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Abstract—In data analysis processes, the treatment of outliers 

in quantitative variables is very critical as it affects the quality of 

the conclusions. However, despite the existence of very good tools 

for detecting outliers, dealing with them is not always 

straightforward. Indeed, statisticians recommend modeling the 

process underlying outliers to identify the best way to deal with 

them.  In the context of Data Science and Machine Learning, the 

identification of processes that generate outliers remains 

problematic because this work requires a visual human 

interpretation of certain statistical tools. The techniques 

proposed so far, are systematic imputations by a central tendency 

characteristic, usually the arithmetic mean or median. Although 

adapted to the framework of Data Science and Machine 

Learning, these different approaches cause a fundamental 

problem, that of modifying the distribution of the initial data. 

The purpose of our paper is to propose an algorithm that allows 

the automatic processing of outliers by a software while 

preserving the distributional structure of the treated variable, 

whatever the law of probability is. The method is based on the 

moustache box theory developed by John Tukey. The procedure 

is tested with existing real data. All treatments are performed 
with the R programming language. 

Keywords—Outliers; boxplot; exploratory data analysis; 
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I. INTRODUCTION 

Today, with the evolution of information collection 
techniques and their processing by means of computer tools, 
the problem of outliers has taken on a significant proportion in 
data analysis processes [1]. According to the definition of 
Grubbs (1969), “An outside observation, or 'outlier', is an 
observation that appears to deviate markedly from other 
members of the sample in which it occurs” [2]. Their treatment 
is a crucial problem when analysing the data. Their presence 
can lead to biased estimates of population parameters and 
erroneous results, especially in the implementation of statistical 
tests [3]. Ensuring high quality results when analyzing 
quantitative data involves detecting outliers and then 
processing them [4]. 

Several tools can be used to indicate the presence of these 
atypical values. Some are based on graphical techniques and 
others on statistical tests [5]. In those analysis, the quality of 

the data is one of the determining factors that contribute to a 
conclusion of a value. However, the methods and techniques 
used to process the values still do not comply with the 
methodology indicated by the rules of statistics.  Ruilin REN in 
[6] notes this fact when using imputation methods, developed 
for missing values problems, to deal with outliers; this would 
be tantamount to treating outliers as missing data. Whereas 
statistically, the missing value problem and the outlier problem 
are different in nature. 

It should be noted that the issue of detecting outliers 
through efficient procedures is solved and is even integrated in 
most statistical software. However, the treatment of outliers is 
still problematic because the methods are only diverse, but 
their effects on the structure of the variables are not taken into 
account. Among these methods, the best known are the 
arithmetic mean imputation method and the k-nearest neighbor 
algorithm, which do not have clear rules for optimal use. 

Our work is aimed to automatically deal with outliers in a 
quantitative variable by minimizing perturbations in the 
probability law.  We propose the determination and processing 
of outliers by a software in an automatic way without any 
human intervention. The proposed method consists of 
exploiting the boxplot, the main tool for outlier detection, 
proposed by John Tukey.  The basic idea is to subdivide the 
data distribution into several intervals from which surrogate 
values to be used to replace outliers will be randomly drawn. It 
is thus a non-monotonic version of imputation techniques in 
which outliers are not replaced by a single value, but different 
values, all of them randomly drawn within a specific interval. 
The determination of the imputation interval is carried out in 
such a way that it retains the original distributional structure of 
the data. 

In the paper, we first present methods that allow the 
detection and treatment of outliers. Then, we expose our 
method as well as the results obtained from the simulations 
performed on real data. 

II. OUTLIER DETECTION 

An outlier is a data item that deviates significantly from the 
rest of the data, as if it had been generated by a different 
mechanism [7]. Barnett and Lewis (1994), define an outlier in 



(IJACSA) International Journal of Advanced Computer Science and Applications, 
Vol. 11, No. 7, 2020 

408 | P a g e  
www.ijacsa.thesai.org 

a data set as an observation (or set of observations) that appears 
to be inconsistent with the rest of the data [8]. In other words, 
an outlier occurs when one of the observations in a data set is 
inconsistent with the other observations. 

Outlier detection is one of the key pillars of data mining 
technology [9]. Many graphical methods are available to detect 
the presence of these outliers. These include the moustache 
box, bar graph, quantum diagrams, histogram, run sequence 
plot, etc. [1],[10],[11]. In the field of Artificial Learning, the 
presence of outliers in training databases is a problem for the 
development of good predictive models for many algorithms. 
Indeed, they not only make the learning time longer but they 
also make the obtained predictive model less optimal. 

From a practical point of view, outliers may not be errors in 
some cases. They may be indicative of extraordinary or 
exceptional situations such as fraudulent behavior, rare events, 
etc. [12]. 

III. TREATMENT OF OUTLIERS 

Dealing with outliers is a complex task in data analysis. 
This activity is very often neglected or neglected by analysts 
precisely because of its complexity or lack of knowledge of its 
effects on analytical results. An outlier can lead to completely 
wrong analytical results if it is not properly handled [5]. The 
detection and subsequent treatment of atypical individuals is a 
crucial preliminary step in data analysis [3]. 

These values can be, after their identification, either deleted 
or corrected [4]. If an atypical value is deleted, an explanation 
must justify the decision [13], [14]. However, this objective 
must take into account their origin (random or determined 
outliers). In the case where the emphasis is placed on the 
inferential characteristics of a model, during the analysis, the 
objective is the treatment of the atypical values in order to 
minimize their negative impact on the parameter estimates and 
the results of the analysis. In this situation, it is necessary to 
use appropriate methods for their treatment. This is our case in 
this article. 

There are two main ways of dealing with outliers. The first 
is to correct them if the sources for producing these data are 
available. The second is to make a correction for them using an 
imputation method (by the mean or median method in general). 

IV. PROPOSED METHOD OF TREATMENT 

A. Exploitation of the Boxplot 

Most of the algorithms implemented in software for outlier 
processing use the method of imputation by the positional 
parameters arithmetic mean and median. This technique has the 
advantage of simplicity, but in most cases, it greatly alters the 

distributional structure of the data. Indeed, it remains 
acceptable when the distribution of the variable is close in 
practice. The principle of our method is to replace each outlier 
in the distribution by another value very close to it. However, 
these imputation values are subject to constraints that eliminate 
some potential candidates: 

a) If the outlier is among the smallest values of the 

variable, it may not be replaced by a value higher than the 

mean value of the 1st quartile and the 3rd quartile. In its 

treatment, preference will be given to values closest to the 

lower bound of the boxplot (left side of the box). 

b) If the outlier is among the largest values of the 

variable, it may not be replaced by a value lower than the mean 

value of the 1st quartile and the 3rd quartile. In its treatment, 

preference will be given to values closest to the upper bound of 

the moustache box (right side of the box). 

c) The imputation values should be drawn within a close 

range of these values without necessarily being the same for all 

outliers. This last constraint prevents the cumulation of 

modality for a large number of outliers, which is one of the 

sources of distortion of the distribution of the series under 

study. 

To do this, we will exploit John Tukey's moustache box 
[15]. The latter will be divided into several intervals taking into 

account the indicators that are the first quartile 1Q , the third 

quartile 3Q  and the median eM  (see Fig. 1). 

1Q  , 3Q  : are respectively the first and third quartile. 

eM : the median of the distribution. 

3 1IQ Q Q  : This is the interquartile range. 

iI  represents the ith interval of the moustache box (i ranging 

from 1 to 10). 

B. Description of the Method 

The objective of our method is to automatically process 
outliers detected with the boxplot. This involves substituting 
them with another value so as to obtain reliable knowledge 
from the data, i.e. one that reflects reality. To do this, the 
boxplot will be decomposed into several intervals (10 in total) 
of 0.5*IQ length. 

The different terminals are a function of the distribution 

parameters which are the quartiles ( 1Q , eM , 3Q ). The use of 

quartiles is justified by the fact that they are insensitive to 
outliers. They are robust to the presence of outliers, unlike the 
mean. This, in fact, will make a real difference. 

 

Fig. 1. Boxplot with Interval Decomposition. 

ID3 

Q3+0,5I

Q 

Q3+1,5IQ 

 
Q1-1,5IQ 

 

ID1 IG1 

(Q1+Q3)/2 

 
Q1-IQ 

 
Q1-0,5IQ 

 

Q3+IQ 

 
(Q3+Me)/2 

 

(Q1+Me)/2 

 

Q1 

 

Q3 

 

IG2 IG3 
IG4 IG5 

ID2 

ID4 ID5 
Outliers 



(IJACSA) International Journal of Advanced Computer Science and Applications, 
Vol. 11, No. 7, 2020 

409 | P a g e  
www.ijacsa.thesai.org 

To understand the principle of our method, let us consider a 
group of atypical individuals with respect to a given 
quantitative variable. Let us assume that the outliers 
corresponding to these individuals are located on the left side 
of the box (left moustache); in this case, the algorithm will find 
replacement values for them by traversing the calculated 
intervals from left to right. These new values will be randomly 
drawn from the current interval under consideration. This 
choice will first be made in interval I1. If, after replacement, it 
is found that there are new outliers, then this interval is 
abandoned in favor of the next interval (I2). This process will 
be repeated until an interval provides replacement values that 
eliminates all outliers. It should be noted that in the course of 

this process, terminal value 1 3( ) / 2Q Q , which represents the 

middle of the box, will not be crossed when randomly selecting 
new values for all outliers on the left side of the box. 

This same process will be done with the atypical 
individuals located on the right side of the box. At the end of 
the execution of our algorithm, all outliers will be processed. 

V. PROPOSED ALGORITHM FOR AUTOMATIC OUTLIER 

PROCESSING 

1) Input: quantitative variable X= (x1, x2,...,xn) 

2) Calculate the median of X 

3) Calculate the first quartile Q1 of X 

4) Calculate the third quantile Q3 of X 

5) Calculate the interquartile range IQ = (Q3 - Q1) 

6) Determine the limits of the left moustache 
intervals. 

a) binf = Q1 - 1.5 IQ 

b) minf = Q1 - 1IQ 

c) finf = Q1 - 0.5IQ 

7) Determine the box terminals 

a) MQ1 = (Q1+Me) / 2 

b) MQQ = (Q1+Q3) / 2 

c) QM3 = (Q3+Me) / 2 

8) Determine the limits of the intervals of the right 
moustache. 

a) fsup = (Q3 + 0.5*IQ) 

b) msup = (Q3 + 1.0*IQ) 

c) bsup = (Q3 + 1.5*IQ) 

9) Determine the intervals at which the left-hand 
imputation values are drawn 

a) IG1 = [binf, minf] 

b) IG2 = [minf, finf] 

c) IG3 = [finf, Q1]Tapez une équation ici. 

d) IG4 = [Q1, MQ1] 

e) IG5 = [MQ1, MQQQ] 

10) Determine the draw intervals for the right-hand 
imputation values 

a) ID1 = [msup, bsup] 

b) ID2 = [fsup, msup] 

c) ID3 = [Q3, fsup] 

d) ID4 = [MQ3, Q3] 

e) ID5 = [MQQQ, MQ3] 

11) For each left outlier (less than binf) : 

a) For i ranging from 1 to 5 : 

i) Drawing a random value in IGi 

ii) Replace the outlier with a 
randomly drawn outlier 

b) If there are still left outliers : 

i) Take i = i+1 

ii) Go to a) 

      Else go to 12) 

12) For each right outlier (greater than bsup) 

a) For i ranging from 1 to 5 : 

i) Drawing a random value in Idi 

ii) Replace the outlier with a 
randomly drawn outlier 

b) If there are still left outliers : 

i) Take i = i+1 

ii) Go to a) 

       Else go to 13) 

13) End of treatment 

VI. SIMULATIONS AND RESULTS WITH REAL DATA 

The outlier treatment method we proposed has been 
implemented under R. It is a programming language for 
statistics and data science [16]. 

A. Test with Data Iris from R 

1) Description of the database: For the first simulation, 

we performed the test with the Iris dataset contained in the R 

environment. This database contains data on 150 iris flowers. 

For each iris, the length and width of the petals as well as the 

length and width of the sepals were measured. For this first test 

of our method, we limit ourselves to the Sepal.Width variable 

(variable measuring the width of the sepals). 

2) Simulation and results: First, we plot the moustache 

box of the variable Sepal.Width with the plot function of R 

(Fig. 2), i.e. without intervention of our method. We can notice 

on Fig. 2 the presence of atypical individuals on both sides of 

the box mustaches (outliers). 
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Fig. 2. Drawing of the Mustache Box of the Variable Sepal.Width of Iris 

with the Original Data. 

 

Fig. 3. Drawing of the Sepal.width Variable Moustache Box after 

Application of the Algorithm. 

In the second phase, we apply our outlier processing 
algorithm to the same data. The algorithm with its execution 
principle explained above (in 3) will replace these outliers by 
new ones. We have on Fig. 3 the result obtained with our 
method. 

We can notice that after applying our algorithm on the data, 
the outliers have been treated so they no longer appear on the 
moustache box plot. 

B. Test with Data from Open Data 

1) Description of the database: For the second test, we 

used data transcribing the monthly performance of the hotel 

sector in the Brussels region as a resource [17]. This file 

contains information on the variables Occupancy.rate (Room 

occupancy rate), Average.Price (Average price per room) and 

RevPAR (Income per available room). 

2) Simulation and results: First, we plot the moustache 

box of the variable Occupancy.rate with the plot function of R 

(Fig. 4), i.e. without intervention of our method. We can notice 

on Fig. 4, the presence of atypical individuals on the left side of 

the boxplot. 

In the second phase, we apply our outlier processing 
algorithm to the same data. On Fig. 5, we have the result 
obtained with our method. 

One can notice the presence of outliers on the side of the 
left moustache of the box. 

 

Fig. 4. Plotting the Mustache Box of the Variable Occupancy.rate with the 

Original Data. 

Fig. 5 shows the absence of outliers after application of our 
algorithm on the data. All the outliers have been processed. 

 

Fig. 5. Drawing of the Boxplot on the Variable Occupancy.rate after 

Application of the Algorithm. 

VII. CONCLUSION 

The algorithm developed by us in this article is mainly 
based on the principle of John Tukey’s boxplot. It exploits its 
properties to automatically handle outliers in quantitative 
variables. While the statistical approaches used to identify 
outliers are effective, current methods of dealing with these 
outliers are based on imputation techniques that change the 
probability distribution of the variable of interest. Our method 
has the particularity of preserving the structure of the 
distribution of the treated variable. Simulations have shown 
that the method always manages to treat correctly atypical 
individuals. This algorithm is part of the more general search 
for solutions to automate the process of quantitative variables 
analysis. It will make it possible to automate correct data 
analysis methodologies with a view of making as reliable as 
possible the results of data analysis by a machine without 
human intervention. Another interest of our approach is to be 
able to write statistical software for novice statisticians that can 
produce highly reliable results by minimizing the possibilities 
of common analytical errors due to a lack of knowledge of the 
rules, limits and conditions of validity of statistical data 
analysis methods. Theoretically, it seems that our method may 
lead to a situation where no interval is suitable for removing 
outliers. However, in practice, the method is always able to 
deal adequately with outliers. One avenue for reflection would 
therefore be to examine the theoretical convergence of the 

Outlier Outliers 
Outliers 



(IJACSA) International Journal of Advanced Computer Science and Applications, 
Vol. 11, No. 7, 2020 

411 | P a g e  
www.ijacsa.thesai.org 

algorithm regardless of the nature of the distribution of the 
quantitative variable used. This work is part of a series of 
research projects aimed at automating the analysis of a 
quantitative variable. It follows on from a method we have 
developed and published, which allows the automatic 
identification of the symmetrical or non-symmetrical nature of 
the distribution of a quantitative variable without the use of 
graphs or statistical tests. Future research may address the 
development of a method for automating the process 
underlying the Stem-and-Leaf tool, which will make it possible 
to automatically analyze a quantitative variable according to 
the Exploratory Data Analysis approach as advocated by John 
Turkey. Such a perspective is necessary if we want to make it 
possible to develop effective analytical solutions in the context 
of BI 4.0 and pave the way for real-time statistics for the 
analytical needs of the Internet of Things. 
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