
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 7, 2020

Dependency Evaluation and Visualization Tool for
Systems Represented by a Directed Acyclic Graph

Sobitha Samaranayake1, Athula Gunawardena2
Department of Computer Science, University of Wisconsin

Whitewater, WI 53190, USA

Abstract—There is a dearth of data visualization tools for
displaying college degree-planning information, especially course
prerequisite and complex academic requirement information.
The existing methods for exploring degree plans involve a
painstaking what-if analysis of static data presented in a
convoluted format. In this paper, we present a data visualization
tool, named as Dependency Evaluation and Visualization (DEV)
chart, to visualize course prerequisite structure and a dynamic
flowchart to guide students and advisors through all possible
degree requirement completions. DEV chart uses an adjacency
matrix of a directed acyclic graph to store a course structure for
a degree into a database. Since DEV chart is created dynamically
by updating data associated with each node of the directed
graph, it provides a mechanism for adding an alert system when
prerequisite conditions are not met, and hence the user can
visualize the available courses at each step. Similarly, DEV chart
can be used with project planning where nodes represent tasks
and edges represent their dependencies.

Keywords—Data visualization; degree planning; dynamic
flowchart; prerequisite structure; adjacency matrix

I. INTRODUCTION
Many universities employ direct communications between

academic advisors and students as the primary advising
system [1]. Academic advisors are either faculty or
professional advisors employed by an academic unit, and they
typically help students make decisions about class schedules,
select an academic major or minor, plan for graduation, and
many other academic related activities [2]. These important
decisions are made based on information stored in academic
planning tools and offered courses in the upcoming semester.
Curriculum changes are typically made once or twice a year so
advisors need to spend time understanding and updating their
knowledge about degree requirements and academic policies
as well as familiarizing themselves with students’ progress
toward academic degrees prior to any advising period [3].

The most common academic planning tool is the
Academic Advising Report (AAR) or Degree Progress Report
(DPR) that consists of a list of degree requirements, a list of
courses credited towards satisfying each requirement, an
indication of whether each requirement is satisfied, and the
remaining number of courses/units needed to satisfy each
requirement. Many existing academic planning tools utilize
static documents or PDF files for displaying information
pertaining to degree requirements and course prerequisites.
Design and implementation of a Learning
Analytics Dashboard for Advisers, LADA, to support the

decision-making process of academic advisers through
comparative and predictive analysis is presented in [4].

Degree completion process shares many characteristics
with project management. Projects are defined in terms of a
set of tasks that must be completed in order to achieve the
desired outcome. Task dependencies are comparable to course
prerequisites: tasks may have multiple preceding tasks
(prerequisites) and multiple succeeding tasks. Predecessor
must finish before successor can start. Program Evaluation
and Review Technique (PERT) [5-6] is a project management
tool that is widely used to visualize the timeline and the work
that must be done to complete a project. In PERT, all
predecessor tasks must be completed before a task is started.
One main difference between PERT and degree planning is
that the tasks needed to complete a project are predefined
whereas a major/minor can be completed by completing
different sets of courses. Graphical Evaluation Review
Technique (GERT) [7-8] is a project management tool that
allows looping of tasks to allow tasks that need to be
performed more than once. In GERT, a choice may exist
where one of several tasks may be selected based on the
associated probabilities.

Degree requirements vary in structure from one academic
institution to another, and some of the requirements can be
considerably complex. Major/minor requirements are often
defined in terms of a set of course requirements that covers
specific subjects or areas of knowledge. Choosing a
major/minor, planning degree completion, and maintaining the
progress towards completing a degree is a complex planning
and scheduling problem. Integer linear programing model for
finding academic plans that would satisfy a given set of
graduation requirements and other constraints in the shortest
possible time is presented in [9] and [10]. A student advising
system using artificial intelligence techniques is presented in
[11].

Many courses specify prerequisites that are outlined using
a list of courses, all of which or a subset of which must be
completed successfully in order to satisfy the prerequisites. In
addition, a few of the prerequisites may be tied to course
grades to ensure students acquire the necessary knowledge for
getting the maximum benefit from the next course. A directed
acyclic graph can be used to represent prerequisite
relationships where nodes represent courses lists and edges
represent their dependencies. Prerequisite relationships are
often defined using one of, all of, either or, and, or a
combination of those logical relationships.

1 | P a g e
www.ijacsa.thesai.org

https://www.sciencedirect.com/topics/computer-science/learning-analytics
https://www.sciencedirect.com/topics/computer-science/learning-analytics
https://www.sciencedirect.com/topics/computer-science/predictive-analysis

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 7, 2020

There has been an interest in developing visualization tools
for academic curricula and advising [12–18]. Moreno et al. [7]
presented an interactive visualization tool for exploring course
dependencies between courses. Prerequisite visualization has
been studied by Aldrich [13]. His work was focused on the
overall topology of the courses at Benedictine University, and
he proposed a directed acyclic graph for representing
prerequisite relations where each edge represents a logical
relationship such as all of or one of. Chen et al. [14] presented
an interactive course selection scheme with prerequisite
hierarchy. Their work includes visualization of all of, one of,
or either or logical relationships of courses offered at
University of British Columbia. Zucker [16] presented a
curriculum visualization tool for developing and arranging the
flow of courses for a particular program. In this work, we
create a data structure that can process any compound logical
relationships. To our knowledge, there is no previous
published work in which complex prerequisites structures
have been investigated.

Dynamic data visualization tools directly influence the
interpretability of visualizations [19-21]. There is a dearth of
data visualization tools for displaying degree-planning
information, especially course prerequisite information. None
of the existing tools is capable of providing guidance on which
of the available courses should be planned or when the
available courses should be completed. Information pertaining
to prerequisites are often scattered in various places,
especially for hidden prerequisites. Therefore, planning and
maintaining the progress toward completing a major/minor is
a formidable challenge. The main objective of this paper is to
introduce a novel data-visualization tool that is useful for
academic advising as well as project planning where task
dependencies play a major role.

Prerequisite visualization is challenging as defining an
appropriate data structure for representing complex degree
requirements and course dependencies is the most difficult
part. Existing work is limited to most common types of degree
requirements and prerequisite structures [13-14]. Since
prerequisite structures and degree requirements vary from one
academic program to another, it is important to identify an
appropriate data structure that can process any complex degree
requirement. Although we restrict this research to develop a
data visualization tool for academic advising, the data
structure introduced in this paper is useful for creating degree
audit systems and other advising tools.

II. DATA STRUCTURE FOR DEGREE REQUIREMENTS

A. Degree Requirements
Most of the degree requirements are specified in terms of

number of units, credits, or courses that must be taken to
satisfy each requirement. There may be other requirements,
such as GPA requirements, minimum number of credits/units
needed to complete, internships, capstone projects, etc. First,
we consider the degree requirements that are often expressed
using one of the following terms:

• Complete a set of predefined courses.

• Select a subset from a set of eligible courses.

• Select a specific number of courses from each of several
lists.

• Select a subset of lists and then select a specific number
of courses from each of the selected lists (e.g., select
two of three course lists and then select one course from
each list).

• Select a specific number of courses from a selected
subset of lists (e.g., select four courses from at least
three different categories).

• Select courses with a specific total number of units from
a list of courses.

• Select a specific number of units from a selected subset
of lists (e.g. select at least five units from two different
categories).

Requirements may refer to additional attributes such as
course level (lower-division vs. upper-division) or student’s
minimum grade point average (GPA). In addition, some of the
courses may not be taken until a minimum number of units
has been earned. Courses may only count once in the major or
minor, either as a required course or as an elective, but not as
both. There may be hidden prerequisites (i.e. prerequisites of a
prerequisite course that may not be explicitly listed as a part of
any other requirements) and other requirements such as
selecting major/minor emphasis areas.

First, we define a suitable data structure for evaluating
degree requirements. A typical degree requirement belongs to
one of the following categories:

• Type A: complete k courses from a set of p courses
where 1 ≤ 𝑘 ≤ 𝑝

• Type B: complete at least m courses/units, but no more
than n courses/units from a set of p courses where
0 ≤ 𝑚 ≤ 𝑛 ≤ 𝑝

• Type C: complete k units from a set of p courses where
1 ≤ 𝑘 ≤ 𝑝

• Type D: combination of Type A, Type B, and/or Type
C requirements

Type A, Type B, and Type C degree requirements are
relatively easy to implement but Type D requirements are
often complex and difficult to implement. There may be other
requirements, such as GPA requirements, minimum number of
credits/units needed to complete, internships, capstone
projects, etc. Those types of requirements can be treated
separately by defining an appropriate data structure. Since
degree requirements vary from one program to another, it is
important to define a data structure that can represent any
complex requirement. Such a data structure can be very
valuable for introducing other useful advising tools.

B. Basic Requirements
In order to reduce the complexity of the model, we define

a data structure to represent degree requirements.

Definition: A basic requirement is a 5-tuple (A, T, m, n,
δ), where.

2 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 7, 2020

1. A is a set of objects,

2. T is the type of requirement (1:select number of
objects, 2: select number of units),

3. m is the lower bound of courses or units,

4. n is the upper bound of courses or units, and

5. 𝛿:𝐴 → { 1, 0} is a function such that 𝛿(𝐴) = 1 if A is
a credit-bearing set of objects and 𝛿(𝐴) = 0 otherwise.

Type A, Type B, and Type C requirements defined in the
previous section are basic requirements. Type D requirements
can be represented using a set of basic requirements. Hence,
requirements for any major/minor 𝑀𝑖 are expressed as
𝑀𝑖 = {𝑅𝑖1,𝑅𝑖2, … ,𝑅𝑖𝑟} where each degree requirement
𝑅𝑖𝑗(𝐴,𝑇,𝑚,𝑛, 𝛿) is either

a. a basic requirement where A is a set of courses or

b. a basic requirement where A is a set of basic
requirements.

Let 𝑅𝑖𝑗(A, T, m, n, δ) be a basic requirement. An object
𝑎𝑖 (course or a basic requirement) satisfies a basic requirement
𝑅𝑖𝑗 if 𝑎𝑖 ∈ 𝐴 belongs to 𝐴. We define a boolean function on A,
𝑏𝑖:𝐴 → { 1, 0} such that 𝑏𝑖(𝑎) = 1 if 𝑎 ∈ 𝐴 and 𝑏𝑖(𝑎) = 0 if
𝑎 ∉ 𝐴. A set 𝐴 = {𝑎1, 𝑎2, … , 𝑎𝑘} satisfies a basic requirement
𝑅𝑖𝑗 if 𝑚 ≤ ∑ 𝑏𝑖(𝑎𝑗) ≤ 𝑛𝑘

𝑗=1 .

Any set of degree requirements can be expressed using a
set of basic requirements. Consider a set of requirements
defined as follows:

𝑅1 : complete one of the courses 𝐶1 or 𝐶2

𝑅2 : complete all of the courses 𝐶3,𝐶4,𝐶5, and 𝐶6

𝑅3 : complete 6 units from the courses 𝐶7,𝐶8,𝐶9,

and 𝐶10

𝑅4 : Complete 6 – 12 units with at least two units in 𝐴1 =
{𝐶11,𝐶12,𝐶13}, at least three units in 𝐴2 = {𝐶14,𝐶15,𝐶16},
and one unit in 𝐴3 = {𝐶17,𝐶18}.

The requirements 𝑅1,𝑅2 , and 𝑅3 are basic requirements
where A is a set of courses. The requirement 𝑅4 may be
expressed using the two basic requirements 𝑅41(A, T, 6, 6, 0)
and 𝑅42(B, T, 6, 12, 1) where

𝐴 = {𝑅6,𝑅7,𝑅8}

𝑅6 = 𝑅6(𝐴1, 2, 2, 2, 0): complete two units in 𝐴1

𝑅7 = 𝑅7(𝐴2, 2, 3, 3, 0): complete three units in 𝐴2

𝑅8 = 𝑅8(𝐴3, 2, 1, 1, 0): complete one unit in 𝐴3

𝐵 = {𝐶11,𝐶12, … ,𝐶18}

Suppose M is any major that is expressed using a set of
basic requirements 𝑀 = {𝑅1,𝑅2, … ,𝑅𝑟}.Let C be the set of all
courses available to satisfy requirements of the major M and
𝐶𝑖 be the set of courses available to satisfy requirement 𝑅𝑖 ∈
𝑀 . Then the number of courses satisfying the requirement

𝑅𝑖(𝐴,𝑇,𝑚,𝑛, 𝛿) is ∑ 𝑏𝑖(𝑐𝑘)𝑙
𝑘=1 ; credits counted for a

requirement 𝑅𝑖(𝐴,𝑇,𝑚,𝑛, 𝛿) is 𝑠𝑖 = ∑ 𝑏𝑖(𝑐𝑘) ∗ 𝑛(𝑙
𝑘=1 𝑐𝑘) ∗ 𝛿

where 𝑛(𝑐𝑘) is the number of units of the course 𝑐𝑘 ∈ 𝐶𝑖; and
the total number of credits counted towards completing the
major 𝑀 𝑖𝑠 𝑆𝑀 = ∑ 𝑆𝑖𝑟

𝑖=1 where 𝑟 is the total number of
requirements of the major 𝑀.

C. Sample Major Requirements
In order to illustrate the effect of the data visualization

tool, consider a sample major 𝑀 = {𝑅1,𝑅2, … ,𝑅5} with five
requirements. Let C= {𝐶1,𝐶2, … ,𝐶25} be the set of all
courses available to satisfy requirements 𝑅1,𝑅2, … ,𝑅5.

Requirements are defined as follows:

𝑅1 : complete one of the courses 𝐶1 or 𝐶2

𝑅2 : complete one of the courses 𝐶3 or 𝐶4

𝑅3 : complete the courses 𝐶5,𝐶6,𝐶13,𝐶15,𝐶17, and 𝐶25

𝑅4 : complete 12 units from the courses 𝐶8,𝐶9,𝐶10,𝐶11,

 𝐶12,𝐶14,𝐶16,𝐶18,𝐶19,𝐶20,𝐶21,𝐶22,𝐶23,𝐶24

𝑅5 : Complete one of the courses 𝐶7 or 𝑀11

The set of courses available to satisfy each requirement is
defined as

𝐶1 = {𝐶1,𝐶2},

𝐶2 = {𝐶3,𝐶4},

𝐶3 = {𝐶5,𝐶6,𝐶13,𝐶15,𝐶17,𝐶25},

𝐶4 = { 𝐶8, 𝐶9,𝐶10,𝐶11,𝐶12,𝐶14,𝐶16,𝐶18,𝐶19,𝐶20,

𝐶21,𝐶22,𝐶23,𝐶24}, and

𝐶5 = { 𝐶7,𝑀11}.

An appropriate subset of the set C = { 𝐶1,𝐶2, … ,𝐶25}
needs to be selected to complete the major M. There may be
other requirements associated with a major, such as unique
requirements or minor requirements. Let us assume that there
are two other unique requirements, 𝑈1 and 𝑈2 defined as
follows:

𝑈1 : complete one of the courses 𝑀8 or 𝑀9

𝑈2 : complete one of the courses 𝐶7 or 𝑀11

Table I shows the prerequisite course structure for major
requirements and Table II shows the prerequisite course
structure for unique requirements.

A few of the prerequisite conditions are very complex, and
some of the prerequisites are tied to course grades and courses
from other disciplines. In general, prerequisites are completed,
waived, transferred courses, or test scores that must be
completed before taking a specific course.

The five requirements 𝑅1 , 𝑅2 ,…, 𝑅5 are basic
requirements that are easy to implement, but the prerequisites
are very complex, and there are many possible ways of
choosing courses to satisfy prerequisites and major
requirements.

3 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 7, 2020

TABLE I. PREREQUISITE COURSE STRUCTURE FOR MAJOR REQUIREMENT

 Requirements

Courses Prerequisites 𝑅1 𝑅2 𝑅3 𝑅4 𝑅5

𝐶1,𝐶2 𝑀2 or 𝑀3, with a grade of C or better x

𝐶3,𝐶4 (𝐶1 or 𝐶2) 𝑎𝑛𝑑 (𝑀4,𝑀5,𝑜𝑟 𝑀6), all with a C or better x

𝐶5 𝐶1 or 𝐶2 x

𝐶6 𝐶3 or 𝐶4, with a grade of C or better x

𝐶7 𝑀5,𝑀7 or 𝑀8, with a grade of C or better x

𝐶8, C9, C10 𝐶1 or 𝐶2 x

𝐶11 𝐶3 or 𝐶4 x

𝐶12 𝐶8 and 𝐶9 x

𝐶13 𝐶6 and (𝐶7 or 𝑀11) x

𝐶14 𝐶6 and (𝐶7 or 𝑀11) x

𝐶15, C16 𝐶6 x

𝐶17, C18 𝐶6 x

𝐶19, C20, C21, C22, C23, C24 𝐶5 and 𝐶6 x

𝐶25 𝐶5 x

Many existing academic planning tools utilize static tables
like Table I or Table II for displaying course prerequisites. It
is very difficult to understand complex prerequisite structures
without drawing a directed graph.

D. Dependency Evaluation and Visualization (DEV) Chart
In this paper, we present a data visualization tool, which is

named as Dependency Evaluation and Visualization (DEV)
chart, to visualize course prerequisite structure. DEV chart
uses an adjacency matrix of a directed graph D(V, E) to
represent course structure where nodes (V) represent courses
and edges (E) represent prerequisite relationships. Similarly,
DEV chart can be used with project planning where nodes
represent tasks and edges represent their dependencies. Tables
I and II contain information needed to define adjacency
matrices of the directed graphs for major requirements and
other courses, respectively.

We define a Boolean valued prerequisite function 𝑝:𝑉 →
{ 𝑡𝑟𝑢𝑒, 𝑓𝑎𝑙𝑠𝑒} associated with the directed graph 𝐷(𝑉,𝐸) such
that 𝑝(𝑉) = 𝑡𝑟𝑢𝑒 if prerequisite relation is satisfied for the
course list attached to the node 𝑉 , 𝑝(𝑉) = 𝑓𝑎𝑙𝑠𝑒 otherwise.
We also define a Boolean valued rotation function, 𝑟𝑡:𝐶 →
{𝑡𝑟𝑢𝑒, 𝑓𝑎𝑙𝑠𝑒} such that 𝑟𝑡(𝑐𝑘) = 𝑡𝑟𝑢𝑒 if the course 𝑐𝑘 is
offered in the planning semester. Fig. 1 shows the DEV chart
for major requirements, prior to completing any of the courses
in the set C.

Fig. 2 shows DEV chart for unique requirements, prior to
completing any of the courses. In Fig. 1, nodes with a stack of
courses represent prerequisite courses where only one of the
courses is needed to be taken to satisfy the prerequisite. If two
or more arrows are pointing to the same child node, then each
of the prerequisite relationships must be satisfied for the
course list attached to the child node to be available.

TABLE II. PREREQUISITE COURSE STRUCTURE FOR UNIQUE
REQUIREMENTS

Courses Prerequisites

𝑀2,𝑀3 𝑀1 with a grade of C or better

𝑀4,𝑀5 𝑀2 with a grade of C or better or M3 with a grade of B or better

𝑀6 𝑀3 with a grade of C or better

𝑀7 𝑀5

𝑀8 𝑀4 or 𝑀5, with a grade of C or better

𝑀9 𝑀6 or (𝑀5 and 𝑀7), with a grade of C or better

𝑀11 𝑀8 with a grade of B or 𝑀9 with a grade of C

Fig. 1. DEV Chart for Major Requirements.

4 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 7, 2020

Fig. 2. DEV Chart for Unique Requirements.

TABLE III. MAJOR PROGRESS REPORT

Requirement Satisfied? Courses Taken Courses Available

𝑅1 Yes C1

𝑅2 No None C3, C4

𝑅3 No None C5

𝑅4 No None C8, C9, C10

𝑅5 No None C7

When planning courses for a particular semester, students
would normally have completed some of the courses required
for the major and their prerequisites. It would be helpful to use
a table similar to Table I to provide Academic Advising
Report (AAR).

Table III shows the essential information that would be
helpful for planning a major. It consists of a list of the major
requirements, an indication of whether each requirement has
been satisfied, and courses credited towards satisfying each
requirement. The last column shows a list of courses available
(prerequisites have already been satisfied) to satisfy the
corresponding requirement, but not every AAR system has the
capability to display such information.

The information in the last column of Table III is
extremely valuable as it points to the courses that are available
for planning the next semester. However, this information
does not directly point to any bottleneck conditions that may
prolong the graduation date. For example, students may plan
the courses C8, C9, and C10 for the next semester and wait
one more semester before taking either C3 or C4.

Note that the course C6 is a prerequisite for 12 of the 25
courses listed in Fig. 1. Hence, its prerequisites must be
completed as soon as possible to minimize the time to
complete the degree. Furthermore, courses C5 and C6 are
prerequisites for six of the courses which are candidates for
satisfying the requirement 𝑅4. In this example, taking courses
C5 and C6 would be the best choice for students seeking to

minimize the degree completion time. The DEV chart is
capable of conveying such useful information. Using degree
progress report, the DEV charts in Fig. 1 and Fig. 2 can be
updated dynamically to display the completed courses and the
courses whose prerequisites have already been satisfied.

Fig. 3 and Fig. 4 represent an updated course structure,
based on the completed courses and their grades. The color
green is used to highlight completed courses whereas the color
orange is used to highlight courses whose prerequisites are
satisfied. Green arrows point to courses that are available to
take in the next semester. Course grades are also displayed
where * represents grades for the courses that are in progress
and T represents transferred courses.

The course C13 is a required course for completing the
requirement 𝑅3 , and its prerequisite is to complete C6 and
either C7 or M11. Prerequisite for the course C7 is to
complete either M5, M7, or M8, with a grade of C or better,
whereas the prerequisite for M11 is to complete either M8
with a grade of B or M9 with a grade of C. Multiple paths
exist for completing the prerequisite for the course C7 or M11.
Based on the completed courses, the directed graph (Fig. 2)
can be updated to narrow down the path choices.

Fig. 5 shows path choices after updating completed
courses. DEV charts are created dynamically by updating data
associated with each node of the directed graph. Hence, the
DEV chart provides a mechanism for adding an alert system
when prerequisite conditions are not met, as shown in Fig. 5.

Fig. 3. Updated DEV Chart for Major Requirements.

Fig. 4. Updated DEV Chart for Unique Requirements.

5 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 7, 2020

Fig. 5. Updated DEV Chart with Alerts for Major Requirements

The prerequisite for the course C6 is to complete either C3
or C4 with a grade of C or better, but the grade earned in this
case is a C-, shown in color red, for the course C4.
Subsequently, student has taken the course C11 that only
requires a passing grade for C4. Instead of taking C11, the
student should have repeated C6 for a better grade since C6 is
a prerequisite for many other courses required for the major.

Most of the existing tools do not possess the ability to
automatically alert a student as soon as the degree progress
data or semester grades are updated. Therefore, many of the
degree offering institutions rely on manual inspection to
generate such alerts. The information displayed using a DEV
chart can help students minimize degree completion time.

III. IMPLEMENTATION
DEV chart uses an adjacency matrix of a directed acyclic

graph. We use custom-made tools to extract degree
requirements and use basic requirement structure to store each
requirement into a database. Similarly, we use custom-made
tools to extract course descriptions and prerequisite
relationships, and store the data using a format that is easier to
process using any server-side scripting language. Course
structure for a specific major is stored into a database using
the corresponding adjacency matrix.

Fig. 6 shows the DEV chart that includes the major and
unique requirements for Computer Science general emphasis
major offered at University of Wisconsin-Whitewater
(UWW). The DEV chart depicts the completed courses for an
incoming freshman. In this example, student has earned
credits for only one of the math courses (MATH 041) and
eligible to take either MATH 139 or MATH 141.

Fig. 6. Course Structure for Computer Science Major General Emphasis at UW-Whitewater.

6 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 7, 2020

Fig. 7 shows the progress of the major requirements after
completing some of the courses required for the major. Course
grades are displayed where * represents grades for the courses
that are in progress. The courses shown in orange are the
courses whose prerequisites are satisfied. Green arrows point
to courses that are available to take in the next semester. Note
that COMPSCI 223 is a prerequisite course for most of the
higher-level computer science courses. The prerequisite for
223 is a grade of C or better in either COMPSCI 220 or
COMPSCI 222. In our test case, the student has earned a
grade of C- for COMPSCI 220, as shown in color red. The red
arrow associated with the course COMPSCI 220 is an

indication that the student cannot take the COMPSCI 223
course until the prerequisite condition is satisfied. Such alerts
can help students and advisors identify prerequisite issues.
The Academic planning tool implemented at our institution
does not have the ability to generate such alerts. Hence, these
alerts can be very useful for academic advising.

Note that the COMPSCI 223 course is a prerequisite for
many other COMPSCI courses that are either core courses or
elective courses for the major. Therefore, students should
make plans to take this course as soon as possible in order to
graduate on time. It is difficult to identify such bottleneck
courses without using a data visualization tool.

Fig. 7. Updated Course Structure for Computer Science Major General Emphasis at UW-Whitewater.

7 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 7, 2020

V. CONCLUSION AND FUTURE WORK
We present a data visualization tool, DEV, for course

prerequisite relationships. Our system is capable of
interpreting one of, all of, either or, and, or any combination
of those logical relationships. The implementation includes an
interactive layout of major requirements and course relations.

Course prerequisites are very similar to task dependencies
in project management. Completing the course prerequisites is
similar to completing task dependencies: a task cannot be
completed until the dependencies are completed. Hence, DEV
chart can be extremely useful for project management where
task dependencies play a major role. Furthermore, Dev charts
can be useful for displaying information about graphs, such as
cycles or specific branches/nodes satisfying a given criteria.

A pilot system has been successfully implemented for the
Computer Science major offered at University of Wisconsin-
Whitewater (https://cs.uww.edu/advising). This pilot system
allows computer science majors to access an online advising
system and interactively plan courses for their major, in
consultation with their academic advisors. We are in the
process of obtaining intellectual property rights for DEV
charts.

The new data structure introduced in this research is
extremely useful for analyzing student’s academic progress
toward a degree. We are exploring the possibility of
developing a mechanism that would enable an undeclared
student to explore requirements for all possible majors and
explore the shortest path for graduation.

ACKNOWLEDGMENT
This work was supported by an NSF SBIR grant.

REFERENCES
[1] J. F. Marques, “Hitting and missing the jackpot: The NACADA 2005

National Conference”, The Mentor: An Academic Advising Journal,
2006.

[2] S. Ohrablo, S. Ohrablo, “High-Impact Advising: A Guide for Academic
Advisors”, United States: Academic Impressions, 2018.

[3] V.N Gordon, W.R. Habley, T. J. Grites, “Academic advising: A
comprehensive handbook”, John Wiley & Sons, 2011.

[4] F. Gutiérrez, K. Seipp, X. Ochoa, K. Chiluiza, T. De Laet, and K.
Verbert, “LADA: A learning analytics dashboard for academic
advising”, 2018.

[5] H. Kerzner, Project Management: A Systems Approach to Planning,
Scheduling, and Controlling, John Wiely and Sons, 2003.

[6] R. F. Aziz, “RPERT: Repetitive-Projects Evaluation and Review
Technique”, vol 53, pp. 81-93, 2014.

[7] L. Zhou, J. Xie, X. Gu, Y. Lin, P. Leromonachou, X. Zhang,
“Forecasting return of used products for remanufacturing using
Graphical Evaluation and Review Technique (GERT)”, International
Journal of Production Economics, vol 181, pp. 315-324, 2016.

[8] R. G. Nelson, A. Azaron, S. Aref, “The use of GERT based method to
model concurrent product development processes”, vol 250, pp. 566-
578, 2016.

[9] A. Dechter, “Model based student academic planning”, International
Journal of Applied Management and Technology, vol 5, pp. 87-104,
2007.

[10] A. Dechter, “Facilitating timely completion of a college degree with
optimization technology”, Association for the Advancement of
computing in Educational Journal, vol 17, pp.215-229, 2009.

[11] K. Kowalski and D. Ealy, “Schedule advisement expert system”,
Computers in Human Behavior, vol 17, pp. 259-265, 1991.

[12] G. A. Moreno, W. F. Bischof, H. J. Hoover, “Interactive visualization of
dependencies”, Computers and Education, vol 58, pp. 1296-1307, 2012.

[13] P. R. Aldrich, “The curriculum prerequisite network: a tool for
visualizing and analyzing academic curricula”, arXiv preprint
arXiv:1408.5340, 2014.

[14] J. Chen and H. Siyuan, UBCourse Vis, 2017.
[15] K. E. wilcox, L. Huang, “Network models for mapping educational

data”, vol. 3, doi:10.1017/dsj.2017.18, 2017.
[16] R. Zucker, “ViCurriAS: a curriculum visualization tool for faculty,

advisors, and students” Journal of Computing Scienes in Colleges, vol
25, pp. 138-145, 2009.

[17] H. Siirtola, K-J Raiha, V.Surakka, “Interactive curriculum
visualization”, Proceedings of the 17th International Conference on
Information Visualization, vol IV, pp. 108-117, 2013.

[18] A. S. Phadke, S. S. Kulkarni, “Use of Network Model for Analysis of
Circulum and its Mapping to Program Outcomes”, Journal of
Engineering Education Transformations, vol 31, pp. 30-34, 2018.

[19] P. Simonetto, D. Archambault, S. Kobourov, “Event-Based Dynamic
Graph Visualization”, IEEE Transactions on visualization and computer
graphics, vol 26, 2020.

[20] J. A. Cottam, A. Lumsdaine, C. Weaver, “Watch this: A taxonomy for
dynamic data visualization”, 2012 IEEE Conference on Visual Analytics
Science and Technology (VAST), doi: 10.1109/VAST.2012.6400552,
2012.

[21] F. Beck, M. Burch, S. Diehl, D. Weiskopf, “A taxonomy and survey of
dynamic graph visualization”, Wiley Online Library,
https://doi.org/10.1111/cgf.12791 , 2016.

8 | P a g e
www.ijacsa.thesai.org

https://cs.uww.edu/advising
https://www.mendeley.com/authors/56674860600/
https://www.mendeley.com/authors/55848310300/
https://www.mendeley.com/authors/15050959300/
https://www.mendeley.com/authors/55975399800/
https://www.mendeley.com/authors/15761675700/
https://www.mendeley.com/authors/13605498800/

	I. Introduction
	II. Data Structure for Degree Requirements
	A. Degree Requirements
	B. Basic Requirements
	C. Sample Major Requirements
	D. Dependency Evaluation and Visualization (DEV) Chart

	III. Implementation
	IV.
	V. Conclusion and Future Work

