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Abstract—Train Rolling Stock Examination (TRSE) is a pro-
cedure for checking damages in the undercarriage of a moving
train at 30kmph. The undercarriage of a train is called bogie
according to railway manuals. Traditionally, TRSE is performed
manually by set of highly skilled personnel of the railway near to
the train stations. This paper presents a new method to segment
the TRSE bogie parts which can assist trained railway personnel
for better performance and consequently reduce train accidents.
This work uses visualization techniques as a pair of virtual eyes to
help checking of each bogie part remotely using high speed video
data. Our previous AC models are being supervised by a weak
shape image which has shown to improve segmentation accuracies
on a closely packed inhomogeneous train bogie object space.
However, the inner texture of the objects in the bogies is found
to be necessary for better object segmentation. Here, this paper
proposes an algorithm for bogie parts segmentation as successive
texture and shape-based AC model (STSAC). In this direction,
texture of the bogie part is applied serially before the shape to
guide the contour towards the desired object of interest. This
contrasts with the previous approaches where texture is applied
to extract object shape, loosing texture information completely
in the output image. To test the proposed method for their
ability in extracting objects from videos captured under ambient
conditions, the train rolling stock video database is built with 5
videos. In contrast to previous models the proposed method has
produced shape rich texture objects through contour evolution
performed sequentially.
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I. INTRODUCTION

Visual automated testing of machines by computer algo-
rithms has been gaining momentum in the past few decades.
This increase can be attributed to factors such as high-
resolution visual sensors, high speed cameras and more sig-
nificantly the higher processing power of computers. Progres-
sively, these advancements can be noticed in manufacturing
industries, where the assembly lines are monitored visually by
high speed cameras to identify defects in products manufactur-
ing processes and packaging. Consequently, the manufacturing
industry was revolutionized by visual monitoring technologies
thereby improving productivity and quality of production. The
long-term dependencies were higher revenues and lowered
labour costs. Steadily visual automation has become industry’s
biggest challenge in promising new solutions to multitude of
problems. One such problem that hadn’t been explored was
Train rolling stock examination.

Train Rolling Stock Examination (TRSE) is a budgeted

system on the Indian Railways operational space. The TRSE
is currently being executed at every major train station across
the Indian subcontinent and the world over to man the safety
of passenger trains. Trains on Indian subcontinent carry around
10 million passengers per day. This has been the primary mode
of commercially affordable long distance transportation on the
planet. Safety of the train during transit is the most significant
factor for the rail companies around the world and the foremost
job for Indian Railways. Considering the number of train
accidents from the past decades, the train transportation has
been one of the safest mode of travel and is mostly attributed
to rolling stock examination personal.

Train Rolling Stock Examination (TRSE) is a procedure for
checking damages in the undercarriage of a moving train at
30kmph. The undercarriage of a train is called bogie according
to railway manuals. The bogie consists of dynamic machinery
on which the passenger car moves. It is made of wheels, break
units, suspension, holding rods, springs, axle box, etc. There
are around one hundred components in the bogie that cater
for the train movement. The bogie parts have to be constantly
monitored during transit as there go through extremities of
pressures. The pressure on the bogie parts come due to inter
part stroking between them during high speed motion of the
train. This causes wear and tare in the bogie parts, which if
not checked in time have caused extensive damage to the train
causing derailment and human loss. To periodically check the
bogie parts during transit, the long lasting and most trusted
process is train rolling stock examination.

Traditionally, TRSE is performed manually by set of highly
skilled personnel of the railway near to the train stations. Fig.
1 shows a rolling pit with trained railway employees noting
the results of their examination (not in frame). These personal
are trained for years to use their visual and auditory sensors
to identify weaknesses in the bogie parts that can potentially
cause an accident. Consequently, the noted risk factors are
relayed to the nearest station maintenance crew for necessary
repairs. Though the process of TRSE is full proofed, the system
in the past hasn’t been successful in preventing accidents and
loss of life. The fact that the system is heavily dependent
on human performance in naturalistic environments, which is
dynamic in lighting, temperature, winds and water. Finally, it
also dependents on human emotional health at the time of the
hour.

The goal of any railway company is to provide a safe
transportation system. Despite their committed efforts through
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Fig. 1. Manual Train Rolling Stock Examination at an Indian Railway
Station.

times there are accidents, and many are during train movement.
Manual TRSE needs an extra degree of support to perform
without glitches. Technology started providing solutions to
this age-old problem only in last two decades. Despite some
conformations using sensors, there were no real solutions on
the visual frontiers. Train Rolling Stock Examination (TRSE)
is a conditional health monitoring system for damage detec-
tion in moving passenger bogies used to prevent trains from
derailment. Currently, TRSE has been performed manually by
experts through audio visual inspection on a moving train at
both ends of a train station.

The commercially available sensors and signal processing
technology used for TRSE has successfully identified only
20% of the total detect causing derailments. The large set of
anomalies found during TRSE are predominantly visual in na-
ture. Thus, a visual automation solution using computer vision
algorithms can make the process more robust in preventing
train accidents. To this end, the primary task is to extract bogie
objects from a video sequence of moving train.

Hence, this chapter proposes a novel segmentation model
on the videos of train bogies using a serial texture and shape-
imposed level set evolution. The present generation of level
set models use texture and shape priors for segmenting objects
in an image. However, these models regularize the shape of
the contour using the texture in the shape region resulting
in a boundary shaped object with no texture. This limits the
algorithms capacity to handle segmentation in real time video
applications. To preserve texture during shape segmentation,
we propose a novel serial texture and shape prior level set
evolution model. We first present a theoretical framework for
the model with various parameters for regularized contour
evolution.

To demonstrate the applicability of the proposed method,
experimentation and analysis is performed on benchmark im-
age data and the real-time application, TRSE. The consistency
of the algorithm is validated against the state – of – the – art
level sets on TRS high speed video datasets. The results show
that the proposed method is feasible in practice for segmenting
texture preserving shapes in real time videos. The rest of the
paper is arranged as follows. The second section gives the
background motivation highlighting various gaps in current
methods. Methodology and experimentation are provided in
sections three and four, respectively. Final section of this paper

draws conclusions on the proposed method.

II. RELATED BACKGROUND

The promising and motivational research that inspired the
formation of this thesis was industrial imaging solutions [1].
Industrial computer vision applications included a variety of
image acquisition systems that use the captured videos to
detect patterns during the product assembly. The most widely
used are CMOS image sensors and hyperspectral sensors [2].
These sensors along with the embedded software has shown to
be a valuable asset in bottling and beverage cans quality testing
and discarding the faulty bottles on a high-speed assembly line
[3].

The automobile industry and its robots use computer vi-
sion systems for wheel alignment to mirror inspections [4].
Largely, the operations performed by the software programs
are designed to process the image of the object in question
to make decisions on its quality and maintenance. The image
processing methods used range from simple edge detection to
as complex as filtering in frequency domain [5]. Consequently,
offline testing of industrial products is on the rise from the
last few decades due the availability of commercially viable
sensors [6].

Subsequently, vision-based models have shown to provide
accuracies on the higher side in most of the real-world indus-
trial applications. This has motivated us to take up the study
and investigate the problem to make the manual system of
TRSE into an assistant for railway personal. The next session
gives an insight into the current operating models of TRSE
that are being prototyped and undergoing testing in railways
across the world.

The railways around the world and the IR have adopted
technologies for locomotive design, coaches, signalling sys-
tems, accident prevention with GPS, track maintenance [7],
[8], [9], [10], [11]. The quintessential component would be
maintenance of train coaches and bogies that are most likely
to get damaged during their high-speed movement.

IR uses a highly trained human workforce to do the
maintenance checks under the banner called Rolling Stock
Examination (RSE) [12], [13]. The checking of the train
happens during the train movement at less than 30KMPH near
to the railway stations. The check log that is prepared during
each RSE involves the visual analysis of the train undercarriage
during running is accessible at [14].

The first models that were developed involved sensors
along the track that measure parameters such as temperature,
pressure, break wear and tear, acceleration etc along with
a normal camera module [15]. This prototype is currently
being tested in the code name KRATES - Konkan Railway
Automated Train Examination System [16].

In this system, the objective of the camera was to have
a visual examination at a remote location and no algorithms
were proposed to automate the visual information. Apart from
this, the camera is an RGB video camera with a frame rate
of 30fps, which gives blurry images of bogie for automated
processing.

However, the RSE involves checks for hanging parts, lose
couplings in bogie parts, break bindings, broken components,
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hot axle boxes and flat tyres. The following disadvantages were
listed for manual TRSE which are limited to, Human factors
– Biased Judgment, Heavy Workload – Wrong Judgment,
Communication Lags – Between RSE and Maintenance dept.,
Ambient Nature – Weather Dependent and Commercially
Draining.

A complete automated TRSE is quite possible with a large
sensor network placed along the tracks. In the current scenario
it is still a long-term plan for most of the rail networks due
to issues like technology development, deployment and com-
merce. Despite these issues, this problem is quite challenging
and an assistance to manual TRSE is proposed in through this
work.

Narayanaswami [17] helps to unfold the connection be-
tween automation technologies in transportation to prevent
accidents. Inspired by the ideas in [17], this work applies
machine vision algorithms for discovering train undercarriage
parts from videos of recorded. There are only few works
on train safety research with computer vision, targeted at
monitoring of rails, ballast and a few on rolling stock.

Sabato et al. [18] proposed methods to inspect train tyres as
well as ballast using algorithms developed on 3D digital image
correlation (DIC) calculations. It’s a dual camera system with
a marked displacement installed on a train running at 60Kmph
that builds rails as a 3D image. The 3D DIC along with
pattern projection models were applied to identify deformation
of railway tracks.

Hart, et al. [19] extracted bogie parts for inspection using
multispectral imaging camera sensors. The proposed dual cam-
era model recorded multi spectral data as RGB (Red, Green
and Blue) along with a thermal sensor to capture a running
train which are further treated as panoramic view models.

The computer vision algorithm in [19] has been designed
to spot elevated hot bogie parts such as wheel joints, Axel
box, brake shoes, air conditioning blowers. Nevertheless, this
system has been successful in identifying defective regions,
but the motion blur in the video data poses a challenge to
distinguish cold parts from hot objects.

Kim et al. [20], has proposed a curve fitting view to
the problem of automated train break examination using im-
age processing. The developed techniques use a trench hole
establishment under the tracks to capture the break panels
of a moving train. The method uses a fitting curve on the
recorded images to progressively train the system to identify
brake alignment attributes. Despite its excellent performance
in real time, the setup cost creates a bottleneck for actual
implementation.

The US patent from Sanchez, et al. [21], applies artificial
vision for monitoring rolling stock using cameras mounted
on the train. Currently, high speed trains such as TGV and
bullet train use camera mounts to manually monitor the trains
movements. However, videos captured using a camera system
onboard a train is bound to induce numerous noises into the
video data.

Kazanskiy and Popov [22], introduced a framework to
integrate a lighting structure with anti-glare to record high
contrast undercarriage videos which is further compressed for

quick processing to discover trains on tracks for monitoring
rolling stock. This method gave a recipe for automating rolling
stock in real time, notwithstanding the procedure for bogie
object extraction.

Freid [23], provided an experimental setup under the train
with lights focused on the bogie which is captured with a video
camera. The work develops an algorithm using straightforward
edge recognition techniques for isolating axle box and analyz-
ing its heating profile by using thermal cameras. This model
gives an understanding of the TRSE problem for automation
and the need for research.

In [24] and [25], the authors offered a 3D reconstruction
of the bogie parts for monitoring rail wheel surfaces and
contact strips. The methods show effectiveness in identifying
surface defects using 3D models by perfectly reconstructing
moving parts. However, they are computationally inefficient
for processing in real time. Further, it shows the difficulty
in modelling defective surfaces for every possible problem
beforehand in 3D.

The literature illustrates relatively small number of com-
puter vision state-of-the-art algorithms that are being re-
searched for TRSE. Moreover, the models from literature are
inefficient to incorporate the TRSE process for micro level
examination of bogie parts specifically. The goal of remotely
monitoring system for TRSE is to identify defective and non-
working parts that can be repaired timely to prevent mishaps.
Earlier proposed frameworks offer very little inclination for
research towards remote monitoring of TRSE. Hence, this
paper proposes a new orientation to the TRSE with solutions
to assist trained railway personnel for better performance. This
work uses visualization techniques as a pair of virtual eyes to
help checking of each bogie part remotely.

TRSE with video data has been attempted previously [26],
[27], [28], [29] using active contours with shape prior models.
The performance reported by these models were exception-
ally good in terms of segmentation accuracy. However, these
models were limited by their ability to provide the required
accuracies due to homogeneous nature of pixels in the video
sequence.

This gap in segmentation accuracy has been improved
by applying local texture information around the object of
convergence in the objective function defining the active con-
tours. Moreover, the methods were derived from Chan Vese
active contour models which will be discussed exclusively in
the following sections. Traditionally, texture and shape based
active contours use texture information in a region for shape
segmentation [30], [31], [32], [33], [34]. In contrast, this work
proposes to segment shape rich texture objects through contour
evolution performed sequentially on a shape prior model.

This work proposes to segment video objects using the
texture and shape based active contour models successively.
The novelty lies in extracting shape and texture of the bogie
parts accurately. Contrasting to the preceding results in [26] or
correlated works [35], [36], [37], the proposed model in this
paper will serially supervise texture and shape segmentation
of TRSE video objects with inhomogeneity.
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III. METHODOLOGY

This section starts by presenting a brief introduction about
Chan Vese active contour models [38]. Further, it provides
detailed methodology about the proposed successive texture
and shape-based model for bogie part video segmentation.

A. Introduction to Chan Vese Active Contours

Active contours or level sets as they are mathematically
named are a set of curves in image space that propagate
towards the object edges defined by the image gradients. The
most popular class of ACs are Chan Vese (CV) model without
edges [38], which are described in the following section.

CV active contours evaluate to find a contour C in the
image space f (x)∀x ∈ (R,R) through the energy function
modelled as

Ecv = ω1

∫
C

ds+ν

∫∫
CI

C (x) dx+

ω2

1

2

∫∫
CI

(
f(x)− Φ(I)

)2

dx +
1

2

∫∫
CE

(
f(x)− Φ(E)

)2

dx


(1)

Where Ecv gives the energy function of the CV active contour.
The first two terms in eq (1) are parameters controlling the
contour’s length and area with ω1 > 0, ω2 > 0 and ν > 0. The
last bracketed components try to adapt the model C (x) to the
image. The energy function in eq (1) is minimized iteratively
to find the object boundaries through an initial contour f :
c → R2 to Φ(I) and Φ(E). Where Φ(I) and Φ(E) define the
inside and outside portions to Φ.

Eq (1) has been modified by applying the level set models
in [38] as

Ecv(C,Φ
(I),Φ(E)) = min

C,Φ(I),Φ(E)
ω2

∫∫
CI

(f(x)− Φ(I))
2
M (C(x))

+

∫∫
CE

(f(x)− Φ(E))
2
(1−M (C(x)))dx


+ ω1

∫
C

|∇M(C(x))| dx

(2)

Where, Mε(C) = 1
2

[
1 + 2

π tan−1
(
C
ε

)]
, C ∈ R gives the

Heaviside function. The above equation is iteratively updated
through gradient descent minimization as

Ct = −δ(C)ω2((f(x)− Φ(I))
2 − (f(x)− Φ(E))

2
)− ω1∇. ∇C(x)

|∇C(x)| (3)

Here δ(C) = 1
π .

ε
ε2+C2 is the delta function and iterative

adaptations of Φ(I) and Φ(E) are initiated with

Φ(I) =

∫∫
C

f(x)M(C(x))dx∫∫
C

M(C(x))dx
(4)

Φ(E) =

∫∫
C

f(x)(1−M(C(x)))dx∫∫
C

(1−M(C(x)))dx
(5)

Where Φ(I) gives the intensity averages on the inside and
Φ(E) gives the same on the outside of the contour. The
major drawback in CV model has been the assumption that
the above intensities are homogeneous. This assumption fails
to characterize image pixels globally. Hence, pixel intensity
inhomogeneity segmentation problem persists in CV models
which results in improper segmentations which has shown
improvement using shape prior CV [39]. However, texture
of the object in real time applications plays an important
health detection factor and hence we propose our model called
successive texture and shape-based AC model (STSAC).

B. STSAC Model

This section presents a new AC model that fits the evolving
contour to the objects in an image based on additional infor-
mation in the form of texture apart from previously used shape
image. Consequently, a serial texture and shape influenced
level set model is being formulated by describing each model
separately.

1) Texture Features: Here, texture features are extracted
using the most successful texture abstraction algorithm called
Local Binary Patterns (LBP) [40]. The algorithm operates in a
set pixel neighbourhood to identify the texture locally across
the entire image. The central pixel in a region is compared
with the neighbourhood pixels to binarize the region around
the central pixel.

For a colour video frame v (x, 3) ∈ R+, where x gives
pixel location and the number 3 represents three colour planes
RGB. The algorithm uses either 3 (r=1) or 12 (r=2.5) pixel
neighbourhoods. The lbp texture code is modelled across a
central pixel (xc, 3) as

lbp (xc, 3) =

3∑
i=1

P∑
j=1

s (gp − gc)2P (6)

Where,

s (x) =

{
1
0
∀ x ≥ 0
Otherwse

(7)

The gc denotes the gray value at (xc) and gp represents the
gray value in the neighbourhood of gc. The variable P is the
number of pixels around gc. Using the above texture function,
the active contour texture energy functional is formulated as

Etexture (ϕ) = d2 (ϕ0, ϕt)

=

∫∫
C

(−H (ϕ0) +H (Ftf ))
2
δ (x) dx (8)

The term Ftf = lbp (v (x)).

2) Shape Image: To achieve clean object boundaries on
bogie video data, in addition to texture, the chapter proposes
to use shape knowledge. Here, the shape is modelled as a
zero-active contour for the first video frame of the bogie
video sequence. Signed distance function computes the relation
between the shape prior and the initial contour. Eventually,
the evolving contour computes this signed distance function to
move towards the zero contour through gradient minimization.
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The energy functional with prior shape knowledge is given as

ES(C, φ
(I)
S , φ

(E)
S ) =

∫∫
C

(H (φ (x))−H (φS (x)))
2
δ (φ) dx

(9)
Where ES gives the shape energy function of the active
contour. The energy function in eq’n (9) is minimized iter-
atively to find the object boundaries through an initial contour
f : c → R2 to φS

(I) and φS
(E). Where φS

(I) and φS
(E)

define the inside and outside portions to shape boundary.

3) Level Set Formulation: The intensity inhomogeneity in
train bogie videos for accurate segmentation of bogie parts
with both shape and texture measures simultaneously can be
formulated as a serial texture shape based level set energy
functional defined as

ES TS = Etexture + τ.EShape (10)

Where τ is the delay between texture prior information and
shape prior information applied as pre-knowledge to the ACs.
The serial texture and shaped energy function is defined as

ES TS(C,Φ(I),Φ(E)) = min
C,Φ(I),Φ(E)

ω2

∫∫
CI

(f(x)− φ(I))
2
H (C(x))

+

∫∫
CE

(f(x)− φ(E))
2
(1−H (C(x)))dx


+ ω1

∫
C

|∇H(C(x))| dx

+ λ

∫∫
C

(−H (ϕ0) +H (Ftf ))
2
δ (x) dx

+ τ.ξ

∫∫
C

(H (φ (x))−H (φS (x)))
2
δ (φ) dx

(11)
where λ and ξ are the controls for the texture and shape
which can be applied as prior information. All the variables
and parameters in eq (11) have the same representation as
the previous model in Section III.A. The contour evolution is
achieved by applying the gradient descent model to achieve a
minimization as

Ct =

ξ (gtex (|∇fx|) |∇φ (x)|) δ (φ)

+ γ
(

((fx − φI)
2

+ (fx − φE)
2
)
δ (φ) + µ∇. ∇C(x)

|∇C(x)|
δ (φ)


+ τ.λ(H (φ (x))−H (φS (x)))

2
δ (φ)

(12)
Where gtex is the texture function defined using local binary
pattern (LBP). The proposed serial texture shape active contour
model has shown improved performance in the segmentation
of objects in real time video sequences that are inhomogeneous
with the surroundings.

4) STSAC Contour evolution: For contour evolution in eq
(12), is implemented on a machine using the model from [39],
which is given by

Cnew = Cold + ∆t
dC

dt
+ ∆tCTexture (13)

After the texture evolution is completed when the following
stopping criteria ‖∇φn (x, y)‖ ≤ ε is attained. Where ε is the
minimum gradient between the last two consecutive contour

evolutions in texture prior active contour model. Once, the
texture prior stops, the outer edges forded due to texture
evolution show a poor boundary or shape representation due
to inhomogeneity in the object boundaries. To reconstruct the
shape of the textured segmentation, we now apply the shape
prior model on the textured contour. This is unlike the previous
models, where the texture and shape information are fused
into a single prior model for the active contour. This single
prior model work well if the texture and shape models are
perfectly aligned in 2D space. However, in real time computer
vision applications getting a perfectly fused texture and shape
model is quite a difficult process. Hence, our proposed serial
texture shape based contour evolution can handle both texture
and shape influence accurately than the previous models for
real time computer vision applications. The shape contour
evolution

Cnew =

(
COld + ∆t

dCold
dt

)Texture
+ ∆tCShape (14)

Where dC
dt predicts the rough variations in the right-hand side

of the eq’s(13, 14) and ∆t = 0.48
max(|Cold|) gives the step size

in time. Fig.2 shows the comparison of STSAC against the
previous texture shape fused models.

Fig. 2(g) and (h) are the outputs from the serial textured
shape based active contour model (STSAC), which are better
than the previously proposed models. In the next section we
present the experiments and related analysis of the proposed
method STSAC for TRSE video datasets in Table I.

TABLE I. VIDEO DATASETS CAPTURED FOR TESTING THE PROPOSED
METHODS.

Experiments Name Number of Frames
D-1/E-1 Bogie Video Recorded at 6.40AM 90× 36 = 3240
D-2/E-2 Bogie Video Recorded at 12.40PM 90× 40 = 3600
D-3/E-3 Bogie Video Recorded at 4.20PM 90× 32 = 2880
D-4/E-4 Bogie Video Recorded at 6.50PM 90× 26 = 2340
D-5/E-5 Defective Video on 12.40PM Train 40× 4 + 90× 38 = 3600

IV. RESULTS AND DISCUSSION

This section discusses the datasets capturing mechanism
and their characteristics in detail. Next, an extensive ex-
perimentation of the proposed algorithm on the considered
TRSE problem for extracting bogie parts is presented. The
results obtained are evaluated and analysed with benchmark
algorithms already proposed on TRSE.

A. The Datasets

To test the proposed methods for their ability in extracting
objects from videos captured under ambient conditions, the
train rolling stock video database is built. The videos are
recorded near to an Indian Railway station using the setup
shown in Fig. 3. The figure shows an arrangement not more
than 3 feet from the moving train. All the videos were recorded
when the train was entering the station for a halt.

The handbook on train rolling stock examination was
followed during the video capture. Accordingly, all trains in
the dataset were recorded when the train was running at around
30KMPH. However, Digital single lens reflex (DSLR) record
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Fig. 2. Comparison of only texture and shape prior based active contour models with the proposed serial texture shape based active contour model. (a) Initial
contour, (b) Only texture based AC model after 50 iterations, (c) Zoomed View of the object from (b), (d) Zoomed view of the segmented result from (b), (e)
Our proposed initial texture model, (f) serial shape model, (g) Zoomed from (f), Segmented result from the proposed model STSAC in (f), (i) shape only AC

model and (j) fused shape texture model, (k) zoomed shape textured model, (l) zoomed segmented output from (k).

at around 30 frames per second(fps), which induce a consider
amount of motion blur to the video object data. Hence, to do
away with blurring, the videos were recorded with Isaw sports
action camera as can be seen in Fig. 3.

Fig. 3. Train Bogie Video Recording using High Speed Sports action
Camera.

The Isaw sports action camera captures video at a max
frame rate of 240fps. The camera also possesses a wide-angle
lens with a 520 angle, that is capable of full bogie into a video
frame from the centre. Fig. 4 shows an array of bogie video
frames that were recorded by the visual sensor near the tracks.
A total set of 4 train bogie videos were filmed at separate time
stamps on a day. The advantage of in this approach gives an
opportunity to test the proposed methods ability to overcome
the effects of ambient lighting on segmentation quality.

In this paper, operation on each video sequence is consid-
ered as an experiment. Hence, 4 experiments were performed
for testing the proposed methods. Moreover, a 5th experi-
ment is added to test the proposed algorithms capabilities in

Fig. 4. Video Frames of a recorded Bogie for Experimentation.

segmenting defective bogie parts. Unfortunately, there were
no comprehensive defects in the recorded videos. Hence, the
5th video has been handcrafted by extracting frames and
deliberately inducing defects. Thereupon the defective frames
were incorporated back to form a defective train sequence
which resulted in a defective train bogie video for the 5th

experiment.

Fig. 5 shows the video frames that have been photoshopped
with defects to bogie parts. The purpose of the proposed seg-
mentation algorithms is resolved to satisfaction if it manages
to segment the defective part through the prior knowledge
of the healthy bogie part. This capability of the proposed
frameworks in this work increases the scope for automation.
Finally, Table I shows the experimental valuations performed
on the five different datasets throughout the thesis. Fig. 6 gives
a visualization of the datasets from Table I.

B. Bogie Parts Segmentation

Fig. 7 projects the results of the segmentation on bogie
video frames for the 10 different parts as shown in column 1.
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Fig. 5. Bogie part defects induced with photoshop. (a) Spring breaks and (b)
Binding rod breaks.

Fig. 6. Visualization of datasets.

Visual analysis of the Fig. 7 shows that the proposed STSAC
segments bogie parts by retaining both shape and texture. The
STSAC method requires the selection of bogie part that the
user needs to check from the recorded video sequence along
with the initial location of object. Fixing these hyperparameters
can automate the part extraction process using STSAC.

The first column in Fig. 7 is the shape prior model extracted
from the train bogie frame. Texture extracted using LBP is
in second column and the next four columns show the curve
evolution for all ten bogie parts after fixed number of 15
iterations. The last column shows the segmented bogie parts
from the proposed STSAC algorithm. A visual comparison
with similar algorithms is shown in Fig. 2.

The standard parameters ξ, γ and µ are kept constant and
low for smooth contour propagation on the video frame. The
initial texture contour evolution stopped in most of the cases
at around 28th iteration and from then on, the shape evolution
lasted for 56th iteration.

Compared to the shape or texture only based models the
computation cost is little on the higher side for STSAC model
as it had to run serially. The maximum number of iterations
recorded were 68, in case of springs. For the entire train of
17 bogies in our dataset 1, our program took 0.35 hours for
evaluation on an 8GB RAM with 2.4GHz intel processor on
MATLAB software.

Fig. 7. Bogie part segmentation outputs on the 1st dataset using the
proposed STSAC model. (Zoom In for better visibility).

The results demonstrate that the STSAC is capable of
segmenting the region of interest objects given their texture
and shape information accurately. However, from Fig. 1, we
see that the similar AC models with only texture or shape
or both had lost either texture or shape in the final output
segment on real time video data. Our proposed model has
retained good amount of texture information when shape is
being reconstructed during the curve evolution process. The
segmented outputs could be evaluated further for identifying
their defects or their running life by comparing them with the
available reference models.

This part of the work is achieved by comparing the
segmented bogie part with the reference parts captured from
the railway workshop. The reference parts are binarized and
are called Ground Truth frames. These images appear as the
first row in Fig. 7.

C. Defect Detection

Fig. 8 shows the defect in the biding screw and the contour
evolution using the proposed algorithm to identify the defect.

Fig. 8. Defect identification using the proposed STSAC model.

The previous models came close to the above result but
showed multiple regions around the defect region making
it difficult to identify the actual breakage point as shown
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in fig.8. Similar results were obtained for cut defects of
dimension 0.2mm thick on all bogie parts. For defects less
than 0.2mm, our proposed model failed to extract the defect
in the segmented output.

D. Bogie Video Data Analysis

This section parametrically evaluates the performance of
the previously proposed algorithms against the proposed
STSAC model across the datasets in Table I. The following
parameters are computed for benchmarking the performance
of the proposed algorithm against state-of-the-art previous
models.

Detection sensitivity (DS) is defined as the parameter for
measuring the performance of the segmentation methods. DS
calculates the number of times an object is segmented correctly
in the entire video sequence against the times it could not. The
number of instances in the entire video sequence an object has
been identified or segmented accurately is called True Positive
(TP). Similarly, the opposite of TP is True Negative (TN),
which gives the number of instances an object of interest could
not be segmented properly. The expression for DS is

DS =
TP

TP + FN
(15)

A DS measure of 0 indicates a failed segmentation and
a one indicates a successful segmentation. The parameter is
important for the proposed TRSE application to measure the
accuracy of the methods in segmenting the required bogie parts
in the entire video sequence.

The Mean Absolute Distance (MAD) calculates the devia-
tion in the segmentation result of an algorithm from the actual
required output. It is calculated by subtracting the obtained
result with the ground truth GT of the object given as

MAD =

∣∣∣∣∣∣∣∣
∣∣SO −GT ∣∣− n∑

i=1

∣∣SO −GT ∣∣
n

∣∣∣∣∣∣∣∣ (16)

where ’n’ is the number of pixels.

The Boundary Mean Absolute Distance (BMAD) param-
eter illustrates the deviation between boundaries of resulting
segmented objects SbO to ground truth GTb. The following
expression for BMAD is

BMAD = 1−

∣∣∣∣∣∣∣∣
∣∣SOb −GTb∣∣− n∑

i=1

∣∣SOb −GTb∣∣
nBoundary

∣∣∣∣∣∣∣∣ (17)

Where, ’nBoundary’ is the number of pixels in the GT object
boundary.

The Normalized Mutual Information (NMI) is a measure
to determine how close the resulting segmented object is to the
ground truth object. It gives a degree of common information
in images. NMI is given as

NMI =
MI (I,GT )√
H (I)H (GT )

(18)

Where MI (I,GT ) = −
∑
I,GT

p (Ii, GTi) . log
(

p(Ii,GTi)
p(Ii)p(GTi)

)
is

the mutual information and H (•) is the entropy. MNI has a
scale of 0 to 1, where 1 means highest segmentation accuracy.

Finally, the train rolling stock examination is being per-
formed as a real time operation. Consequently, it becomes
necessary for the proposed algorithms to compete in speed of
execution. Hence, Number of Iterations – Model Speed (MS)
measures the number of iterations in which the initial contour
deforms and encompasses the object of interest.

Initially, first two parameters, DS and MAD are calculated
and averaged on a set of 2000 bogie video frame segmentation
outputs. Table II presents the computed values of various AC
models on our rolling video datasets in Table I. The parameters
are average across datasets. The values point to a conclusion
that there has been a direct link between DS and the ambient
lighting in which videos are recorded. Similarly, it can be seen
that the STSAC performed quite well over the AC models with
only shape (SP AC), texture (TP AC) and fused shape texture
(FSTP AC) prior models.

E. Parametric Analysis Against the State-of-the-Arts

Here, the proposed STSAC model is being validated against
the state-of-the-art AC models parametrically with DS, MAD,
BMAD, NMI and NI defined in the previous section. The
computed parameters are plotted in Fig. 9. Fig. 9 plots the
average DS of the localized AC models shape, texture and
fused prior models and our proposed STSI AC for all the bogie
parts. The values plotted in Fig. 9 are averaged across all 4
datasets from Table I. The proposed approach showed that it
can detect texture in inhomogeneous regions provided a weak
shape and texture prior model as references.

Fig. 9. Detection sensitivity of the proposed approach (STSAC) with the
state of the art similar models.

The other plots for the remaining four parameters are
presented in Fig. 10(a), (b), (c) and (d) show that the proposed
STSI AC is the better segmentation algorithm in the batch.
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All the parameters are computed like the previous chapter. The
proposed STSAC has been successfully implemented to extract
texture and shape serially using AC models. However, the
occlusion resistance has been on the lower side when compared
to the shape prior models. Apart from that the model in this
work provides additional information on the segmented bogie
part for better decision making on the quality of the object.

Fig. 10. Performance measures of the proposed algorithm against the
state-of-the-art models for automated train rolling stock video segmentation:

(a) Mean absolute distance, (b) Boundary mean absolute distance, (c)
Normalized mutual information and (d) Number of iterations.

V. CONCLUSION

To improve the quality of the segmented bogie parts, this
thesis proposes the second active contour model called serial
texture and shape influenced active contour (STSAC). Tradi-
tionally, texture and shape based active contours use texture
information in a region for shape segmentation. In contrast,
this work proposes to segment shape rich texture objects
through contour evolution performed serially on a shape prior
model. This resulted in an improvement in segmented bogie
parts over the previous model. This work presents a real-time
computer vision problem and generates a formidable solution
using novel serial texture shape prior active contour models.
The objective of the real-time computer vision problem is to

segment a train bogie part for inspection using the high-speed
video data of the train moving at 30KMPH. The video of
the moving train was captured with a high – speed camera at
240fps. Serial texture shape prior active contours algorithm has
been developed which uses first the texture prior and then the
shape prior serially to extract objects texture by preserving its
shape. This was quite different from similar algorithms which
uses either texture or shape or both in fused form as priors,
resulting in less than accurate segmentation outputs on real
time video data. However, the proposed model had bettered the
segmentation outputs both visually and parametrically over the
existing models. Hence, the proposed method shows prospects
of inducing as a platform for segmenting train bogie parts for
automated train rolling stock examination in real time.
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