluate the proposal, the authors
conducted an experiment using the KDD Cup 1999 dataset.
Experimental results demonstrated that FC-ANN enhanced
the detection stability and the detection precision. For the
prediction of the anomaly detection, a random-effects logistic
regression model was proposed in [16].

Imbalanced class distribution is an inevitable problem in
real network traffic due to the large size of traffic and low
frequency of certain types of anomalies. Authors in [17] used
sampling approaches to combat imbalanced class distributions
for network intrusion detection. It performed flow-based clas-
sification on a network flow dataset: CIDDS-001. The system
was able to detect attacks with up to 99.99% accuracy.

In [18], the statistical and complexity analysis of CIDDS-
001 dataset is considered. The authors utilized the k-nearest
neighbor classifier on CIDDS-001 to build an IDS. Their
system achieved an overall accuracy of 99.6% with 2nn and a
minimum accuracy of 99.3% with 5Snn. Using the same dataset,
the authors in [19] conducted an analytical study to assess
the performance of KNN and k-means clustering algorithms
when classifying traffic. Both algorithms achieved over 99%
accuracy. In [20], authors proposed an effective anomaly-based
intrusion detection system using a gradient boosted machine
(GBM). Three different datasets, NSL-KDD, UNSW-NBI15,
and GPRS dataset, were utilized with either tenfold cross-
validation or hold-out method. In [21], the authors proposed
an improved IDS based on hybrid feature selection and two-
level classifier ensembles. Two intrusion datasets (NSL-KDD
and UNSW-NBI15) have been employed to evaluate the per-
formance. Based on the statistics and significance tests, on
the NSL-KDD dataset, the proposed classifier shows 85.8%
accuracy, 86.8% sensitivity, and 88.0% detection rate. By
taking advantage of the multiple classification abilities of
neural networks and the fuzzy logic, authors in [22] developed
a novel model for the intrusion detection system. A new
learning algorithm was proposed in [23] for adaptive intru-
sion detection using naive Bayesian and boosting classifiers.
Additionally, they conducted an experiment using the KDD
Cup 1999 dataset. The experiment proved that the proposed
algorithm offered higher detection rates with a remarkable
reduction in the number of false positives for multiple types
of network intrusion. A GA combined with the KNN for
feature weighting and selection was proposed in [24]. The
proposed model was applied on the KDD Cup 1999 dataset
for identifying DDoS/DoS attacks. The result showed that
the accuracy for unknown attacks was found to be 78%,
whereas the accuracy for known attacks was calculated to be
97.24%. Based on the Pittsburgh, iterative rule learning (IRL),
and Michigan approaches, the authors in [25] proposed three
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different types of genetic fuzzy systems for intrusion detection.
A novel feature representation approach was proposed in [26].
This approach is called the cluster center and nearest-neighbor
approach (CANN), in which the distance between data and its
nearest neighbor and data sample and its cluster center were
measured and summed. The authors conducted the experiments
using the KDD Cup 1999 dataset, showing that the CANN
classifier performed similarly or slightly better than SVM and
k-NN.

Two dimensionality reduction techniques, namely, PCA
and fuzzy PCZ, were used and compared in [27], where
the authors classified the test samples of connections into
attack or normal category by applying KNN algorithm. In
addition, they conducted experiments using KDD Cup 1999
dataset. The results showed that fuzzy PCA performed better
than the PCA in detecting the DoS and U2R attacks. In
[28], the authors proposed a deep learning approach using
recurrent neural networks (RNN-IDS). The experimental re-
sults demonstrated that the RNN-IDS was ideal for model-
ing a classification model with relatively high accuracy, and
its performance was also superior compared to conventional
machine learning classification techniques in multiclass and
binary classification. The authors in [29] built an anomaly
detection system using backpropagation algorithm optimized
by Conjugate Gradient (CG) algorithm. Then, they analyzed
the use of CG optimization (Polak-Ribiere, Fletcher Reeves,
Powell Beale). Based on their experiment results, the average
accuracy was 93.2% for two classes “intrusion” and “normal”.
Applications of LSTM to RNN for modeling the IDS modeling
were proposed in [30]. The ideology of the experiment was
dependent on the hyperparameter values, the rate of learning,
and changes in the performance; the size of the hidden layer
had a significant impact on the performance. According to their
experiments, the average rate of detection was computed to
be 98.8%. The authors in [31] proposed a learning model,
namely, PSO-FLN for fast learning network (FLN), based on
particle swarm optimization (PSO). A deep learning model
was proposed in [32]. The model is based on the DBN and
stacked nonsymmetric deep autoencoder (NDAE). They used
KDD Cup 1999 and NSL-KDD datasets to evaluate their
model, which accurately detected the Probe attacks and the
DoS. Nevertheless, R2L attacks were barely identified, while
no detection of the U2R attacks was recorded. The precision
value was found to be 99.99%, with an overall accuracy of
97.85%.

III. BACKGROUND AND FORMALIZATION

The most critical issue in machine learning is developing
a generalized training model that will perform accurately on
training data and at least will provide almost the same results
on unseen data.

There are many algorithms used whose primary goal is
to decrease classification error on unseen data at the cost
of increased training error. In other words, we may say that
reducing the model’s generalization error without any effect
on training error is known as regularization.

Many techniques have been used to improve the gener-
alization performance of the learning model [33]. Some add
constraints to the machine learning model, such as putting
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constraint on model parameters values, and others add further
statistical terms in the objective function that are known as a
soft constraint on model parameters [34].

Developing a more effective regularization algorithm is a
crucial task in the field of machine learning; hence, it is the
main focus of research in this field. In a statistical model of
learning algorithms, such constraints and penalties are used to
encode prior knowledge. On occasion, these penalties and con-
straints are designed to promote generalization by expressing
generic preferences for a simple classification model. However,
it is necessary to incorporate such penalties and constraints to
make an undetermined problem determined.

As explained above, there are multiple strategies
to incorporate regularization in machine learning algo-
rithms [35], [36], [37]. Among these methods, L1- and L2-
norm are the most common regularization methods. L2 regu-
larization is also referred to as Tikhonov regularization, and,
in statistics, as ridge regression. It is combined with the cost
function as a complexity term.

L2 regularization is the squared Euclidean of all feature
weights of the hidden layer, and, in the case of multiple hidden
layers, it is the sum of all such squared norms including the
output layer of the neural network [38].

Another regularization parameter,), is multiplied with reg-
ularization in order to put a penalty on and control the strength
of the magnitude of weights. Due to this regularization, the
model results in much smaller weights for each layer. Sim-
ilarly, L1 regularization produces many zeros in the weight
matrix and makes it sparse, hence, controlling the complexity
of the model. Both L1 and L2 regularizations have a well-
defined probabilistic interpretation which is similar to adding
a Gaussian prior over the distribution of weight matrix W in
case of L2 and Laplacian in case of L1 [39]. However, several
tried and tested regularization methods exist for both neural
networks and other machine learning algorithms (Random
forests, SVM, etc.) [5], [37], [40],[41]. For succinctness, we
will focus purely on methods used on ANNSs. For simplicity,
we can split the methods into categories, with one being
sparsity-based regularization and the other not.

The sparsity-based methods to be considered are L1 and L2
norms.

Both methods take a sum over the absolute value and
square, respectively.

There is a great amount of previous work comparing L1 and
L2 along with other regularization methods in a variety of
problem domains [42].

On the other hand, we can also apply methods such as
early stopping. This would reduce the number of parame-
ters the network learns; thus, this is considered a form of
regularization. The goal of early stopping along with other
forms of regularization is to reduce generalization error or
increase generalization accuracy while allowing training error
to increase.

The most seminal regularization method and one of
the more significant breakthroughs in machine learning is
dropout [43].
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Dropout is an intuitively brilliant discovery that drops out
or deactivates and removes a portion of neurons randomly
according to an arbitrary value. Pushing a neural network to
acquire more stable and strong characteristics together with
various random subsets of other neurons. Depending on the
problem’s context, it can be used in combination with sparsity
regularizers to good effect (see Fig. 1).

O
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a) Standard network

{b) Dropout network

Fig. 1. Comparison between a standard neural network and a network
implementing dropout

IV. ANOMALY DETECTION AND NEW REGULARIZATION
TECHNIQUE

A. Anomaly Detection

Anomaly detection can be framed in many ways. Outlier
detection, for instance, can often fall under this umbrella. Here,
let us define an anomaly as something that significantly differs
from the rest of the data or otherwise grossly misfits the
distribution of data. We trained and tested in a supervised
context (classification) using a feedforward network to test
differences across other regularization techniques and our new
regularization in our problem domain.

B. DATA

Due to the nature of the problem, the following 3 datasets
were chosen to carry out analysis based on the proposed regu-
larization, L1 and L2 norm regularizations. The competition
task was to build a network intrusion detector to analyze
the performance of the proposed regularizer with existing
regularizers and a predictive model capable of distinguishing
between normal connections and attack connections.

1) NSL-KDD Dataset.
2) UNSW-NBI5 Dataset
3) CIDDS-001 Dataset

1) NSL-KDD dataset: NSL-KDD dataset is a replacement
of KDD-CUP dataset and it solves some problems in the KDD
CUP 1999 dataset. In NSL-KDD dataset there are 4 attack
categories that represent anomalous data and 1 normal category
which shows that the corresponding instances are normal. The
dataset is quite imbalance and due to this nature, training
a classifier is a challenging task. Various types of attacks
categories are shown in Table L.
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TABLE I. ATTACK CLASSES BASED ON DIFFERENT ATTACK TYPES

Attack Class Training Set Testing Set

DOS back, land, neptune, pod, back, land, neptune, pod, smurf,
smurf, teardrop teardrop, mailbomb, processtable, udp-
storm, apache2, worm

Probe ipsweep, nmap, | ipsweep, nmap, portsweep, satan,
portsweep, satan mscan, saint

U2R buffer-overflow, loadmod- | buffer-overflow, loadmodule, perl,
ule, perl, rootkit rootkit, sqlattack, xterm, ps

R2L fpt-write, guess-passwd, | fpt-write, guess-passwd, imap, multi-

imap, multihop, phf, spy,
warezclient, warezmaster

hop, phf, spy, warezmaster, xlock, xs-
noop, snmpguess, snmpgetattack, http-
tunnel, sendmail, named

2) UNSW-NBI5 dataset: UNSW-NBI15 dataset is created
by IXIA PerfectStorm tool in the Cyber Range Lab of the
Australian Centre for Cyber Security (ACCS) and its purpose
is generating a hybrid of real modern normal activities and
synthetic contemporary attack behaviors. It contains nine dif-
ferent types of attacks Fuzzers, Analysis, Backdoors, DoS, Ex-
ploits, Generic, Reconnaissance, Shellcode, and Worms. The
whole dataset contains 2,540,044 records and it is available to
download as one file or split into several different CSV files.
There is also one list of event files which contains information
about the number of events categorized by attack category and
attack subcategory for all 2.5M records. From that dataset, the
training and the test dataset are produced, wherein the training
dataset contains175,341 records and 82,332 records in the test
dataset [44].

3) CIDDS-001 Dataset: Another dataset we used for our
experiment is the CIDDS-001 dataset [45]. This is a labeled
flow-based dataset used for intrusion detection system. The
following attributes from the dataset are used for training the
model: Src IP, Src Port, Dest IP, Dest Port, Proto, Duration,
Bytes, Packets, Flags.

There are two types of server through which this data is col-
lected (open stack and external server). Data from both servers
contain the aforementioned attributes, the only difference is in
the attack categories.

Data from open stack server contains the following three
categories:

normal, victim and attacker. While data from the external
server contains the following 5 categories: normal, victim,
attacker, unknown, suspicious.

C. New Regularization Technique

In the machine learning field, the commonly applied
regularization techniques are L1-norm and L2-norm. During
optimization, these regularizers consider the complexity of
weights to induce the networks towards a more general map-
ping. L1-norm imposes the sum of the absolute values as
a penalty, while L2-norm imposes the sum of the squared
values as a penalty. The purpose of this article is to introduce
a new regularization that employs the standard deviation of
the weight matrix and then multiplies it by A to make the
regularization term. Consequently, the regularizer computes the
weights standard deviation of the weights to the loss function.

After studying the L1 and L2 regularizers, we found one
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Fig. 2. Contours of L1, L2, and new regularizers

significant drawback, that is regulating the weights’ individ-
ual values without taking into consideration the relationship
between weight matrix entries. To resolve this downside, the
new regularization technique utilizes the standard deviation to
get the regularization term. This is to construct an adaptive
form of weight decay. Thus, the regularizer does not allow the
learning model to adapt widespread values from weight space.

The contour of the new regularizer was displayed high-
lighting the efficacy and potency of the new regularizer. 2
represents the feasible region of L1, L2, and new regularization
techniques. The contours of each regularizer represent different
loss values. The behavior of the L2-norm is circular and
incorporates L1, while the new regularization acts like a
parabola and takes values beyond the L2-norm limit. This
helps in a sense, it increases the limit of values (space) to
be adopted, and based on the penalty term A this space can
be expanded. The formalization as follows (See equations 1),
with w denoting the standard deviation of weight matrix w;.

)\Zw (1)

During the training process, A denotes the regularization
parameter that sets a penalty to restrict weights from selecting
high values. In other words, the loss function in our case will
become (see equations 2):

ming, {f(X,y : w) + Ao(w)} 2)

Therefore, if the weight values of all layers are large, the
weight values of the selected A will be large. Thus, the
weight values cannot be equal, as they will have more freedom
to search in a large space. Consequently, our regularization
technique is more effective compared to the L1 and L2
regularization techniques.

The model was trained using the Nesterov ADAM opti-
mizer, with tanh activation functions. The model was trained
over 100 epochs with a batch size of 32. The labeled data were
classified with a feedforward network.

D. Artificial Neural Network (ANN) Based IDS with New
Regularization Method

In this section, we present the diagrammatic representa-
tion of data preprocessing and training ANN model which
employed our new regularizer as shown in Fig. 3. There are
generally four steps involved in this process (Fig. 2) as follows:
There are generally four steps involved in this process (Fig. 3)
as explained below.
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Fig. 3. New regularizer based IDS workflow

1) Data Preprocessing: Artificial Neural Network uses
only numerical data for training and testing. So, the initial
step is to transform nominal and textual data into numerical
data. To do this, the following steps were performed:

e  All the nominal and textual attributes were converted
by using one-hot encoding (nominal to binary con-
version in Weka). Conversion of attributes to one-hot
encoding leads to increasing of attributes in attributes.
Therefore, the number of units in ANN is adjusted
according to attributes.

e  Each category of attack types was converted by one-
hot encoding.

2) Data Scaling: After data preprocessing, each dataset
contains attributes of numerical values and one-hot encoded
values. The numerical values were normalized according to
the formulation given in equation 3.

— X; — min(X;)

Xi = maz(X;) — min(X;) 3

For 7 = 1,...,n where n represents the number of records, and
x represents a specific column in the dataset. Next, duplicate
records were removed from the dataset to restrict classifiers
from giving biased results.

3) Training the ANN model: After data preprocessing and
data scaling phases, our next task is to implement ANN model.
Python was picked to be the implementation language and the
Keras framework was employed for ANN. The ANN model
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| Hidden Layer 04 10 Newrons |

| Hidden Layer [5: 3 Neurons |

| Output Laver : 5 Newrons |

Fig. 4. ANN architecture with embedded new regularizer

is incorporated with a new regularizer to test our method.
Employing the mathematical description in equation 1, the
proposed regularizer is applied as a function. In fact, the
kernel_regularizer was assigned with this new function rather
than built-in regularizers in the ANN model. The ANN pre-
dictive model includes two hidden five- and three-unit layers,
respectively. The last layer is composed of two units according
to class values. tanh is the activation function employed in
each layer, except for the last layer, where the softmazx
activation function is utilized. In the first two layers, the weight
matrix was initialized with Gaussian random distribution. Due
to the large number of neurons in each layer, we show only
the reduced version of the model as depicted in Fig. 4. The
first layer consists of 122 neurons, the first hidden layer 10
neurons, and the second layer 100 neurons.

Likewise, the third hidden layer has 50 neurons. In the fourth
hidden layer, the input size is reduced to 10. Hence, we added
10 neurons to it. Further, these neurons are connected to 3
neurons in the fifth hidden layer which is further connected to
5 output neurons each for one of the five specific categories.
In each layer, a Kernel matrix is initialized with uniform
distribution and tanh activation function except the last layer
which has softmaxz activation function. Further, for binary
classification, the last layer has 2 output neurons. Finally, the
model is compiled with an adam optimizer with a default
learning rate and other parameters.

4) HyperParameters Adjustment: After each 100-epoch
run of the ANN model, precision and loss values were
evaluated and the hyperparameters were adjusted accordingly.
Activation functions and kernel initializer distributions were
determined after several iterations and examining the depth of
the ANN model. According to our optimal desired outputs,
regularization parameter A was also adjusted. The number
of layers and hyperparameters remained the same for each
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regularizer. A\ parameter was constantly updated and fixed to
the value resulting in the highest and best accuracy for the
corresponding regularizer.

V. RESULTS AND DISCUSSION

To produce results based on the proposed method, we
implemented our model for multiclass classification (rormal
and four different attack categories (5-class)). In addition,
we applied the 10-fold cross-validation on each dataset. All
simulations were carried out on a server having 32 GB
RAM, GeForce GTX 1080 GPU of 8 GB GDDR5X memory,
and 2560 NVIDIA CUDA cores. We compared results for
multiclass problems in each case and demonstrated our results.
For each dataset, the corresponding attack categories were
considered as classes and the ANN with new, L1, and L2
regularizations is trained by using 10-fold cross-validation. For
every attack class in each dataset, the performance measures
described in equations 5-9 were computed and presented.
In the following sections, results for each dataset based on
our new regularization are compared with other regularization
algorithms. In each type of classification, the proposed regu-
larization demonstrates a good performance and is superior to
L1 and L2 regularizations. Furthermore, other hyperparameters
and results on each classification category are discussed in
detail.

A. Evaluation Protocols

For multiclass classification, the loss function used is
categorical cross entropy as given in equation 4.

CrossEntropy = — ZZC tilog f(si) )

where C' is the number of classes, ¢; is the ith class and f(s;)is
the ith output after activation function f.

To evaluate our model, training and validation accuracy are
reported for the data partitions as explained in Results and
Discussion. Accuracy is calculated based on the following
mathematical representation. Apart from accuracy, other per-
formance measures, that is, TPR also known as Recall, False
Positive Rate (FPR), Precision (Pre), and F1 measures, are
calculated based on equations 5, 6, 7, 8, and 9, respectively.

TP+TN

A - 5
CUraY = TP Y TN+ FP + FN ©)

TPR = TP};% (©6)
FPR = FPliiPTN @)
Pre = Tszf—iPFP ®)
s T

where TP, TN, FP and F'N denote true positives, true neg-
atives, false positives, and false negatives, respectively.
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B. Performance Measurement of Different Regularization
Techniques

1) NSL-KDD dataset: ANN model with embedded new
regularization is trained on 25192 samples (The 20% of NSL-
KDD training set (KDDTrain+) by using 10-fold cross-
validation. The trained model is then tested on a separate
test dataset containing 22544 samples (KDDTest+). After
that the results were recorded in Tables II, III, and IV. NSL-
KDD dataset is an imbalanced dataset; therefore, the individual
performance measures for each class are significantly affected.
For example, R2L attack type has a total of 224 samples
and the performance is lower for this category type. In such
a situation, the classifier is biased towards more frequent
samples, for example, a normal category having 9711 samples.

New regularization: NSL-KDD dataset has four different
attack categories. For each attack category, different perfor-
mance measures were computed (see Table II). Experimental
results for TPR are also demonstrated in Fig. 5.

TABLE II. PERFORMANCE MEASURES FOR NSL-KDD DATASET BY
USING NEW REGULARIZATION

Labels TPR FPR Pr. F1 Acc
Normal 0.980 0.0073 0.990 0.985

DoS 0.978 0.0054 0.989 0.983

R2L 0.924 0.0087 0.520 0.665 98.5%
U2R 0.969 0.0033 0.977 0.973

Probe 0.956 0.0067 0.941 0.948

NSL: TPR and Precision for each category
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Fig. 5. TPR observerd using the new regularizer for NSL-KDD dataset

L1-Norm regularization: For the sake of comparison, we
also used L1-norm regularization for the 5 classes of NSL-
KDD dataset. Finally, we computed the performance measures
results (see Table III).

TABLE I1I. PERFORMANCE MEASURES FOR NSL-KDD DATSET USING
L1-NORM REGULARIZATION

Labels TPR FPR Pr. F1 Acc
Normal 0.975 0.011 0.986 0.981

DoS 0.96 0.013 0.974 0.967

R2L 0.938 0.01 0.502 0.654 95.4%
U2R 0.948 0.01 0.937 0.942

Probe 0.943 0.006 0.95 0.947

L2-norm regularization: Further, we trained the classifier
by using L2-norm regularization. The result of NSL-KDD
datasets is shown in Table IV.
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TABLE IV. PERFORMANCE MEASURES FOR NSL-KDD DATASET USING
L2-NORM REGULARIZATION

Labels TPR FPR Pr. F1 Acc
Normal 0.978 0.011 0.986 0.982

DoS 0.967 0.007 0.985 0.976

R2L 0.929 0.011 0.472 0.626 97.2%
U2R 0.956 0.004 0.975 0.966

Probe 0.948 0.009 0.927 0.938

Based on our analysis of the above results, we observed that,

in terms of average TPR and FPR, our proposed technique
outperformed the L1 and L2 regularizations. The average TPR
for the proposed regularizer is 96.2%, while the L1 and L2
regularizations’ average TPR was 95.27% and 95.56%, respec-
tively. Similarly, the average FPR is lower using the proposed
regularizer, being 0.63%. For L1 and L2 regularizations, the
average FPR is 0.97% and 0.8%, respectively. Regarding the
training time of each regularizer, our proposed regularization
took 177.3 seconds, whereas L1 and L2 regularizers took
almost 176.5 seconds. Obviously, the training time for all
models is almost the same. While in testing, the parameters
are kept static (as we do not change them during testing);
thus, the role of tuning the regularization has vanished during
testing. Consequently, the testing time was less than training.
For the NSL-KDD dataset, the testing time for all models
was 46.02 seconds. Hence, we undoubtedly can state that our
proposed regularizer performed better than other regularizers
on the NSL-KDD dataset.

2) UNSW-NB 15 dataset: In addition, we provided the
comparison of different performance measures for the UNSW-
NB15 dataset using new, L1-norm, and L2-norm regularizers.
We tested these different regularizations using 10 classes of
the UNSW- NBI15 dataset on 175,341 samples given in an
explicit training set NSW_NB15_Train). Similarly, the models
are tested on 82,332 samples (UNSW_NBI15_Test), and then
we computed the results (see Tables V, VI, and VII).

New regularizaton : We embedded the proposed regular-
ization with ANN model and then tested it using 10 different
categories of the UNSW-NBI15 dataset as shown in Table V.
TPR results can also be viewed from Fig. 6.

UNSW-NB 15: TPR and Precision for each category
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Fig. 6. TPR observed using proposed regularizer on UNSW-NB 15 dataset
L1-norm regularization: Table VI represents our simula-

tion results using L1-norm regularization (using the same ANN
model having an equal number of layers and units).
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TABLE V. NEW REGULARIZATION RESULTS ON UNSW-NB 15 DATASET

Labels TPR FPR Pr. F1 Acc
Normal 0.941 0.009 0.98 0.96

DoS 0.952 0.01 0.878 0914

Backdoor 0.933 0.006 0.641 0.76

Exploits 0.956 0.007 0.972 0.964

Fuzzers 0.924 0.006 0.95 0.937 94.58%
Generic 0.964 0.034 0.966 0.965

Analysis 0.927 0.006 0.635 0.753

Reconnaissance 0.944 0.005 0.92 0.932

Shellcode 0911 0.002 0.72 0.804

Worms 0.892 0.001 0.504 0.644

TABLE VI. L1-NORM RESULTS ON UNSW-NB 15 DATASET

Labels TPR FPR Pr. F1 Ace
Normal 0.937 0.015 0.969 0.953

DoS 0.942 0.013 0.854 0.896

Backdoor 0.919 0.007 0.586 0.716

Exploits 0.932 0.009 0.964 0.948 92.4%
Fuzzers 0.908 0.009 0.928 0918

Generic 0.949 0.039 0.961 0.955

Analysis 0.925 0.008 0.584 0.716
Reconnaissance 0.925 0.005 0.926 0.925

Shellcode 0.902 0.003 0.7 0.789

Worms 0.862 0.001 0.407 0.553

L2-norm regularization: We embedded L2-norm regular-
ization with ANN model having an equal number of layers and
units (as that used for the proposed regularization). The results
are shown in Table VII. Based on the analysis of our results,

TABLE VII. L2-NORM REGULARIZATION RESULTS ON UNSW-NB 15

DATASET

Labels TPR FPR Pr. F1 Ace
Normal 0.94 0.011 0.977 0.958

DoS 0.948 0.011 0.873 0.909

Backdoor 0.925 0.006 0.62 0.743

Exploits 0.943 0.008 0.969 0.956 94.3%
Fuzzers 0918 0.007 0.938 0.928

Generic 0.957 0.036 0.964 0.961

Analysis 0.923 0.008 0.599 0.726
Reconnaissance 0.93 0.006 0.915 0.922

Shellcode 091 0.003 0.689 0.784

Worms 0.877 0.001 0.427 0.574

the average TPR computed for this dataset using the proposed
regularization is 93.43%. However, for L1- and L2-norm
regularizations, the average TPR is 92% and 92.7%. Here,
again our model outperformed the existing regularizations in
terms of TPR. Similarly, our proposed regularization surpassed
the existing regularizations in terms of FPR. The average FPR
achieved using the proposed regularizer is 0.86%, whereas
the average TPR for L1 is 1.06% and for L2 is 0.96%.
Regarding the training time, the proposed regularization took
425.9 seconds, while L1 and L2 took 424.7 seconds (which
is an acceptable difference). Noteworthy, the testing time was
much less than training (the testing time was 126.2 seconds).

3) CIDDS-001 dataset: Here, we carried out several ex-
periments on the CIDDS-001 dataset using different regular-
izations. CIDDS-001 dataset has two parts:

1)  External Server Dataset
The model is trained over all the dataset provided
using 10-fold cross-validation, except for a set of
339030 samples which were kept separate for testing

purposes. Apart from normal samples, there are 4
different attack categories in this dataset which are
victim, attacker, unknown, and suspicious.

2)  Open Stack dataset
The same approach is applied to this dataset. The
ANN model is trained over all dataset using the 10-
fold cross-validation, except for a set of 2789002
samples. There are only 2 attack categories which
are victim and attacker.

We carried out our experiments on both datasets and the
following performance measures were observed for each reg-
ularization.

New regularization: The experimental results on the two
types of dataset using the new regularization are given in
Tables VIII and IX. TPR results for each category are also
shown in Fig. 7 and 8, respectively.

TABLE VIII. SIMULATION RESULTS ON CIDDS-001 OPENSTACK
DATASET USING THE PROPOSED REGULARIZATION

Labels TPR FPR Pr. F1 Acc
Normal 0.988 0.019 0.996 0.992

Victim 0.979 0.007 0.928 0.953 97.87%
attacker 0.969 0.005 0.945 0.957

CIDDS-001 OpenStack: TPR and Precision for each category
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Fig. 7. TPR observed for OpenStack server dataset using the new
regularization

L1-norm regularization: Results obtained using L1-norm
regularization for each of the two types of dataset are shown
in Tables X and XI.

L2-norm regularization: Tables XII and XIII demon-
strated the results using L2-norm regularization for each of
the two types of the dataset.
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TABLE IX. SIMULATION RESULTS ON CIDDS-001 EXTERNAL SERVER
DATASET USING THE PROPOSED REGULARIZATION

(IJACSA) International Journal of Advanced Computer Science and Applications,

Labels TPR FPR Pr. F1 Acc
Normal 0.979 0.006 0.969 0.974
Victim 0.94 0.002 0.901 0.92
attacker 0.957 0.002 0.941 0.949 96.8%
unknown 0.978 0.006 0.968 0.973
suspicious 0.986 0.011 0.993 0.99
CIDD5-001 External: TPR and Precision for each category
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Fig. 8. TPR observed for External server dataset using the new regularization
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TABLE X. SIMULATION RESULTS FOR CIDDS-001 OPEN STACK

DATASET USING L1-NORM REGULARIZATION

Labels TPR FPR Pr. F1 Acc
Normal 0.969 0.025 0.995 0.982

Victim 0.965 0.016 0.848 0.903 96.6%
attacker 0.95 0.016 0.852 0.898

TABLE XI. SIMULATION RESULTS ON CIDDS-001 EXTERNAL SERVER
DATASET USING L1-NORM REGULARIZATION

Labels TPR FPR Pr. F1 Ace
Normal 0.965 0.008 0.962 0.964

Victim 0.928 0.009 0.674 0.781

attacker 0.937 0.007 0.8 0.863 95.3%
unknown 0.964 0.01 0.949 0.956

suspicious 0.968 0.014 0.992 0.98

TABLE XII. SIMULATION RESULTS FOR CIDDS-001 OPEN STACK

DATASET USING L2-NORM REGULARIZATION

Labels TPR FPR Pr. F1 Ace
Normal 0.981 0.019 0.996 0.988

Victim 0.979 0.009 0.91 0.943 96.0%
attacker 0.968 0.01 0.903 0.935

TABLE XIII. SIMULATION RESULTS FOR CIDDS-001 EXTERNAL SERVER
DATASET USING L2-NORM REGULARIZATION

Labels TPR FPR Pr. F1 Acc
Normal 0.972 0.011 0.947 0.959

Victim 0.935 0.003 0.868 0.9

attacker 0.947 0.005 0.856 0.899 96.4%
unknown 0.969 0.009 0.953 0.961

suspicious 0.974 0.013 0.992 0.983

e  External Server Dataset

Average TPR of 96.8%, 95.24%, and 95.93% was
observed for the external server dataset. Similarly, the
average FPR computed is 0.55%, 0.95%, and 0.82%
for the proposed, L1, and L2 regularizations, respec-
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tively. The training time was 1028, 1019, and 1022
seconds for the proposed, L1, and L2 regularizations.
In this case, the testing time was the same for all
regularizations which was 76.6 seconds. Based on the
analysis of the above results, it can be concluded that
the proposed regularization outperformed the other
regularizations.

e  OpenStack Server Dataset

For this dataset, the average TPR computed was
97.86%, while the FPR was 1.03%. As for the L1
and L2 regularizers, the average TPR is 96.13% and
97.6%. Similarly, the average FPR for L1 and L2 is
1.9% and 1.26%, respectively. As far as the training
time is concerned, the training time took 1728.4,
1720.0, and 1723.2 seconds for the proposed, L1, and
L2 regularizations, respectively. In terms of testing, the
time taken was 97.7, 100.2, and 92.8 seconds, respec-
tively. Hence, from the results above, we can conclude
that the performance of the proposed regularization is
slightly higher than other regularizers.

VI. LIMITATION OF NEW REGULARIZATION

Several researchers employed multiple regularization algo-
rithms, the most common ones being lasso regularizations and
ridge regression. However, some disadvantages are inherent in
the regularization framework. For example, In a challenging
setting, where the number of instances is very low and the
dimensionality is very high, it is impractical to utilize these
regularizations. Likewise, our regularization algorithm had
multiple limitations, as follows:

e It cannot be employed for selecting or reducing fea-
tures.

e It is challenging to choose a suitable value of A,
due to the fact that it is a continuous value. In
addition, the process of picking a suitable value from
multiple attempts will be computationally costly and
time consuming.

VII. CONCLUSION

The field of ANN regularizers is one that is still ripe
for new research and innovation. From attempts in adaptive
weight decay to new techniques altogether, many innova-
tions in improving generalization through reducing model
complexity are possible. In this paper, we proposed a new
regularization technique for anomaly detection based on the
standard deviation of the weight matrix. Based on the analysis
of our experimental results, it is evident that our proposed
regularization algorithm makes the ANN capable of identifying
good patterns in data and classifying them efficiently. More-
over, the proposed regularizer has outperformed the existing
regularization algorithms when incorporated with ANN. As a
result, the overall average accuracy achieved on NSL-KDD,
UNSW-NBI15, and CIDDS-001 datasets using 10-folds cross-
validation is 98.53%, 94.58%, and 97.87%, respectively.
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