
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 7, 2020

Porting X Windows System to Operating System
Compliant with Portable Operating System Interface

Andrey V. Zhadchenko1, Kirill A. Mamrosenko2, Alexander M. Giatsintov3
Center of Visualization and Satellite Information Technologies

Scientific Research Institute of System Analysis
Moscow, Russia

Abstract—Now-a-days graphical interface is very important
for any operating system, even the embedded ones. Adopting
existing solutions will be much easier than developing your
own. Moreover, a lot of software may be reused in this case.
This article is devoted to X Window System adaptation for
Portable Operating System Interface (POSIX) compliant real-
time operating system Baget. Many encountered problems come
from the tight connection between X and Linux, therefore it is
expected to encounter these issues during usage of X on non-
Linux systems. Discussed problems include, but not limited to
the absence of dlopen, irregular file paths, specific device drivers.
Instructions and recommendations to solve these issues are given.
A comparison between XFree86 and Xorg implementations of X
is discussed. Although synthetic tests show Xorg performance
superiority, XFree86 consumes fewer system resources and is
easier to port.

Keywords—X Window System; X11; X.Org Server; Xorg;
XFree86; Portable Operating System Interface (POSIX); graphics;
Realtime Operating System (RTOS)

I. INTRODUCTION

Although some real-time operating systems have not in-
cluded graphic output for a long time, it’s absence or obso-
lescence may be a huge disadvantage nowadays. Many target
devices, such as onboard computers in cars or aircrafts, started
to utilize displays for showing gauges and providing additional
information to the user. In order to support this features, RTOS
must provide some graphic API for applications. Options are
limited to adopting existing interfaces or writing your own.
The most straightforward solution to this problem - develop-
ment of your own interface will allow you to minimize API
overheads, which may be very crucial for embedded devices.
Major disadvantage of this approach will be low portability
of used applications. Also a lot of existing applications must
be ported manually in order to use them. On the other side,
adopting common graphic solutions will result in decreasing
development cycle time by acquiring updates and tests from
community and standardization of API usage for software.
However, some problems will be encountered during porting.
Moreover, it may be hard to further improve this software in
terms of performance due to adopted architecture.

Host real-time operating system is called Baget [1]. It
provides different standards for developers: POSIX 1003.1 [2],
ARINC 653 [3], C++11. All programs must be statically com-
piled in order to run. Baget focuses on system reliability: many
self-test facilities are implemented, including, but not limited
to tasks and OS automatic restart, stack overflow checks, object
validation. Baget can run various tasks simultaneously with

separated process contexts [4]. Current graphical subsystem
is server-client X windows system implementation named
XFree86 with version 4.8.0. Although XFree86 [5] supports up
to the X11R6.6 protocol version, which is barely enough to run
modern applications, absence of many important extensions,
for example, Xrender [6], implies heavy limits upon software.

Nowadays existing free software solutions in display
servers for operating systems are limited to two options: X
Windows System and Wayland [7]. However, there is a big
ideological difference between them. X started it’s history a
long time ago in the ’80s and was developed as an all-around
solution. The protocol supports a lot of operations, including
window management and draw operations. For example, it
is possible to implement an application menu via X11 calls.
Although X API is rich, nowadays a lot of software does
not use it directly due to its complexity. Over time a lot of
frameworks emerged upon X, for example, GTK. As a lot
of frameworks implemented its API and draw capabilities,
drawing directly through X become obsolete. Moreover, some
server capabilities were moved into kernel, for example, User
Mode Setting became Kernel Mode Setting [8], [9]. To replace
X, which has a lot of excessive functionality and complexity,
Wayland was created. Its protocol is completely unaware of
window content and does not support any API that allows
drawing your application. The scope of Wayland is window
interaction, buffer management, etc. To fill window content
you need to use another API or framework, for example,
Qt, EGL, or even X. Although Wayland is considered to
be a better display server protocol (mostly because it is
created in a way to be a window system and nothing more),
it’s implementations are highly dependent on relatively new
Linux kernel API named Direct Rendering Infrastructure [10].
Adopting these interfaces will surely become a difficult task.
As for X, although its modern implementation Xorg also
can use new Linux kernel subsystems [11], it still supports
less complicated backends. Moreover, not only all modern
frameworks are ready to be used with X, old software is
compatible with modern server implementations. Considering
all these arguments it was decided to adopt a modern window
manager called X.org [12]. It was forked from the XFree86
project in 2004. Nowadays X.org, which is widely used in
the most popular Linux distributives, is de facto standard X11
implementation with frequent updates. In comparison to it,
XFree86, which is the current Baget OS windowing system,
was released in 2008.

The main objective is to adapt the newest X.org version to
Baget to be able to use the whole X ecosystem, including

www.ijacsa.thesai.org 17 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 7, 2020

modern codebase and libraries. Although X uses a client-
server architecture, most porting problems come from the
server-side. It is divided into two parts: Driver Independent
X (DIX) that represents server logic, request processing,
drawing routines, extensions, etc., and Driver Dependent X
(DDX), which is responsible for handling hardware, input and
output devices and holds most of OS-specific code. To be
able to use Xorg with the operating system, or rather API,
that is not supported by developers, matching DDX must be
implemented. Codebase already has some implementations for
Linux, Wayland, Windows, etc. However, they are dependant
on API that generic POSIX-compliant OS might not have. Of
course, writing new DDX from scratch would be the best way
in terms of compatibility, but time and resources spent on this
will be huge. On the other hand, patching the present code
would reduce the initial workload in exchange for testing. As
a base of our solution, we decided to use the existing DDX
for Linux systems. Obtained during this research solutions and
recommendations may be used to port modern X to another
operating system with similar to Baget properties, because a
lot of encountered problems will arise during adaptation to any
non-Linux based OS.

In addition to that, issues regarding XFree86 adaptation
will be considered, as well as performance and system resource
usage in comparison to modern X.org.

To sum up, there are two main questions:

1) How to port Xorg to Baget OS and what problems
are expected to arise with other POSIX-compliant
systems?

2) Is it worth to port Xorg instead of xFree86?

This paper is organized as follows:

• A review of issues that arise when porting X server to
new operating system with constrained functionality
and proposed solutions.

• Performance comparison between XFree86 implemen-
tation and modern Xorg implementation.

• Conclusions and future work.

II. RELATED WORK

Although X Window System was developed in 1984, there
is a shortage of available articles and proceedings that discuss
various aspects of the protocol and implementations. Discus-
sion is primarily done on specialized forums and mailing lists.
Most articles were done in the 90’s and discussed earlier
versions of X protocol. Even less information can be found
on porting X Window System implementations to operating
systems, other than Linux.

Recent publications on X Window System discuss general
programming issues that arise when using X11 API [13]. Per-
formance is critical for the windowing systems, so a lot of work
is done on using GPU acceleration for drawing operations
to reduce CPU workload. In [14] authors try to reduce cpu
overhead by implementing resource-sharing protocols. Some
attempts on porting X server implementation to embedded
system result in a practically complete overhaul of the server
internal systems [15].

III. PORTABILITY PROBLEMS AND SOLUTIONS

A. Static Compilation

In the Baget OS, processes are pre-defined and starting
along with the system itself. Due to this, executable code
cannot be loaded dynamically. This requires all of the process
code to be packed into a single object file during system
compilation.

Although machine independent part of the X.org server can
be statically built with ease and have a corresponding option,
some problems come from the DDX component. It is necessary
to change makefile scripts and rename entry point function to
be able to call it later.

Another problem comes from X architecture. Nowadays,
two sets of libraries are used to build X infrastructure. Ones
are required by the server-side, ones by client applications.
Some libraries as libXau are used in both. But others may
have functions with the same names and different prototypes.
Because of that, all the libraries cannot be combined into
a single static library so client and server parts have to be
maintained separately.

B. Dlopen Abscence

As mentioned above, executables cannot be loaded dynam-
ically. Due to this, the dlopen function family is not supported.
In order to be flexible Xorg uses a module system, that heavily
relies on this API because it is used during module loading
and devices initialization. Every loaded module must define
a global variable called <modulename>ModuleData, which
contains version, setup and teardown functions. This object
would be searched during the startup of the X server to fill
ModuleDesc structure and register module.

However, these steps can be done with a minor alteration of
source code even without dlopen. Functions inside the loader
component must be stubbed. In every loadable module, which
will be used later, special function must be implemented. It will
allocate required function tables and ModuleDesc structure,
perform registering and call module setup. This function must
be called during DDX initialization instead of normal routine.

Despite the simplicity, this approach restricts available
drivers. On the other hand, considering Baget usage as an
embedded system, the target platform and list of devices are
known during compilation. Due to this, it is not reasonable to
use dynamic drivers.

C. Device Drivers

Device drivers in Xorg are part of modules. A module can
contains one or multiple drivers at once. Module responsibil-
ities are registration of itself and it’s drivers. While module
initialization and driver initialization are called once, device
can be turned on or turned off multiple times. Input devices
are monitored by server, so when Xorg detects an event on
device file descriptor (i.e. poll reports that descriptor state is
changed or SIGIO raises), driver is called to proceed input. It
is expected that driver would generate an event that will be
further processed by X server.

An example of action sequence for mouse driver xorg-xf86-
input-mouse:

www.ijacsa.thesai.org 18 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 7, 2020

1) Mouse movement generates I/O on mouse file de-
scriptor.

2) Xorg server detects I/O and calls driver function
MouseReadInput.

3) Driver reads data from desctiptor and proceed it
accoring to protocol and other settings.

4) Depending on data, driver calls xf86PostMotionEvent
or xf86PostButtonEvent.

5) Xorg constructs and put events (for example, single
MotionEvent) in server queue.

Modern DDX part of X.org uses a special interface to
handle input drivers called udev [16], which is a Linux kernel
device manager. However, old mouse and keyboards modules
is still supported. Due to this, previous drivers xorg-xf86-input-
keyboard and xorg-xf86-input-mouse were used as base due to
it’s simple requirements. Keyboard driver relies on input from
stdin. Mouse driver expects a device file from which mouse
packets data can be read. On top of that OS must provide
either select, poll or SIGIO API to watch file descriptors for
both drivers.

For output drivers, implementing standard screen functions
is enough to use graphics with software rendering done by X.
However, this driver heavily depends on the hardware platform
and therefore will not be discussed in this article.

D. Xkbcomp Utility

When the key is pressed keyboard driver delivers scancode
to the X server. In order to handle different types of keyboards
and language sets, there must be a mapping between scancodes
and actual symbols. To compile keymaps for current keyboard
X server uses utility named xkbcomp [17]. During Xorg’s
initialization, the main process forks, redirects streams and
executes this program. Xkbcomp is separated from the X
server because it relies on client-side libraries, thus cannot
be compiled into the server due to conflicting functions. But
Baget does not support fork and exec API because processes
are pre-defined.

It is possible to solve this problem in several ways.

Firstly, it can be achieved with rewriting xkbcomp utility
with X server libraries instead of client ones. However, some
parts of the code will be heavily altered and it will be hard to
update it with new versions later.

Secondly, we can imitate fork by creating another process
that manages xkbcomp during system startup. Communication
and synchronization between different sides will be done with
two FIFO’s instead of streams redirection. There are some
disadvantages of this approach. Some kind of protocol must
be implemented to pass arguments to xkbcomp. Moreover,
FIFO is visible to other processes that can write or read these
files. On top of that additional process and FIFO files create
unnecessary complexity and reduces clarity for users.

Although X server and X client cannot be simply linked
into one executable, some tricks with GNU utilities ld and
objcopy may help to get around this problem.

• Compile xkbcomp without running linker with gcc
flag -c.

• Create relocatable output file with ld option -r from
xkbcomp and X client libraries.

• Using objcopy flag -G enter func create same file with
all symbols hidden except enter func.

After these steps, it is possible to link xkbcomp into the
Xorg server process because all conflicting symbols are not
visible after objcopy. After that, we can run xkbcomp from
entry function enter func directly or create a special thread
for that purpose. Also, it is possible to get rid of FIFO by
using unnamed pipes or memory since it is the same process
now. Unlike the first solution, the required changes to source
code are tiny. The main disadvantage of this approach is almost
doubling X server executable size from 23MB to 40MB due
to copying a lot of binary code from X client object files.

E. Local Sockets

X.org normally creates a UNIX socket to handle all in-
coming local requests. POSIX implementation of socket in
Baget only supports AF INET domain, therefore creation of
UNIX domain socket is impossible. However, all requests can
proceed if the client and server will consider using localhost
instead of a socket file. This is possible to achieve by changing
communication callbacks for local connections in header files.

F. User ID and Group ID

The majority of embedded devices are not supposed to be
directly (e.g. terminal access) used. Because of this, Baget
does not have a user identifier (UID) or group identifier (GID).
But X.org have a lot of checks related to UID. The simplest
solution is either stubbing UID functions to return 0, which is
equal to root UID in UNIX, or ignoring all checks.

G. Server and Applications Resources

In order to use X.org without Filesystem Hierarchy Stan-
dard [18] a user must provide path to fonts, log files, con-
figuration files, and other resources. This can be done during
compilation.

Moreover, some applications are using libXt API [19] to
draw interfaces. This may cause unclear behavior because
libXt will look for app-defaults folder to find resources related
to running program. In case of its absence, no warning will
be generated, but the colors and shapes of drawn objects
will be incorrect. It is possible to solve this problem by
modifying libXt source code or setting environmental variable
XAPPLRESDIR.

H. Launching Statically Compiled X.org and Applications

Some tweaks must be done to successfully launch X.org
after static compilation.

First of all, to correctly call the renamed entry function
of X.org, argc and argv should be carefully generated and
provided. Arguments must include display number at least, for
example, :0. Before running any X application environmental
variable DISPLAY needs to be set accordingly.

Nowadays X.org will not display cursor and use mouse
driver until desktop environment, which is mostly not required

www.ijacsa.thesai.org 19 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 7, 2020

for an embedded system, is loaded. However, while launched
in retro mode (with argument -retro), X.org will provide a
working cursor and mouse.

I. XFree86 Issues

Since X.org was forked from XFree86, all issues discussed
before is the same for both windowing managers with two
exceptions. Firstly, dlopen is not mandatory for XFree86 -
modules can be statically linked by default. Secondly, xkb-
comp is not required to obtain a keyboard configuration. As
for device drivers, its API has not changed much since then.

IV. PERFORMANCE COMPARISON RESULTS BETWEEN
XFREE86 AND XORG AND EVALUATION

A tool named x11perf [20] was used to measure perfor-
mance difference. x11perf tests server by calling X protocol
commands multiple times and recording the number of opera-
tions per second. Both xFree86 and Xorg were installed on a
test stand with the following characteristics: single-core MIPS
400mhz CPU and 4GB 400mhz RAM.

x11perf results include over 350 different tests. However,
it may be combined into groups. For example, “Copy 10x10
from window to window”, “Copy 100x100 from window
to window”, “Copy 100x100 from window to pixmap” will
belong to the copy group.

Fig. 1 and 2 represent performance ratio of Xorg to
XFree86 in different test groups. All values are normalized
to the XFree86 result taken as 100%. For example, “Copy
500x500 from pixmap to pixmap” result is 194 and 271
operations per second for xFree86 and Xorg, respectively. That
means the dot will be at 140% since Xorg result is 140% of
xFree86. Each dot on the plot represents performance change
for a particular test. Test names are omitted. The dotted line
represents the mean value of a group. For this plots’ data,
please refer to Table 1 and Table 2.

100%

120%

140%

160%

180%

200%

220%

Pe
rf

or
m

an
ce

co
m

ap
re

d
to

X
Fr

ee
86

100%

120%

140%

160%

180%

200%

220%

Fig. 1. x11perf Char Group Tests

Due to X.org’s increase in complexity compared with
XFree86, some operations may fall behind, for example, X
protocol NoOperation call declined from 1070000 to 543000
per second. Despite that, a lot of test suits show better results,
such as groups of char and copy operations, +30% and +10%
respectively. Overall performance increase is 46%. Although

TABLE I. X11PERF CHAR GROUP TESTS DATA

Test name Performance compared
to XFree86 (%)

Char in 80-char line (6x13) 119,4779
Char in 70-char line (8x13) 105,336
Char in 60-char line (9x15) 124,7475
Char16 in 40-char line (k14) 119,1176
Char16 in 23-char line (k24) 110,4551
Char16 in 7/14/7 line (k14, k24) 110,2564
Char in 80-char image line (6x13) 110,2041
Char in 70-char image line (8x13) 103,1008
Char in 60-char image line (9x15) 112,6263
Char16 in 40-char image line (k14) 109,0909
Char16 in 23-char image line (k24) 105,157
Char in 80-char aa line (Charter 10) 158,5086
Char in 30-char aa line (Charter 24) 137,5635
Char in 80-char aa line (Courier 12) 168,0851
Char in 80-char a line (Charter 10) 204,9587
Char in 30-char a line (Charter 24) 142,8894
Char in 80-char a line (Courier 12) 193,8053
Char in 80-char rgb line (Charter 10) 134,7044
Char in 30-char rgb line (Charter 24) 110
Char in 80-char rgb line (Courier 12) 143,7653

60%

80%

100%

120%

140%

Pe
rf

or
m

an
ce

co
m

ap
re

d
to

X
Fr

ee
86

60%

80%

100%

120%

140%

Fig. 2. x11perf Rectangle Group Tests

most of it comes from tests utilizing windows operations, such
as creating, moving, mapping and resizing.

As for memory usage, while X.org consumes 3 MB RAM
in idle state, while XFree86 uses only 1 MB.

V. CONCLUSIONS

X Windows System (specifically X.org v1.20.3) was suc-
cessfully ported to Baget operating system. Porting X to non-
POSIX systems may be unreasonable due to the usage of
signals, file descriptors, polls, and other specific API. As for
POSIX-compliant systems, one must implement device drivers
and solve platform-specific issues. Covered in this article
topics and methods can be used to adapt X to various systems
with similar to Baget properties.

Two X implementations, Xorg and XFree86, were com-
pared. Although XFree86 is older than the newest X.org
release, it is easier to port. Another advantage is lower system
requirements, for example, memory usage, which can be deci-
sive for embedded systems. Xorg’s superiority in performance
may be spoiled in case of heavy usage of simple operations
and program preference to draw small objects rather than big.
As an example, a lot of either old or simple software such as
standard utilities, calculators, notepads, etc. directly use such

www.ijacsa.thesai.org 20 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 7, 2020

TABLE II. X11 PERF RECTANGLE GROUP TESTS DATA

Test name Performance compared
to XFree86 (%)

1x1 rectangle 58,9443
10x10 rectangle 93,9502
100x100 rectangle 99,0637
500x500 rectangle 98,6301
1x1 stippled rectangle (8x8 stipple) 109,4218
10x10 stippled rectangle (8x8 stipple) 100,1506
100x100 stippled rectangle (8x8 stipple) 38,9021
500x500 stippled rectangle (8x8 stipple) 31,085
1x1 opaque stippled rectangle (8x8 stipple) 106,2124
10x10 opaque stippled rectangle (8x8 stipple) 136,7975
100x100 opaque stippled rectangle (8x8 stipple) 105,3333
500x500 opaque stippled rectangle (8x8 stipple) 100,6036
1x1 tiled rectangle (4x4 tile) 101,0929
10x10 tiled rectangle (4x4 tile) 130,8725
100x100 tiled rectangle (4x4 tile) 109,2896
500x500 tiled rectangle (4x4 tile) 103,5
1x1 stippled rectangle (17x15 stipple) 111,7521
10x10 stippled rectangle (17x15 stipple) 124,7163
100x100 stippled rectangle (17x15 stipple) 77,6224
500x500 stippled rectangle (17x15 stipple) 70,8904
1x1 opaque stippled rectangle (17x15 stipple) 106,4128
10x10 opaque stippled rectangle (17x15 stipple) 140
100x100 opaque stippled rectangle (17x15 stipple) 100,9967
500x500 opaque stippled rectangle (17x15 stipple) 96,063
1x1 tiled rectangle (17x15 tile) 101,0929
10x10 tiled rectangle (17x15 tile) 119,8758
100x100 tiled rectangle (17x15 tile) 100,7634
500x500 tiled rectangle (17x15 tile) 96,3855
1x1 stippled rectangle (161x145 stipple) 110,4701
10x10 stippled rectangle (161x145 stipple) 109,6311
100x100 stippled rectangle (161x145 stipple) 40,6897
500x500 stippled rectangle (161x145 stipple) 8,4746
1x1 opaque stippled rectangle (161x145 stipple) 107,0281
10x10 opaque stippled rectangle (161x145 stipple) 129,3706
100x100 opaque stippled rectangle (161x145 stipple) 98,0663
500x500 opaque stippled rectangle (161x145 stipple) 90,604
1x1 tiled rectangle (161x145 tile) 101,2774
10x10 tiled rectangle (161x145 tile) 116,5803
100x100 tiled rectangle (161x145 tile) 98,927
500x500 tiled rectangle (161x145 tile) 90,7692
1x1 tiled rectangle (216x208 tile) 101,2774
10x10 tiled rectangle (216x208 tile) 116,8421
100x100 tiled rectangle (216x208 tile) 111,6773
500x500 tiled rectangle (216x208 tile) 97,619

X API. On the other hand, modern frameworks, such as Qt and
GTK, prefer to internally draw windows and use XPutImage
call, which favors Xorg. Speaking in terms of functionality,
XFree86 seriously falls behind due to a lack of modern X
extensions.

There are some options for the future development of this
research. First of all, since we adopted existing DDX for Xorg,
we need to test graphic output very carefully and check if
our changes do not break anything. Although we ran several
programs such as x11perf and more complicated examples
as browser and office suite, this validation process may be
deceiving. We need to use existing or invent a new method
to ensure correctness. Secondly, there are a lot of frameworks
built upon X, such as Qt and GTK. Supporting them will be
a benefit in terms of versatility because nowadays a lot of
programs do not directly use X API but these frameworks.
As was mentioned in the introduction - some inner parts or
ideas of X evolved into the new interfaces. Adopting one of
them, named KMS, may be very useful. Currently, it is the
main backend for X server instead of fbdev that we used.
Moreover, new technologies, such as Wayland, use it too.
KMS API will allow us to ensure compatibility of Baget

graphic subsystem with the upcoming changes and ease future
development. Also only display features of X Window System
are used, accelleration via 2D or 3D accellerators is not used.
In the future, we plan to adapt DRI framework in the X server
for Baget operating system in order to use GPU accellerated
3D applications.

ACKNOWLEDGMENTS

Publication is made as part of national assignment for
SRISA RAS (fundamental scientific research 47 GP) on the
topic No.0065-2019-0001 (AAAA-A19-119011790077-1).

REFERENCES

[1] A. N. Godunov and V. A. Soldatov, “Baget real-time operating system
family (features, comparison, and future development),” Programming
and Computer Software, vol. 40, no. 5, pp. 259–264, Sep. 2014.
[Online]. Available: https://doi.org/10.1134/S036176881405003X

[2] The IEEE and The Open Group, The Open Group Base
Specifications Issue 6 – IEEE Std 1003.1, 2004 Edition.
New York, NY, USA: IEEE, 2004. [Online]. Available:
http://www.opengroup.org/onlinepubs/009695399/

[3] A. C.M., S. Nair, and M. G.H., “Arinc 653 api and its application –
an insight into avionics system case study,” Defence Science Journal,
vol. 63, no. 2, p. 223–229, Mar 2013.

[4] A. N. Godunov and V. A. Soldatov, “Experience creating a compact
real-time operating system,” Software Engineering, vol. 10, no. 2, pp.
51–58, Sep 2019.

[5] Bill Ball, The New XFree86 Book. Course Technology, 2001.
[6] K. Packard, “A New Rendering Model for X,” in Proceedings of the

FREENIX track, 2000 USENIX annual technical conference. San
Diego, California, USA: USENIX Association, Jun. 2000.

[7] Kristian Høgsberg, “The wayland protocol,”
https://wayland.freedesktop.org/docs/html/.

[8] Konstantin V. Pugin, Kirill A. Mamrosenko, and Alexander M. Giatsin-
tov, “Visualization of graphic information in general-purpose operating
systems,” Radioelektronika, Nanosistemy, Informacionnye Tehnologii,
vol. 11, no. 2, pp. 217–224, 2019.

[9] I. Efremov, V. Reshetnikov, and K. Mamrosenko, “Methods of devel-
oping graphics subsystem drivers,” vol. 33, pp. 425–429, 08 2018.

[10] Brian Paul, “Introduction to the direct rendering infrastructure,”
http://dri.sourceforge.net/doc/DRIintro.html.

[11] J. Madieu, Linux Device Drivers Development: Develop Customized
Drivers for Embedded Linux. Packt Publishing, 2017.

[12] Alan Coopersmith, Matt Dew, and Bart Massey, The X New Developer’s
Guide. X.Org Foundation, Oct. 2012.

[13] R. J. Maloney, Low Level X Window Programming.
Springer International Publishing, 2017. [Online]. Available:
http://link.springer.com/10.1007/978-3-319-74250-2

[14] S. Kato, K. Lakshmanan, Y. Ishikawa, and R. Rajkumar, “Resource
sharing in gpu-accelerated windowing systems,” in 2011 17th
IEEE Real-Time and Embedded Technology and Applications
Symposium. IEEE, Apr 2011, p. 191–200. [Online]. Available:
http://ieeexplore.ieee.org/document/5767151/

[15] D. Jeong, Kamalneet, N. Kim, and S. Lim, “Gpu-based x server on top
of egl and openvg,” in 2009 Digest of Technical Papers International
Conference on Consumer Electronics. IEEE, Jan 2009, p. 1–2.
[Online]. Available: http://ieeexplore.ieee.org/document/5012187/

[16] G. Kroah-Hartman, “udev – A Userspace Implementation of
devfs,” in Proceedings of the Linux Symposium, Ottawa,
Ontario, Canada, Jul. 2003, pp. 249–257. [Online]. Available:
https://www.kernel.org/doc/mirror/ols2003.pdf

[17] Erik Fortune, “The X Keyboard Extension: Protocol Specifi-
cation,” https://www.x.org/releases/current/doc/kbproto/xkbproto.html,
May 1996.

[18] Rusty Russell, Daniel Quinlan, and Christopher Yeoh, “Filesystem
hierarchy standard,” https://refspecs.linuxfoundation.org/FHS 2.3/fhs-
2.3.pdf.

www.ijacsa.thesai.org 21 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 7, 2020

[19] Joel McCormack, Paul Asente, and Ralph R.
Swick, “X toolkit intrinsics - c language interface,”
https://www.x.org/releases/X11R7.7/doc/libXt/intrinsics.html.

[20] Joel McCormack, Phil Karlton, Susan Angebran-
ndt, Chris Kent, Keith Packard, and Graeme Gill,
“X11perf - x11 server performance test program,”
https://www.x.org/releases/X11R7.7/doc/man/man1/x11perf.1.xhtml.

www.ijacsa.thesai.org 22 | P a g e


