
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 7, 2020

Entropy-Based k Shortest-Path Routing for
Motorcycles: A Simulated Case Study in Jakarta

Muhamad Asvial1, M. Faridz Gita Pandoyo2, Ajib Setyo Arifin3

Department of Electrical Engineering
Universitas Indonesia

Depok, Indonesia

Abstract—Traffic congestion is a serious problem in rapidly
developing urban areas like Jakarta, Indonesia’s capital city. To
avoid the congestion, motorcycles assisted with navigation apps
are popular solution. However, the existing navigation apps do
not take into account traffic data. This paper proposes an open-
source navigation app for motorcycle by taking into account the
traffic data and wide road to avoid congestion. The propose
navigation app uses entropy-balanced k shortest paths (EBkSP)
algorithm to suggest different routes to different users to prevent
further congestion. Tests show that the proposed route planning
system in the app gives routes that are significantly shorter than
motorcycle routes planned by Google Maps. The EBkSP
algorithm also distributes vehicles more evenly among routes
than the random kSP algorithm and does so in a practical
amount of computing time.

Keywords—Traffic congestion; motorcycle; navigation apps;
EBkSP

I. INTRODUCTION
The transportation sector has a great influence on

development across all other sectors of an economy. In Jakarta,
the capital city of Indonesia, as many as 3.5 million people
used ground transportation infrastructure to travel to work or
school in 2014. Private vehicles are still the favoured means of
transportation because Jakarta’s public transit architecture is
not fully developed. Jakarta has 3.3 million cars and 13 million
motorcycles, and these numbers grow by approximately 8%–
10% annually [1]. With road capacity increasing by less than
1% each year, the number of vehicles will eventually exceed
the available road capacity. In 2014, the ratio of road surface to
the number of cars/motorcycles in Jakarta was 3:1, meaning
that for every 3 m2 of road, at least one car or motorcycle was
in the city [2].

Motorcycles are very popular in Jakarta for their relatively
low price and their manoeuvrability on narrow roads.
Motorcyclists can avoid traffic congestion by taking shortcuts
that are inaccessible by car. However, many motorcyclists do
not have access to a navigation system that shows such
shortcuts. With the number of motorcycles in Jakarta almost
four times the number of cars, open-source navigation apps
intended specifically for motorcyclists are in high demand.
Moreover, such an app has the potential to reduce congestion

for all vehicles in urban areas by distributing motorcycle traffic
away from wider roads.

Navigation apps collect traffic and map data and plan the
shortest route between two points using some algorithm. The
entropy-balanced k shortest paths (EBkSP) routing algorithm is
promising for this purpose and has been shown to be effective
in urban environments [3]. The existing navigation apps, such
as: Bing Maps and Apple Maps, do not have navigation for
motorcycle. There is only Google Maps that provides the
navigation for motorcycle. This paper compares performance
of proposed apps with the routing with Google Maps. This
paper presents a case study of the effectiveness of this
algorithm in a motorcyclist-specific navigation system that is
simulated using a primary data. The route-planning tests were
conducted by a field trial of origin-destination (OD) pairs in 6
(six) sub-districts in Jakarta, Indonesia.

The navigation system presented below uses open-source
data and libraries for route planning, and the case study shows
that the EBkSP algorithm effectively distributes vehicles
among the shortest routes between two points to reduce the
navigation app’s chances of making congestion worse. The
results suggest that a motorcyclist-specific navigation app
would be useful in cities like Jakarta, and that EBkSP is a
promising strategy for navigation apps that do not concentrate
users on suggested routes.

The rest of this paper is organized as follows. Section 2
reviews the literature on route planning to introduce the
available algorithms and clarify how the constraints presented
by Jakarta’s environment indicate demand for a novel open-
source navigation system. Section 3 formulates the EBkSP
algorithm and outlines the software architecture we used to test
it. Section 4 presents the data and map used for route-planning
tests. Section 5 presents the test results and compares the
performance of the motorcycle-specific EBkSP route planner
against similar planners. The route planners are compared in
terms of the lengths of routes they suggest, the distribution of
vehicles on those routes, and the computation time needed for
route planning. Section 6 briefly draws conclusions that
highlight the promise of an open-source entropy-based
navigation system that considers paths specifically for
motorcyclists.

442 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 7, 2020

II. RELATED WORKS
The literature on navigation apps includes a variety of

approaches for collecting traffic data and detecting congestion.
Global Positioning System (GPS) location services can be used
along with real-time traffic data, such as in the MobiWay app,
which also implements Long Short-Term Memory networks.
Vehicular ad hoc networks (VANETs) can also be used to
quantify road traffic congestion in a distributed manner in an
environment with sufficient penetration of connected vehicles.
Still others have used data from GPS location services and
VANETs simultaneously [4-9]. For an app that can be used in
Jakarta, traffic congestion is best detected from vehicle speeds
using GPS location data collected from user smartphones. This
speed data can then be processed using Kalman Filtering to
detect traffic congestion [10].

Route planning is then needed to direct users around traffic
congestion. Google Maps and Waze are popular smartphone
apps that give users the shortest route to a destination along
with alternate routes and estimated travel times. These
applications are very popular, and that popularity may actually
exacerbate traffic congestion. If a very popular navigation app
suggests the same route around a traffic jam to many users at
once, that route will then become congested itself. Dynamic
Traffic Assignment (DTA) takes account of temporal factors in
route planning to ensure that route planning does not
incidentally increase traffic congestion [11]. Vehicle to
infrastructure (V2I) technology that relies on roadside units can
be used to achieve DTA, such as in Congestion Avoidance
through Traffic Classification Mechanism and Rerouting
Algorithm (CHIMERA) [12], Next Road Rerouting (NRR)
[13], and System with Cooperative Routing to Improve Traffic
Condition (SCORPION) [14]. However, V2I technology
cannot be applied in Jakarta because of its lacking road
infrastructure and the lack of vehicles that can communicate
with that infrastructure.

Studies have shown that EBkSP performs better than the
dynamic shortest paths and random k shortest paths (RkSP)
algorithms [15]. EBkSP looks for the shortest k routes and then
recommends the most unpopular route to a user, and the
popularity of each route is updated with each route-planning
request. Simulations of traffic congestion have been shown to
be useful in evaluating route-planning algorithms’ ability to
reduce congestion [16]. Navigation systems that collect data
from road side units (RSUs) have also been tested in
simulations, but these systems also cannot be implemented in
Jakarta due to lacking infrastructure [17] [18] [19]. One study
found that navigation systems that do not require RSUs still
can overcome traffic congestion [20].

All of the navigation systems mentioned above are in the
stage of simulation testing, so they are obviously not available
to users. Other researchers have created a navigation app that
uses Dijkstra's algorithm for route planning and takes
advantage of data from RSUs [21]. The application was not
designed for DTA, and cannot be applied with Jakarta’s
infrastructure. Navigation systems have been designed and
tested using the open-source Simulation of Urban Mobility
(SUMO) connected to the Google Maps application
programming interface (API) for map and traffic data [22].

Another open-source option is to import maps from
OpenStreetMap into PostgreSQL databases and use the
pgRouting library for route planning [23]. We follow the latter
strategy for testing the EBkSP algorithm’s usefulness for
motorcycle-specific routes. As we will explain in following
sections, the algorithm and trial reported in this paper is the
continuous development on integrated solution device for
motorcycle [24].

III. THE ALGORITHM

A. Algorithm Design
To plan routes specifically for motorcyclists, available map

data needs to be reconfigured such that the route planner
prioritises routes that are too narrow for cars to pass. We
modify the road classes included in OpenStreetMap for this
purpose. The map data is configured for motorcycles by
modifying the configuration for bicycles and adding some
wider roads routes that cars can use, though toll roads are still
excluded. The resulting road classes in the map configuration
for motorcyclists are as follows, sorted in order of increasing
priority for route planning:

• Track (unpaved surface)

• Service (small shortcut to some roads)

• Living street (within residential areas, speeds are kept
low)

• Residential (access to housing)

• Tertiary (link smaller towns and villages)

• Secondary (link towns)

• Primary (link larger towns)

• Trunk (divided highway)

The road classes above are written to an xml file that can be
used by the osm2pgrouting library. The route planner will seek
roads of higher priority first when plannign a route between
two points.

For testing of the EBkSP route planner, we modify the k
shortest paths (kSP) routing algorithm included in pgRouting
to use entropy in the routing calculations. The kSP routing
protocol searches for k alternate routes from the current point
to a destination, which in this simulation are limited to three.
The number of route options is limited to three for left, right,
and continuing straight; if turning around is included the
algorithm can get stuck in a loop.

The EBkSP routing algorithm the popularity of a route to
avoid congestion on the route to be traversed. More popular
routes are more likely to be congested congestion as vehicles
clog the route. Algorithm 1 describes EBkSP in steps. The
algorithm begins with the input of the user’s origin and
destination points. After receiving this information, the server
calculates alternative routes based upon weighted footprint
data. The weighted footprint data indicates the popularity of
each route, and congestion can be prevented by directing users
to unpopular routes that are of equal length to the shortest
routes available. In practice, the weighted traffic footprint data

443 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 7, 2020

would be collected from users that use the navigation app. For
the sake of the present simulation tests, this footprint data was
prepared manually.

Algorithm 1. EBkSP algorithm

Input:
1: Get device’s origin, destination
2: Collect all k paths
3: Collect weighted traffic data

Output:
4: Appropriate route

Procedure:
5: Analyse weighted traffic data
6: Choose shortest route
7: for not updated weighted traffic data
8: if route chosen is least popular then
9: Choose route
10: Update weighted footprint data
11: end if
12: else if all routes equally popular then
13: Choose route
14: Update weighted footprint data
15: end if
16: else if eliminate shortest route then
17: Choose next-shortest route
18: end if
19: end

Equation (1) gives the popularity of route 𝑗 as an
exponential function of the entropy of route 𝑗. 𝑃𝑜𝑝(𝑝𝑗) takes
the value of 0 if no car has taken 𝑗. The entropy of each route is
calculated using equation (2), which sums the natural
logarithms of the inverse of the number of vehicles heading in
a given direction from some starting point, 𝑁, for each vehicle
that has passed through route 𝑗,𝑛𝑗.

𝑃𝑜𝑝�𝑝𝑗� = � 𝑒
𝐸�𝑝𝑗�,𝑛𝑗 ≠ 0

0 ,𝑛𝑗 = 0
 (1)

𝐸(𝑝𝑗) = −∑ 1
𝑁
𝑙𝑛 1

𝑁

𝑛𝑗
𝑡=1 (2)

𝑁 = ∑ 𝑛𝑗𝑛
𝑡=1 (3)

If the routes are equally popular, the shortest route is
chosen. If the routes have different levels of popularity, the
server will choose the least popular route even if it is the
longest. Once the route is selected, the user is assumed to
follow the route, and the server will update the weighted
footprint data. If we imagine a sequence of users requesting
routes from the algorithm, the first user will be assigned the
shortest route because all routes are equally popular before any
user has taken them. The next user will be assigned the next-
shortest route because the first user made the shortest route
more popular than the rest. Through this process, the algorithm
distributes vehicles evenly among all possible routes between
two points if all vehicles follow the routes it suggests. We can
record the average distance of the paths taken between two
points in a traffic simulation to assess the effectiveness of this
route-planning strategy.

B. Software Architecture
The present research is intended toward the design of a

smartphone navigation app that motorcyclists can use in a city
like Jakarta. The overall software architecture can use a
centralized server for processing. The server has access to map
and traffic data and presents a map to the user on his or her
smartphone. The smartphone app then requests a route from
the server based on user input. The server calculates the
popularity of all routes and executes the algorithm, and then
the results are displayed on the user's device as a route on the
map.

C. Frontend and Backend Design
Frontend software interacts directly with the user. The

variables required by the backend section are obtained from the
frontend section, and the frontend also displays the output route
in an image form that can be understood by the user. In a
practical implementation of this navigation app, users would
need to use a web application that can be accessed through a
computer or a Hypertext Markup Language 5 (HTML5)-based
application on a smartphone.

Fig. 1. Frontend Software Diagram.

444 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 7, 2020

Fig. 1 shows how the map data from OpenStreetMap is
accessed through OpenLayers so that the data used with the
web map service (WMS) protocol in GeoServer. The app needs
three inputs. First, the user-selectable point of origin must be
entered, either by typing in coordinates, drawing data from the
smartphone GPS unit, or by selecting a point on the map. The
origin latitude and longitude are stored as y1 and x1,
respectively. The destination point must also be input, and its
coordinates are stored as y2 and x2. If the system is to
accomplish DTA, the system also needs data about how many
vehicles have taken each route. This data is entered manually
for the sake of simulation and is stored as variable x. This data
is then passed to the GeoServer for computation. Results
obtained from the GeoServer in the form of route lines are
accessed from the WMS and then combined with
OpenStreetMap via OpenLayers so that the route is presented
to the user in an easily understandable form.

The backend software handles all computation and passes
all routes back to the frontend software using the WMS
protocol. Fig. 2 schematizes how the instance of GeoServer
accepts the variables y1, x1, y2, x2, and x sent by the frontend
and then accesses the pgRouting database. The GeoServer then
runs the EBkSP algorithm and sends the variables y1, x1, y2,
x2, and x to it for computation. The results from pgRouting are
formatted as a list of road segments that link the origin with the
destination, which are then reformatted to work with WMS.

Fig. 2. Backend Software Flowchart.

IV. TEST DATA

A. Data Collection
We use OpenStreetMap data of Jakarta for testing, which

includes vertices (intersections), lengths between vertices, road
identifications, and road classes. These are included in a
PostgreSQL database using the osm2pgrouting library,
implementing the novel modifications to the map configuration
that we described above. Fig. 3 schematizes the sequence for
data collection. We chose OpenStreetMap data because it is
uploaded by local contributors who know their streets well.

For testing, we entered data about the number of vehicles
on each road manually. Then the results are not affected by
traffic patterns like rush hour, but the tests are also not
concerned with travel time, which is the only characteristic of a
route that is affected by the higher density of vehicles during
rush hour. The simulations also assume that all users follow the
routes planned by the app.

B. Route Planning and Map
We chose a select set of origin-destination (OD) pairs for

testing the route-planning algorithm, as shown in Table I. Six
different OD pairs were chosen to compare routing for
motorcycles with routing that includes only car-passable roads.
The origin for all pairs was determined as a point on the
campus of Universitas Indonesia (UI), while there were six
destination points : in the “Cinere” area, in the “Lebak Bulus”
area, in the “Pasar Minggu” area, in the “Ragunan” area, in the
“Kebagusan” area, and in the “Jagakarsa” area. Those area are
main sub-districts in the southern part of Jakarta.

Fig. 3. Data Collection Sequences.

445 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 7, 2020

TABLE I. THE 6 ORIGIN-DESTINATION (OD) PAIRS FOR TESTING THE
ALGORITHM

No. OD Pairs
Coordinates

Origin Destination

1 UI to Cinere

-6.36114, 106.82359

-6.33327, 106.78288

2 UI to Lebak Bulus -6.29848, 106.77436

3 UI to Pasar Minggu -6.28531, 106.84403

4 UI to Ragunan -6.31071, 106.81524

5 UI to Kebagusan -6.31132, 106.82581

6 UI to Jagakarsa -6.32710, 106.81378

Fig. 4 shows a map of the area covered in the tests. The
starting point for all the OD pairs on the campus of Universitas
Indonesia (UI) is marked (coordinates -6.36114, 106.82359).
Point 1 is in “Cinere” area, point 2 is in “Lebak Bulus” area,
point 3 is in “Pasar Minggu” area, point 4 is in “Ragunan”
area, point 5 is in “Kebagusan” area, and point 6 is in
“Jagakarsa” area.

The shortest path from UI to Cinere and UI to Jagakarsa
takes a narrow road (2–4 m wide); the only wider route
between these two locations is much longer. For the OD pairs
UI–Lebak Bulus, UI–Ragunan, and UI–Kebagusan, the
shortest route uses narrow roads and a car-accessible route is
available that is only slightly longer. The shortest path between
UI and Pasar Minggu uses roads that are wide enough for a car
to use.

Fig. 4. The Map for Testing the Algorithm: 1 (One) Starting Point on the

Campus of Universitas Indonesia (UI) and 6 (Six) Destination Points.

V. RESULTS AND ANALYSIS
The performance indicators of simulated test focus on the

aspect of lengths of calculated routes, distributions of vehicles
on each route and computing time. Results are presented in
Fig. 5, Fig. 6, and Fig. 7. Tests were also run to compare the
developed EBkSP algorithm against Google Maps for
motorcycles and the same application architecture with the
RkSP algorithm. We also tested performance for maps
configured for cars and motorcycles.

For each OD pair, three alternate routes of roughly the
same distance were planned for each of the routing systems we
tested. Obtaining results for each of these methods and routing
configurations required performing the routing process an
average of 15 times. For Google Maps, the routing process was
done only once for each OD pair because the output path was
always the same. The simulations assume that vehicles
continue on the suggested route once they begin moving
toward the destination. The backend system updates the traffic
footprint data every time a vehicle makes a request for routing
to a destination from the same departure point.

A. Lengths of Calculated Routes
Fig. 5 shows that the EBkSP algorithm for motorcycles

returns routes of almost identical length to those planned with
the RkSP algorithm for motorcycles. This result is expected
because the EBkSP motorcycle configuration and RkSP
motorcycle configuration use the same map configuration, and
the available routes are prioritised similarly when the
differences in distance between the shortest and longest routes
are not very much. The routes planned by the EBkSP
motorcycle configuration are shorter than those planned by the
Google Maps motorcycle configuration for the UI–Cinere, UI–
Ragunan, UI–Kebagusan, and UI–Jagakarsa journeys, which
means that EBkSP has an advantage when narrow streets allow
a shorter path to the destination point, when wide roads are not
available, and when the destination point closer than 10 km
from the origin.

Fig. 5. Average Distances of Routes Planned by each Navigation System.

0
2
4
6
8

10
12
14
16
18

Di
st

an
ce

 (k
m

)

Google Maps motorcycle navigation

RkSP motorcycle configuration

EBkSP car configuration

EBkSP motorcycle configuration

446 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 7, 2020

If the destination point is more than 10 km away, then the
EBkSP motorcycle configuration performs no better Google
Maps motorcycle configuration, as one can see in the results
for UI–Lebak Bulus. Narrow roads near the campus offer a
shorter path to Lebak Bulus from UI near the campus, but that
path is longer than 10 km. The EBkSP motorcycle
configuration plans routes that begin with a nearby wider road
before taking narrow roads, while routes planned by Google
Maps take the narrow roads right away for a shorter route
overall. This difference in performance is explained in part by
differences in some of the road data used by Google Maps and
OpenStreetMap and in part by Google Maps’ tendency to
avoid alleyways if the difference in distance is sufficiently
small.

All the configurations calculate about the same routes
between UI and Pasar Minggu on a highway, and the
differences in distance are explained by the algorithms’
differences in calculating route distance.

These results suggest that route planning with map data
configured specifically for motorcycles yields shorter routes.
The EBkSP motorcycle configuration gives shorter routes than
the EBkSP car configuration for all journeys except UI–Pasar
Minggu, on which a wide road connects the origin and
destination directly.

B. Distributions of Vehicles on each Route
Standard deviations can be used to express how evenly the

route-planning algorithms distribute vehicles among the
possible routes between two points. If the standard deviation is
lower, the vehicles are more evenly distributed, so congestion
will be less likely to arise. The average standard deviation of
the number of vehicles on each route from the mean is plotted
for each routing algorithm in Fig. 6. The RkSP motorcycle
configuration routes have standard deviations of 1.73 vehicles
per route on OD UI–Cinere, 2.65 vehicles per route on OD UI–
Lebak Bulus, 2.65 vehicles per route on OD UI–Pasar Minggu,
3.61 vehicles per route on OD UI–Ragunan, 2.65 vehicles per
route on OD UI–Kebagusan, and 4.36 vehicles per route on
OD UI–Jagakarsa. The RkSP algorithm assigns routes of the
same length to users randomly, so vehicles taking those routes
can pile up on one route and increase the potential for
congestion. The plot in Fig. 6 includes no bars for the EBkSP
routes because the standard deviation of vehicles on each route
was zero; i.e., the EBkSP algorithm distributes vehicles evenly
among routes.

These results show that the EBkSP algorithm is effective
for DTA using only the history of routes suggested by the
navigation system, under the assumptions we have applied to
the above simulations. The algorithm calculates the popularity
of each route from the number of vehicles that have taken that
route to and preferences unpopular routes, updating this
entropy calculation with each route it suggests. By definition,
this algorithm will spread users of a navigation system evenly
among alternate routes to get around traffic congestion. This
even distribution of vehicles among routes suggests that an
open-source navigation app using EBkSP can effectively avoid
the accumulation of vehicles on one route, so that such an app
would be unlikely to exacerbate congestion.

Fig. 6. Standard Deviations for Vehicle Distribution on each Route. Data for

EBkSP Algorithms is not Visible because all Values are Zero.

C. ComputingTime
Since the EBkSP algorithm is more complicated than the

RkSP algorithm, it will take longer to compute, so we need to
check that the computing time is not so long as to make the
EBkSP algorithm impractical. The EBkSP algorithm is applied
to the PostgreSQL database of map and traffic data in three
stages: route sorting based on length, calculating the popularity
of each route, and choosing the best route while minimising
length and popularity. This computation takes more time than
RkSP, which simply assigns shortest routes randomly. Fig. 7
shows that the computation time for EBkSP considering
motorcycle-accessible routes is the longest, as expected, but the
EBkSP algorithm still returns routes faster than the Google
Maps API. The EBkSP car configuration happens to compute
faster than the RkSP motorcycle configuration for the
origination-destination pairs considered in the present tests.

The relatively long computation time of the Google Maps
motorcycle configuration is explained by the detailed graphics
of the route lines created and the calculation of the average
speed of each different road segment, which is not considered
by the other algorithms we tested. Motorcycle routes take
longer to compute in all cases because more roads are
considered as possible; the algorithm considers only wider
roads when calculating routes for cars.

D. Discussion
This paper propose the navigation app for motorcycle using

EBkSP algorithm. Performance of the app is measured using
three parameters: length route, vehicle distribution, and
computing time. Testing is conducted by comparing
measurement result with the data from Google Maps. The app
is superior for determining shortest path when taking into
account the narrow streets. Moreover, taking popularity
parameter of the routes can avoid the users pass the same route

0.00
0.50
1.00
1.50
2.00
2.50
3.00
3.50
4.00
4.50
5.00

St
an

da
rd

 d
ev

ia
tio

n
(n

um
be

r o
f v

eh
ic

le
s)

RkSP motorcycle configuration

EBkSP car configuration

EBkSP motorcycle configuration

447 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 7, 2020

and distribute into different routes. The last parameter is
computing time. Taking into account the narrow streets means
that the app requires more time for making decision. However,
the proposed app still outperforms the Google Maps in term of
computing time.

Fig. 7. Average Computing Time for Planning Routes between each Origin-

Destination Pair.

VI. CONCLUSION
The simulation tests suggest that the proposed routing

algorithm is advantageous when the destination is within 10
km and can be reached via a shorter route using narrow streets.
Motorcyclists can use the system to reach their destinations up
to 8% faster than they can with Google Maps for motorcycle
riders and up to 44% faster than the EBkSP algorithm for cars,
if they are travelling between areas of Jakarta linked by narrow
streets. EBkSP accomplishes Dynamic Traffic Assignment
(DTA) in that it prevents congestion by directing vehicles to
less-popular routes. Computing time is affected more by the
configuration of the routing algorithm for car or motorcycles
than the particular algorithm used. These results show that an
open-source route-planning algorithm for motorcyclist use can
offer improved performance over algorithms that consider only
routes that are navigable by cars. The EBkSP algorithm shows
clear promise for use in a navigation system that achieves DTA
without the need for ubiquitous traffic-data infrastructure. In
the future research, taking into account as many as possible of
traffic attributes such as number of traffic light and cross
section, can improve performance of routing.

ACKNOWLEDGMENT
This work was supported by PITTA Universitas Indonesia

Grant 2018 with contract number: 2368/UN2.R3.1/
HKP.05.00/2018.

REFERENCES
[1] Sub-Directorate of Transportation Statistics, Land Transportation

Statistics 2015; BPS-Statistics Indonesia: Jakarta, Indonesia, 2016; p.
22.

[2] BPS-Statistics of DKI Jakarta Province. Jakarta in Figures 2016; BPS
Statistics of DKI Jakarta Province: Jakarta, Indonesia-, 2016; p. 450.

[3] Pan, J. S. Vehicle re-Routing Strategies for Congestion Avoidance.
[Ph.D. dissertation], Department of Computer Science, NJ Inst. of
Technol.; Newark, NJ, 2014.

[4] Suciu, G.; Vochin, M.; Vulpe, A.; Fratu, O. Vehicular mobile data
collection platform to support the development of intelligent
transportation systems. In 24th Telecommun Forum (TELFOR), 2016
pp, 2016; pp. 1-4.

[5] Zhao, Z.; Chen, W.; Wu, X.; Chen, P. C. Y.; Liu, J. LSTM network: A
deep learning approach for short-term traffic forecast. IET Intell Syst
Trans 2017, 11, 68-75.

[6] Jiang, Z.; Wu, J.; Sabatino, P. GUI: GPS-less traffic congestion
avoidance in urban areas with inter-vehicular communication. In IEEE
11th international conference on Mobile Ad Hoc and Sensor Syst.
(MASS) 2014, 2014; pp. 19-27.

[7] Milojevic, M.; Rakocevic, V. Distributed road traffic congestion
quantification using cooperative VANETs. In 13th Annu Mediterranean
Ad Hoc Networking Workshop (MED-HOC-NET) 2014, 2014; pp. 203-
210.

[8] Siegel, J. E.; Erb, D. C.; Sarma, S. E. A survey of the connected vehicle
landscape--architectures, enabling technologies, applications, and
development areas. IEEE Trans Intell Transport Syst 2018, 19, 2391-
2406.

[9] Gramaglia, M.; Calderon, M.; Bernardos, C. J. ABEONA monitored
traffic: VANET-assisted cooperative traffic congestion forecasting.
IEEE Veh Technol Mag 2014, 9, 50-57.

[10] Tossavainen, O.-P.; Blandin, S.; Bayen, A. M.; Iwuchukwu, T.; Tracton,
K., An ensemble Kalman filtering approach to highway traffic
estimation using GPS enabled mobile devices. In 47th IEEE conference
on Decision and Control 2008, D. B. Work (Ed.); 2008; pp. 5062-5068.

[11] Maerivoet, S. Modelling Traffic on Motorways: State-Of-the-Art,
Numerical Data Analysis, and Dynamic Traffic Assignment. Ph.D.
dissertation, Departement Elektrotechniek ESAT-SCD, Katholieke
Universiteit Leuven: Belgium, 2006.

[12] de Souza, A. M.; Yokoyama, R. S.; Maia, G.; Loureiro, A.; Villas, L.
Real-time path planning to prevent traffic jam through an intelligent
transportation system. In IEEE symposium on Comput. and Commun,
ISCC 2016, 2016; pp. 726-731.

[13] Wang, S.; Djahel, S.; Zhang, Z.; McManis, J. Next road routing: A
multiagent system for mitigating unexpected urban traffic congestion.
Intell Transp Syst IEEE Trans 2016, 17, 2888-2899.

[14] de Souza, A. M.; Yokoyama, R. S.; Botega, L. C.; Meneguette, R. I.;
Villas, L. A. Scorpion: A solution using cooperative routing to prevent
congestion and improve traffic condition. In IEEE international
conference on Comput. and Informativa Technologia; Ubiquitous
Computing and Commun.; Dependable, Autonomic and Secure
Computing; Pervasive Intell. and Computing 2015, 2015; pp. 497-503.

[15] Pan, J.; Khan, M. A.; Popa, I. S.; Zeitouni, K.; Borcea, C. Proactive
vehicle re-routing strategies for congestion avoidance. In IEEE 8th
international conference on Distributed Computing in Sensor Syst. 2012,
2012; pp. 265-272.

[16] Codeca, L.; Frank, R.; Faye, S.; Engel, T. Luxembourg SUMO traffic
(LuST) scenario: traffic demand evaluation. IEEE Intell Transport Syst
Mag 2017, 9, 52-63.

[17] Brennand, C. A. R. L.; da Cunha, F. D.; Maia, G.; Cerqueira, E.;
Loureiro, A. A. F.; Villas, L. A. FOX: A traffic management system of
computer-based vehicles FOG. In IEEE symposium on Comput. and
Commun, ISCC 2016, 2016; pp. 982-987.

[18] Cao, Z.; Jiang, S.; Zhang, J.; Guo, H. A unified framework for vehicle
rerouting and traffic light control to reduce traffic congestion. IEEE
Trans Intell Transport Syst, IEEE Trans 2017, 18, 1958-1973.

0.0

20.0

40.0

60.0

80.0

100.0

120.0

Co
m

pu
tin

g
tim

e
(m

s)

Google Maps motorcycle navigation

RkSP motorcycle configuration

EBkSP car configuration

EBkSP motorcycle configuration

448 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 7, 2020

[19] Brennand, C. A. R. L.; de Souza, A. M.; Maia, G.; Boukerche, A.;
Ramos, H.; Loureiro, A. A. F.; Villas, L. A. An intelligent transportation
system for detection and control of congested roads in urban centers. In
IEEE symposium on Comput. and Commun, ISCC 2015, 2015; pp. 663-
668.

[20] Pan, J.; Popa, I. S.; Zeitouni, K.; Borcea, C. Proactive vehicular traffic
rerouting for lower travel time. IEEE Trans Veh Technol 2013, 62,
3551-3568.

[21] Sun, N.; Han, G.; Duan, P.; Tan, J. A global and dynamitic route
planning application for smart transportation. In Theory, Syst and
Appl(CCITSA) 1st international conference on Computational Intell
2015, 2015; pp. 203-208.

[22] Griggs, W. M.; R. H. O.; -Hurtado, E.; Crisostomi, F.; Häusler, K.;
Massow; Shorten, R. N. A large-scale SUMO-based emulation platform.
Intell Transp Syst IEEE Trans 2015, 16, 3050-3059.

[23] Liu, R.; Liu, H.; Kwak, D.; Xiang, Y.; Borcea, C.; Nath, B.; Iftode, L.
Themis: A Participatory Navigation System for Balanced.

[24] Asvial, M., Pandoyo, M.F.G. and Arifin, A.S., Internet of Things
Solution for Motorcycle Riders to Overcome Traffic Jam in Jakarta
Using EBkSP. In 2018 International Conference on Information and
Communication Technology Convergence (ICTC), 2018; pp. 636-638.
IEEE.

449 | P a g e
www.ijacsa.thesai.org

	I. Introduction
	II. Related Works
	III. The Algorithm
	A. Algorithm Design
	B. Software Architecture
	C. Frontend and Backend Design

	IV. Test Data
	A. Data Collection
	B. Route Planning and Map

	V. Results and Analysis
	A. Lengths of Calculated Routes
	B. Distributions of Vehicles on each Route
	C. ComputingTime
	D. Discussion

	VI. Conclusion

