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Abstract—At the Petascale level of performance, High-
Performance Computing (HPC) systems require significant use 
of supercomputers with the extensive parallel programming 
approaches to solve the complicated computational tasks. The 
Exascale level of performance having 1018 calculations per second 
is another remarkable achievement in computing with a 
fathomless influence on everyday life. The current technologies 
are facing various challenges while achieving ExaFlop 
performance through energy-efficient systems. Massive 
parallelism and power consumption are vital challenges for 
achieving ExaFlop performance. In this paper, we have 
introduced a novel parallel programming model that provides 
massive performance under power consumption limitations by 
parallelizing data on the heterogeneous system to provide coarse 
grain and fine-grain parallelism. The proposed dual-hierarchical 
architecture is a hybrid of MVAPICH2 and CUDA, called the 
M2C model, for heterogeneous systems that utilize both CPU and 
GPU devices for providing massive parallelism. To validate the 
objectives of the current study, the proposed model has been 
implemented using bench-marking applications including linear 
Dense Matrix Multiplication. Furthermore, we conducted a 
comparative analysis of the proposed model by existing state-of-
the-art models and libraries such as MOC, kBLAS, and cuBLAS. 
The suggested model outperforms existing models while 
achieving massive performance in HPC clusters and can be 
considered for emerging Exascale computing systems. 

Keywords—High performance computing; Exascale 
computing; compute unified device architecture 

I. INTRODUCTION 
The High-Performance Computing (HPC) can practice 

computing power and parallel processing techniques to 
resolve extensive enigmas in various disciplines, e.g., 
medicine, engineering, commercial enterprise, smart cities 
[51] and so on, by providing much higher performance than 
that of a traditional desktop computer [1, 2]. A traditional 
computer system has a single CPU in general. However, an 
HPC system usually consists of a community of CPUs where 
each processor contains multi-cores along with its local 
memory to execute a variety of complicated tasks [38]. HPC 
systems utilize supercomputers and parallel processing 
techniques to execute extensive jobs. Therein, thousands of 
processors operate in parallel to solve extensive problems by 
supercomputing. On the other hand, large problems are broken 

down into smaller ones that could be resolved at the same time 
to enhance the overall performance of HPC systems by 
parallel computing. If a traditional desktop computer takes 
200 hours to complete a specific task while it could be 
completed in 1 hour by utilizing 200 computers at once by the 
HPC system. Therefore, a single desktop computer might not 
be as useful as it could be while utilizing all the resources 
collectively as a community. 

There exist various advancements in the performance of 
the HPC system from GigaScale to Terascale, to Petascale, to 
Exascale, each of which constitutes an extraordinary 
improvement in computing performance. HPC system 
provides high-end designing and simulation environments, 
helps applications to deal with marketing delivery challenges 
by providing the facility to accelerate or even get rid of 
prototyping and testing phases. The HPC system not only 
enhances the quality but also predict the failure rate to 
enhance the overall performance of the product [4, 13]. 
Moreover, the HPC system supports existing technologies in 
the research and development process to deliver products to 
the marketplace more quickly. Similarly, organizations and 
industries use supercomputers before the actual 
implementation to build and examine their strategies [5]. The 
fastest supercomputer can currently solve complex problems 
using Petascale systems that can perform 1015 (quadrillion) 
calculations each second. Though these Petascale systems are 
going well in this era, the next milestone in computing 
advancement is to pace relatively towards high-performance 
Exascale systems offering outstanding computing power. 
These advance and powerful HPC systems will reveal many 
Scientific mysteries and will have a fathomless impact on 
everyday life [1, 2, 3]. 

The architecture of such a system might vary from 
conventional order. The following two options could be 
possible in this regard. First, all the accelerated processing 
General Purpose Graphics Processing Unit (GPGPU), and 
conventional CPU devices will reside exclusively within the 
node. In the second option, accelerated devices will be 
separated at the cabinets/rack level. We have shown the broad 
level conceptual depiction of future Exascale supercomputer 
(see Fig. 1), in which the heterogeneous system is comprised 
of a number of racks that can communicate with each other 
over the network. These racks are further consisting of 
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multiple nodes and additional components resided in it where 
each node contained Heterogamous Processing Chip (HPC) 
having several heterogeneous devices including CPUs 
GPGPUs as well. 

Current supercomputers cannot deliver such a high level of 
computation under the power consumption limitation. 
Although developers can extend the cores in the current 
Petascale systems to devise a way towards Exascale 
computing system, the challenge of power consumption still 
exists [43]. The United States Department of Energy has 
pointed out some primary constraints for the roadmap of 
Exascale computing systems by considering the financial and 
power consumption limitations. These constraints include the 
power consumption not more than 25 to 30 Mega Watts, 
system development cost around 200 million USD by 2020 
and integrated multi-cores no more than 100 million [6, 8, 45]. 

Current technologies are facing various challenges to meet 
the above-defined constraints (see Fig. 2) [7]. 

 
Fig. 1. Predictive Structure of the Exascale Supercomputing System. 

 
Fig. 2. Challenges of Exascale Supercomputing System. 

Exascale systems generally include heaps of nodes 
drawing excessive Megawatt power, system-wide strategies 
for power monitoring, controlling, and scheduling. The power 
consumption of both individual nodes and the overall system 
is, therefore, an essential issue to cope with [8, 48]. However, 
new energy-efficient algorithms with novel architecture and 
devices are needed that can implement the advanced 
programming models supporting both homogeneous and 
heterogeneous systems [9, 10, 11]. 

A considerable number of practical components 
(computing cores, memory chips, network interfaces) can 
extensively increase the possibility of partial disasters, load 
balancing, and reliability issues [3]. Developers cannot be 
intended to continually cope with load balancing, data 
management, and reliability issues. The operating system must 
discover a scalable mechanism that can offer an effective way 
for load management, memory management, and check-
pointing while allowing software developers to complete 
control over the performance of the system [12, 38]. 

The objective of the current study is to deal with the two 
fundamental issues including performance and power 
consumption HPC Systems. These challenges have a direct 
relation to the number of resources used. Increase in resources 
consequently enhance the performance of the system and 
increase the power consumption as well. The existing 
programming models and approaches failed to attain such a 
high level of performance under the constraints defined by the 
United States Department of Energy [6, 8, 45, 48]. 

The purpose of this study was to focus on how to enhance 
the performance of HPC systems with minimum power 
consumption. Going towards the solution of the problem; we 
have proposed a Massive Performance and Energy Throttling 
Framework M2C, for HPC Systems that consumes less power 
while achieving massive performance efficiently. 

The key contributions of this paper can be summarized as 
follows: 

• We have proposed a novel hybrid parallel 
programming for parallel computing, which is called as 
MVAPICH2+ CUDA (M2C) model. The proposed 
M2C model helps to achieve coarse-grained and fine-
grained parallelism while parallelizing the data in 
heterogeneous systems. 

• The MVAPICH2 module helps to reduce 
communication overhead in the heterogeneous system 
by utilizing the Message Passing Interface (MPI) local 
handle in the proposed M2C framework and so reduces 
power consumption. 

• The accelerated GPU Computation through CUDA in 
the M2C model that enables a larger task to run on 
multiple processors at the same time to enhance the 
overall performance of the proposed HPC system. 
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The rest of this paper is structured as follows. In Section 2, 
we provided an overview of related systems. In Section 3, we 
described the system model including architecture, flowchart, 
and algorithm of the proposed M2C framework. In Section 4, 
we discussed the fundamental HPC metrics which have 
measured in our experiments. Further Section 5 presents the 
experimental results, detailed discussion, and comprehensive 
comparative analysis with existing state-of-the-art methods. 
Finally, our conclusion follows in Section 6. 

II. RELATED WORK 
The concept of HPC has been a hot topic in the field of 

parallel computing for the last two decades. As demonstrated 
by Moore’s law, there has been a rapid evolution of novel 
hardware and computer architectures to develop parallel 
computing machines. However, the growth of parallel 
computing software is not as fast as it should be. One of the 
reasons for this gap could be the unavailability of desired 
parallel programming models that support such novel 
architectures [3]. The traditional models are not capable of 
delivering such a massive performance as expected in the 
modern era. Therefore, the demand for novel parallel 
processing models is increasing day by day which should 
support homogeneous and heterogeneous systems. 
Homogeneous cluster systems made up of similar types of 
cores typically CPUs guarantees the same storage 
representation. On the other hand, heterogeneous cluster 
systems usually use more than one kind of processors (or 
cores) therein CPUs and GPUs are integrated on a single 
cluster system. If the CPU itself is a multi-core architecture 
but the cores are different in their capabilities i.e. at least two 
cores are different in their architecture, such a multi-core 
architecture is termed heterogeneous multi-core and any 
embedded system based on it would be termed heterogeneous 
embedded system. Similarly, an embedded system that has a 
CPU and a Digital Signal Processor (DSP) is termed 
heterogeneous embedded system because CPU and DSP are 
fundamentally different in their architecture. We present an 
overview of various systems of such types in the following. 

A. Message Passing Interface 
MPI is the basic library for distributing and 

communicating the messages among host CPU processors of 
all the connected nodes [14]. It is used for distributed 
computing applications and provides an efficient and portable 
way to address parallel programs. Moreover, to distribute and 
parallelize data at the inter-node level MPI provides coarse-
grained parallelism and maintains synchronization via 
blocking methods [15]. In the early stages, the basic version 
MPI-1.0 was originally introduced for distributed memory 
structures. Later, while evaluating the basic version many 
modifications were made to enhance the usability of MPI-1.0. 

Recently MPI came up with the advanced version MPI-3.1 
that include many additional features and functionalities 
including process groups, process creation & management, 
environmental management and inquiry, the Info object and 
point-to-point communication [29, 30]. 

Throughout the development of HPC, it has been 
considered as the basic standard for distributing data to 
multiple nodes and processors. Though MPI designers did not 
consider the future Exascale systems, it still requires novel 
MPI configurations and runtime. MPI could be considered a 
promising model for communicating and passing messages 
among heterogeneous systems. We have shown the basic 
structure of how to use the MPI model (see Listing 1). 

program main 
Start 
// Starts MPI 
 MPI_Init(); 
// Get no. of processes    
 MPI_Comm_size(MPI_COMM_WORLD, size);  
// Get current process id  
 MPI_Comm_rank(MPI_COMM_WORLD, rank); 
// Print Message  
 Print (“I am”, rank ,”of”, size); 
// Finalize MPI  
 MPI_Finalize ();  
 End 

Listing. 1. Basic Structure of MPI. 

B. MPI+OpenMP 
The hybrid of MPI and Open Multi-Processing (OMP) is 

commonly being used for multi-cores distributed 
homogeneous systems (see Fig. 3) [38]. Data is distributed 
over multiple nodes and communicated with each other 
through the MPI scheme. Then it further transferred to the 
OMP region. OMP determines the available number of threads 
for that particular node and data written in the OMP region is 
computed over these threads in shared memory access [16, 17, 
18]. MPI is used for inter-node communication to attain coarse 
grain parallelism whereas OMP is used to achieve fine-grain 
parallelism over intra-node. In the future, this hybrid approach 
is one of the promising strategies for dealing with future HPC 
applications. The latest OMP version is also capable to 
program GPGPUs for accelerated computing. OMP shared 
memory multi-processing the programming model is available 
in C, C++, and FORTRAN for windows and UNIX platforms. 
This hybrid model is useful for a homogeneous (CPU 
processors) cluster system [25, 26]. However, it is not 
preferred for heterogeneous (CPU + GPU) system. 

 
Fig. 3. Processing Mechanism of Hybrid MPI and OMP. 
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C. Open Computing Language 
OpenCL is an efficient parallel programming model for 

heterogeneous frameworks. OpenCL supports run-time 
compilation that excludes dependencies on instruction sets, 
allowing hardware providers to make remarkable changes to 
instruction sets, drivers, and supporting libraries. It grants 
portability and compatibility of kernels across multiple 
hardware and platforms [22, 23]. However, OpenCL requires 
a complicated setup which includes preparation of settings, 
command queues, alternatively in addition to a compilation of 
kernel codes [23]. 

D. KAUST basic Linear Algebra Subprograms 
KBLAS is a diminutive open-source CUDA library that 

effectively utilizes significant numerical kernels on CUDA-
enabled GPUs. It performs a subset of Basic Linear Algebra 
Subprograms (BLAS) and Linear Algebra PACKage 
(LAPACK) libraries on NVIDIA GPUs [12, 33]. KBLAS 
presents a subset of approved BLAS functions. It offers 
remarkable function along with BLAS-like interface that 
addresses single as well as multi-GPU systems. Using 
recursive and batch algorithms, KBLAS maximizes the GPU 
bandwidth, reuses locally cached data and increases device 
occupancy. KBLAS’s ultimate intent is performance. The 
collection of KBLAS’s tuning parameters have a great impact 
on its performance regarding Compute Unified Device 
Architecture (CUDA) runtime version and GPU architecture. 
While the best performance using the default tuning 
parameters cannot be promised. Such parameters could be 
easily edited by users on their local systems. It supports 
compute capabilities 2.0 (Fermi) or higher. KBLAS is written 
in CUDA C and requires CUDA Toolkit for installation. In the 
coming future, KBLAS might be exported with auto-tuners. 

E. Compute Unified basic Linear Algebra Subprograms 
The CUBLAS library has introduced by Nvidia for its 

CUDA-enabled GPUs. This library is an implementation of 
BLAS on the CUDA environment that does not provide ease 
of parallelizing data automatically across multiple devices. 
However, this library helps the user to gain access to all the 
resources provided by Nvidia GPU devices [31, 32, 44]. This 
API provides the facility to speed up the applications either by 
scaling up and distributing data across multiple GPUs or by 
processing expensive tasks on a single GPU configuration. For 
the best utilization of the CUBLAS library, the application 
needs to reserve the memory in GPU memory space against 
each dataset, provides the data to memory, calls the CUBLAS 
functions in a sequence and then needs to move the data from 
GPU device back to the host memory [37]. It provides some 
helper function that assists the user in retrieving and writing 
data on the GPU memory space. CUBLAS can be used for 
GPU-accelerated algorithms in various sectors such as image 
analysis, machine learning and high-performance computing. 

F. MOC (MPI + OpenMP + CUDA) 
To achieve massive parallelism in parallel computing, a 

Tri-Hierarchy hybrid MOC (MPI + OpenMP + CUDA) model 
was proposed in 2018 [20]. This model helped in achieving 

massive performance through monolithic parallelism when we 
compute any HPC application over a large-scale cluster 
system having multiple nodes and a number of GPUs > 2. 
This model was incorporated of MPI, OpenMP and CUDA 
where MPI is responsible for broadcasting data over 
distributed nodes, OpenMP is to run received data in parallel 
on CPU threads, and CUDA is responsible to execute data 
over accelerated GPU cores, which is the third level of 
parallelism [24, 27]. MOC provides massive parallelism by 
achieving tri-level granularity such as coarse, fine, and finer 
grain parallelism. Although, it is applicable for heterogeneous 
single and multiple nodes but preferred to use for a large-scale 
system. 

G. Open Accelerators 
OpenACC appeared as a high-level programming model 

that makes use of high-end and supportive directives programs 
to achieve parallel computing. The main aim of such 
directories was to minimize the overhead of modifying the 
source code and hence enabling the portability to a broad field 
of computing architecture. It allows single source code to run 
both on CPU and accelerated GPU devices. So, it supports 
both homogenous and heterogeneous environments. However, 
OpenACC does not provide flexibility, thread management, 
thread synchronization, and optimization for the programs 
being encountered while achieving massive parallelism [21]. 
A basic structure of OpenACC has been presented (see 
Listing 2). 

Start 
#pragma acc data 
{ 
#pragma acc parallel loop … 
#pragma acc parallel loop 
… 
} 
End 

Listing. 2. Basic Structure of OpenACC. 

H. MPI + CUDA 
A dual hierarchical model, the hybrid of MPI and CUDA 

is considered to be a promising model for node-level and 
thread-level optimization. However, the use of more resources 
decreases system efficiency. In this model, an equal number of 
CPU processors are used as the number of GPU devices 
connected to the system. The master MPI processor scatters 
data to all slave processes. These slave processes help for 
transferring data from CPU cores to GPU devices. Whenever 
data is transferred to GPU devices, a kernel is invoked where 
grid and thread block configurations are mentioned to 
optimize the resources [19]. After GPU processing 
completion, data is copied back on host CPU cores and 
utilized [36]. A general data distributing and processing 
mechanism through a hybrid of MPI+CUDA have been 
presented (see Fig. 4). Using the MPI-CUDA hybrid 
approach, we can call multi kernels to compute different 
accelerated available devices to achieve finer-grain 
parallelism. This model could be a leading model for future 
HPC Exascale Computing System (ECS) applications [38]. 
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Fig. 4. Processing Mechanism of Hybrid MPI and CUDA. 

III. PROPOSED M2C MODEL 
We have proposed a dual-hybrid model that includes the 

MVAPICH2+CUDA module (M2C). This massive parallel 
programming model achieves massive performance by 
utilizing resources in an efficient manner to reduce power 
consumption. Following is the elaboration of the proposed 
M2C model. 

A. MVAPICH2 
MVAPICH2 is an implementation of the MPI-3.1, which 

is a thread-safe library developed for high scalability, best 
performance, and fault tolerance of high-performance 
computing systems. MPI_Session is a local handle to MPI-3.1 
that consumes fewer resources while utilizing the concept of 
MPI_Group and enabling the scalable communication 
between different environments [29, 30]. MPI Sessions began 
as an effort to make aggressive additions/changes to MPI to 
ensure its success at the Exascale level [38]. It enables better 
scalability, increases abstraction for better resource isolation, 
and supports less tightly coupled applications. 

It is a new way to initialize (and re-initialize) MPI that 
uses very few resources by keeping only the state for active 
communications. It dynamically gathers required data when 
needed and stores state for the future. It establishes 
communication relationships/peers before communicating and 
affect MPI initialization error behavior. The general scheme of 
MPI_Session has been described (see Fig. 5). MPI Standard 
3.1 describes the generic scheme of MPI Session in the 
following steps [29]: 

1) Session initialization and finalization: The compiler 
creates the session when the constructor for MPI_Session is 
called and destroys the session when its matching destructor is 
called. It has elaborated on how these functions initialize and 
finalize the session (see Listing 3). 

int MPI_Session_init ( 
MPI_Info process_info, 
MPI_Errhandler err, 
MPI_Session *sessionName); 

 
int MPI_Session_Finalize (  
MPI_Session *sessionName); 

Listing. 3. Session Constructor and Destructor. 

 
Fig. 5. Overview of the MPI_SESSION. 

The working of a new session is initialized whenever 
MPI_Session_init() function is called by passing certain 
parameters to it, which returns a valid handle i.e. sessionName 
of the recently created session. The parameter ’err’ is passed 
to this function which controls the MPI’s error handling 
response during the creation of the session. One more 
parameter ’process_info’ is passed which provides the 
information to the user that can be helpful for MPI to manage 
the session’s creation. For destroying a session, the function 
MPI_Session_finalize() is used, which ensures that session no 
more exists by setting the session handle i.e. sessionName to 
MPI_SESSION_NULL. 

2) Querying runtime system for named sets: MPI 
processes use the concept of ’named set’ for querying the 
runtime system to retrieve the named sets of processes to 
utilize them for creating the corresponding MPI_Group 
against each named set. The function MPI_Session 
get_names() is used to retrieve all set’s names from the 
runtime has been listed (see Listing 4). 

int MPI_Session_get_names ( 
 MPI_Session sessionName, 
 char **setName); 

Listing. 4. Querying Runtime System for Named Sets. 

MPI allocates space for the array of strings in the memory 
(which we termed as ’setName’ in Listing 4) when the session 
is created and freed the space on the session destruction. 

3) Getting the size of set from runtime: Information 
regarding a specific named set is exposed by the runtime using 
function MPI_Session_get_info() has been prototyped (see 
Listing 5). It provides an object called ’MPI_Info’ which 
returns the ’size’. The value of this size actually provides the 
information about each set i.e. the total number of processes in 
each set. By using this information against each set provided 
by the runtime, a user can easily decide which groups have to 
be created for gaining access to the exact required resources. 
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int MPI_Session_get_info (  
 MPI_Session sessionName, 
 char *setName, 
 MPI_Info *size); 

Listing. 5. Getting Size of Named Set from the Runtime via a Session. 

4) Converting set to group: The function 
MPI_Group_create_session() is used to convert each named 
set to the group by using the information of each set as 
elaborated in Step 2 and Step 3 (see Listing 6). This group can 
then be used for making the communicator for a group of 
processes. MPI_Group helps to maintain the meta-data of all 
the available resources stored by the runtime in a scalable 
manner. If the information of sets stored by runtime internally 
is scalable, then the internal representation of the 
corresponding group can also be scalable [28]. Operations that 
create a group ’non-scalable’ must be avoided in order to 
achieve good scalability. 

int MPI_Group_create_session (  
 MPI_Session session, 
 char *name, 
 MPI_Group *group); 

Listing. 6. Converting Named set to Group via a Session. 

5) Assigning Communicator to each group: For creating a 
communicator against each group, the MPI library introduces 
MPI_Comm_create_group_X() function (see Listing 7). In 
MPI, to initiate the communication, a parent communicator 
(MPI_COMM_WORLD) is used generally containing the 
information of all the processes. This parent communicator 
consumes countless resources by storing the information of 
processes even not to be used by the communicator in the 
communication process. This new concept of creating a 
communicator via a session provides the facility of assigning a 
single communicator to each group by providing the same 
functionality without even using a parent communicator [29]. 

int MPI_Comm_create_group_X (  
 MPI_Group myGroup, 
 char *tagID, 
 MPI_Info size, 
 MPI_Errhandler err, 
 MPI_Comm *mycomm); 

Listing. 7. Assigning a Communicator to a Group. 

The parameter “myGroup” is passed to the function to 
provide the specific group of processes to the communicator. 
The parameter “mycomm” is used to return the new 
communicator for the targeted group. Other parameters i.e. 
“size” and “err” are passed to the function that will provide 
the additional information, which is what is usually not 
provided by MPI for this communicator creation function. The 
‘size’ parameter is used to query the exact number of 
processes for which the group has been made and the 
corresponding communicator is going to be created. The “err” 
parameter is added to the communicator function that will 
catch error in case of any failure throughout the session 
creation. 

B. Accelerated Graphics Processing Unit Computation 
CUDA is an efficient parallel programming model 

utilizing accelerated GPUs and threads for massive parallelism 
[23]. CUDA refers to as the most competent model for thread-
level optimization that allows application flexibility by 
supporting heterogeneous computation where the application 
uses both the CPU and GPU devices. CUDA parallel 
programming utilizes the ’CUDA Kernel’ to parallelize the 
data on GPU devices. According to the novel architecture of 
CUDA GPUs, a block dispatcher has introduced that assign 
one self-synchronized thread per computational core to 
schedule the grid. Shared memory is assigned to each block 
and all the cores within the block can have access to this 
shared memory [19, 24, 27]. Threads use this shared memory 
to process the data of a certain block and return the processed 
data to the GPU block scheduler. The scheduler stores the 
processed data to GPU global memory space accessible to all 
the CPU cores of the host. The CPU cores in response read the 
data from GPU memory and transfer it to CPU cores and then 
to the main memory. Using this mechanism, CUDA helps to 
achieve massive parallelism by utilizing both the CPU and 
GPU devices. The basic structure of using CUDA in C++ has 
been demonstrated (see Listing 8). 

 
Begin 
float *a_cpu,*a_gpu; 
cudaMalloc ((void **) &a_d, size); 
cudaMemcpy (a_gpu, a_cpu, cudaMemcpyHostToDevice); 
kernel_function <<< n_blocks, block_size >>> (params); 
cudaMemcpy (a_gpu, a_cpu, cudaMemcpyHostToDevice); 
cudaFree(a_gpu); 
End 

// Cuda kernel to run on GPU 
__global__ void kernel_function (params) 

{ 
Statements; 
} 

Listing. 8. Basic Structure of CUDA. 

C. M2C Framework 
We have shown the architecture of our proposed model 

M2C (see Fig. 6). Therein, the dual-hierarchy model of 
MVAPICH2 and CUDA is incorporated. MVAPICH2 is 
responsible for broadcasting data over distributed nodes while 
CUDA is responsible to run the code on GPU. The HPC 
cluster system is made up of multiple racks having thousands 
of nodes that perform extensive calculations and computations 
simultaneously. 

A detailed workflow of the dual-level hybrid model has 
been shown in which we have shown the steps of how the 
proposed model works for a single node in the HPC cluster 
environment (see Fig. 7). We have considered the DMM 
application developed in the C++ language to interact with 
MVAPICH2. The basic functionality of the proposed model is 
embedded in the concerned user application. This user 
application receives input data from MPI to solve the 
extensive computational problem. In the MVAPICH2 
communication world, the problem is divided into 
subproblems by providing coarse-grained parallelism. MPI 
master process further scatters these subproblems to multiple 
slave processes and data is transformed from CPU to GPU 
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environment. GPU environment performs CUDA computation 
on the received data by invoking the CUDA kernels. 

The subproblems are divided into multiple 
chunks/statements and are parallelized to multiple processors 
and thousands of cores by providing fine-grained parallelism. 
The thousands of accelerated cores work simultaneously on a 
single problem and solve the extensive problem by utilizing 
both coarse-grained and fine-grained parallelism. Once the 
data processing is completed, the resultant data is returned in a 
similar way where processed data is transferred from GPU to 
CPU cores and so CPU cores return data to the MPI master 
process. Then the reserved memory for CPUs and GPUs is 
released. 

A quick overview of how MVAPICH2 and CUDA in the 
M2C model take part to provide massive parallelism. A 
detailed algorithm for the basic Dense Matrix Multiplication 
(DMM) application has been presented (see Listing 9). In our 
proposed model, some significant specifications i.e. the total 
number of nodes, number of CPUs per node, number of GPU 
devices per node, number of cores per CPU, and memory 
levels of the system are obtained in an initial phase. These 
specifications help the programmer to acknowledge the best 
resources for the proposed model. However, the rest of the 
workflow of this proposed algorithm is elaborated as follows: 

• Initialize session and getting set names and size of 
processes (line 2-4): MPI Session in the proposed 
model is a local handle to MPI-3.1, used to provide the 

coarse-grained parallelism by passing the data to slave 
processes. MPI Session query the runtime to obtain the 
active processes. By using this information provided by 
the runtime, a user can easily decide which groups of 
processes have to be created for gaining access to the 
exact required resources. 

• Converting sets to groups, assigning communicators, 
and getting rank of processes (line 5-7): A 
communicator is assigned to each group that helps to 
communicate between the processes. Some additional 
necessary functions are called that return the 
information of the sets and groups, size, and rank of the 
active processes. 

• Send and Receive data according to the ranks of 
processes (line 8-15): Following the ranks, ’0’ ranks 
are defined as a master rank process and rest of all are 
considered as slave processes. In the case of master 
rank, data is broadcasted over all other ranked 
processes through appropriate methods. Generally, 
MPI_Send() and MPI_Recv() are used for synchronous 
(blocking) whereas MPI_Isend and MPI_Irecv() are 
used for asynchronous (non-blocking) processing. The 
current study deals with different HPC applications 
instead of any specific application, in such case, 
normally programmer is not sure about data 
dependency then asynchronous processing may not 
perform better. 

 
Fig. 6. Architecture of Proposed M2C Model. 
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Fig. 7. Workflow of Proposed M2C Model. 
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Input:   mA Input Matrix 
 mB Input Matrix 
Output: mC Resulting Matrix 
Declarations: SessionName, SetName, Size,  
GroupName, Comm, Rank, i, numDev, A_D, C_D. 

1. Start MVAPICH2 Parallel Region 
2. SessionName MPI_Session_init()// Initialize MPI session  
3. SetName MPI_Session_get_names()// Group of processes = Set, obtaining set name from runtime via session 
4. Size MPI_Session_get_info()// Get Communication size  
5. GroupName MPI_Group_create_session()// Convert SetName into GroupName. 
6. Comm MPI_Comm_create_group_X()// Group Communicator  
7. Rank MPI_Comm_rank()// Get MPI Ranks  
8. If Rank == Master // define master rank if rank (0) 
9. Make local initialization. 

10. Else 
11. MPI_Isend() // Send data to all processes Rank>0 
12. End If – Else 
13. If Rank > 0 // If rank is slave but not master process  
14. MPI_Irecv() // Receive data from all slave processes 
15. End If 
16. Start CUDA Parallel Region 
17. While (i<numDev) Do // Until Number of GPU devices 

 // Assign a device id to specific GPU device  
18.  cudaSetdevice(devID)  

 // Copy data from host to NIVIDIA GPU Devices  
19.  cudaMemcpy() A_D mA  
20.  InvokeCUDAKernel << grdSize,blkSiz, >>> (A_D, A_B,A_C) 

 // Copy data from GPU Devices to host. 
21.  cudaMemcpy() mC C_D  
22. Free all device variables 
23. End CUDA Parallel Region 
24. // There is MPI master process 
25. If Rank == 0  

// Receive processed data from all rank  
26. MPI_Irecv()  

27. End If 
// Finalize MVAPICH2 processing 

28. MPI_Session_finalize()  

29. End MVAPICH2 Processing/Parallel Region 
// Return the results 

30. Return mC  

Listing. 9. The Dual-Hybrid M2C Model. 

However, we implemented a synchronous (blocking) 
strategy for all MPI based models in the current study. This 
data distribution mechanism requires fewer resources (i.e. get 
the information of only the active processes) and hence 
consume less power while implementation and provides 
coarse grain parallelism in the system [48]. 

Start CUDA parallel region and receive processed data 
(line 16-20): Once data is distributed over all connected nodes 
in the targeted system, the data is computed over accelerated 

GPU devices. For this purpose, CUDA statements are defined 
and kernels are invoked for GPU computation. 

Finalize MPI Session, return results and End MVAPICH2 
parallel region (line 26-30): Once the whole data processing is 
completed, the resultant data is returned in the similar way 
where processed data is transferred from GPU to CPU cores 
then CPU cores return data to MPI master process and 
reserved memory for CPUs and GPUs is released. 
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IV. PERFORMANCE ANALYSIS 
In this section, we investigate the performance of the 

proposed M2C system. In this regard, our experiments related 
suggested dual-level hybrid model M2C were carried out on 
Aziz-supercomputer manufactured by Fujitsu of HPC Centre 
of King Abdul-Aziz University, Jeddah, Saudi Arabia [40, 41, 
42]. 

A. Platform of Experiment 
The platform of our experiment, Aziz-Fujitsu Primergy 

CX400 Intel Xeon True-scale QDR supercomputer, was 
ranked at 360th position in the list of top- 500 supercomputers 
in 2015 [39]. This Aziz-supercomputer contains 380 thin 
(regular) and 112 fat (large) computing nodes with a total of 
492 computing nodes that interlinked through the InfiniBand 
within the racks. Recently Aziz supercomputer was upgraded 
from homogeneous to the heterogeneous system according to 
the growing need of massively parallel computing by adding 
two NVIDIA Tesla K20 GPUs based on SMID architecture of 
2496 CUDA-cores per device. Two Intel Xeon Phi 
Coprocessor (MIC) containing 60 integrated cores per 
processor were also introduced into Aziz-supercomputer to 
upgrade the system. The heterogeneous system of Aziz 
supercomputer has total 11904 number of cores [39, 40, 41, 
42]. Therein, the memory of a regular computing node and a 
large node is 96GB and 256GB, respectively. Each node 
consisting of Intel E5- 2695v2 processor with 12 physical 
cores with 2.4GHz processing power, which is what is 
operated by Cent Operating System-v6.4. CUDA toolkit 
version-9.1 is installed along with other compilers essential 
for accelerated programming in HPC libraries. MVAPICH2-
GDR 2.3.1 is used to enable MPI with the support of 
accelerated GPU devices. All the accelerated devices and 
computing nodes of the supercomputer are connected by 
InfiniBand, User, and Management networks. InfiniBand is 
used to parallelize the file system, while the user network is 
used for login and job submission handling. Management and 
controlling operations are usually supported by the 
management network only. According to the LINPACK 
benchmark and theoretical peak performance, the performance 
of Aziz supercomputer was marked as 211.3 TFlops/sec and 
228.5 TFlops/sec, respectively. 

B. HPC Metrics 
We have taken different metrics including total time for 

execution, total number of Flops measured, energy efficiency, 
and overall power consumption of the system. These metrics 
can be categorized into the following two fundamentals 
metrics. 

1) Performance Measurement: The overall performance 
of HPC system is considered as the most fundamental and 
essential metric in massive parallel programming which is 
measured in a total number of achieved floating-point 
operations per second (Flops) [32]. The total number of 
achieved Flops (FT) can be calculated by dividing the achieved 
Flops calculated at the peak performance of the system (Fpp) 
by the total execution time (TExec) [20], which can be written 
as follows: 

𝐹𝑇 = 𝐹𝑝𝑝
𝑇𝐸𝑥𝑒𝑐

               (1) 

We have calculated the number of Flops (FT) based on 
execution time by implementing the M2C model on DMM 
application against varying datasets by considering the peak 
performance of Aziz-supercomputer i.e. 211.3 TFlops /s, [47]. 

2) Power Measurement: In emerging supercomputers, 
energy efficiency with less power consumption is of interest 
[6, 8, 46]. In this regard, we have used well-known software 
applications of Open Hardware Monitor [34] and GPU-Z.2.6.0 
[35] for the measurement of CPU and GPU temperature and 
power consumption, respectively. We have shown the running 
states of Open Hardware Monitor and GPU-Z.2.6.0 (see 
Appendix 1 and Appendix 2, respectively). The total energy 
consumed by a system Esys can be calculated by integrating 
the energy consumption composed of memory contention, 
bandwidth, parallelism and behavior of the application [20] as 
follows: 

𝐸𝑠𝑦𝑠 =  ∫ 𝑚𝑒𝑚𝐶 (𝑑𝑡) + 𝑏𝑎𝑛𝑑𝑊 (𝑑𝑡) + 𝑃𝑎𝑟𝑙𝑙 (𝑑𝑡) +𝑡
0

𝐵ℎ𝑣 (𝑑𝑡)               (2) 

As discussed earlier, the future Exascale supercomputing 
system will be a heterogeneous architectural system. This is 
how necessary to emphasize primarily on power consumption 
for both homogeneous and heterogeneous architectural based 
systems. The power consumption in a heterogeneous system is 
considered into three major parts including power 
consumption by host CPU processors, power consumption by 
memory operations (inter-memory and intra-memory) and 
power consumption by accelerated GPU devices. Power 
consumption for the systems having GPU installed on it is 
calculated by [20] as follows, 

𝑃 𝑠𝑦𝑠 (𝑤) = ∑ 𝑃 𝐺𝑃𝑈
𝑖𝑁

𝑖=1  (𝑤𝑖) +  𝑃 𝐶𝑃𝑈  ∑ (𝑤𝑗) +   𝑃 𝑚𝑎𝑖𝑛 (𝑤)𝑀
𝑗     (3) 

where, Pcpu, Pgpu, Psys, Pmain indicate power of the CPU, 
GPU, system and motherboard, respectively. N and M denote 
the number of GPUs and the total CPU threads in the system, 
respectively. wi and wj account for the workload of GPU i and 
CPU j, respectively. 

The power consumption on a specific application (Papp) of 
the system can be calculated as follows [20], 

𝑃 𝑎𝑝𝑝(𝑤) = ∑ 𝑃 𝐺𝑃𝑈
𝑖𝑁𝑎𝑝𝑝

𝑖=1  (𝑤𝑖) +  𝑃 𝐶𝑃𝑈  ∑ (𝑤𝑗) +𝑀
𝑗

 𝑃𝑚𝑎𝑖𝑛 �𝑤 𝑎𝑝𝑝�              (4) 

Where Papp is proportional to the workload of the system. 

V. RESULTS AND DISCUSSION 
We have investigated our M2C model by implementing it 

into the Dense Matrix Multiplication (DMM) application on 
Aziz-supercomputer for emerging Exascale systems that 
provide tremendous performance through massive parallelism 
and limiting the overall power consumption. Therein, two 
fundamental HPC metrics i.e. performance and power 
consumption were observed during the experiments. All 
results have been executed using four kernels for GPU 
processing of supercomputers. The quantified metrics were 
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observed for different matrix sizes. The performance in linear 
DMM application was observed against different datasets by 
determining the floating-point operations in GFlops/sec while 
the power consumption was calculated for different matrix 
sizes in GFlops/ Watt. We quantified different metrics 
including performance and power consumption. We measured 
the fundamental parameters including time execution, 
speedup, and number of flops whereas power consumption 
related metrics were including as power consumption and 
temperature. 

We have implemented three well-known libraries named 
MOC, kBLAS, and cuBLAS [49, 50] in DMM application for 
the same HPC metrics taken on Aziz-supercomputer. For 
datasets 1000-10000, kBLAS and cuBLAS were able to 
achieve their peak performances as 830 and 690 GFlops/sec, 
respectively. We observe that MOC outperformed all the three 
implemented models by delivering peak performance up to 
1TFlops. The results against each dataset for MOC, kBLAS, 
and cuBLAS were compared with that of the proposed M2C 
model. 

Our proposed model outperforms all the other 
implemented models for datasets 1000-10000 by delivering 
peak performance even more than that of the MOC model 
with 1.27 TFlops (see Fig. 8). 

Similarly, the energy efficiency by all of the implemented 
algorithms was observed, therein cuBLAS, kBLAS and MOC 
achieved 5.2, 5.6 and 6 number of GFlops/Watt for small 
matrix size, respectively. For the same small matrix size, the 
proposed M2C model attains 7.099 number of GFlops/Watt. It 
is noticed that cuBLAS, kBLAS and MOC models attain the 
maximum number of GFlops/Watt as 6.2, 6.5 and 8, 
respectively. On the other hand, M2C delivered 8 
GFlops/Watt in initial matrix size and by increasing the matrix 
size the energy efficiency also increased and reached up to a 
maximum of 10.38 GFlops/Watt for the large matrix size (see 
Fig. 9). 

We observe that our M2C model delivered better 
performance in 1Watt compared to that of the other 
implemented models. In M2C the framework, the idea of 
MPI_Session and MPI_Group has worked well for limiting 
power consumption. MPI_Session a local handle of MPI-3.1 
i.e. MVAPICH2 uses very few resources by keeping only the 
state for active communications. So, it helps to reduce 
communication in the heterogeneous system. This parent 
communicator consumes countless resources by storing the 
information of processes even not to be used by the 
communicator in the communication process. The new 
concept of creating a communicator via a session provides the 
facility of assigning a single communicator to each group 
(created via MPI_Group) to provide the same functionality 
without even using a parent communicator. 

MVAPICH2 by consuming fewer resources and reducing 
communication over-head has helped us to limit the power 
consumption and provided remarkable performance in 1Watt 

compared to that in kBLAS, cuBLAS, and MOC models. This 
could be helpful to notice that performance and power 
consumption are directly related to each other. However, there 
exists a trade-off between these two metrics which can be 
determined as follows: 

 𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒
𝑃𝑜𝑤𝑒𝑟

= 𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑤𝑖𝑡ℎ𝑖𝑛 𝑡ℎ𝑒 𝑡𝑖𝑚𝑒 𝑢𝑛𝑖𝑡
𝐸𝑛𝑒𝑟𝑔𝑦 𝑑𝑢𝑟𝑖𝑛𝑔 𝑡ℎ𝑒 𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒 𝑢𝑛𝑖𝑡

          (5) 

where the rate of change of performance under specific 
power consumption measured in Glops and GFlops/Watt, 
respectively. 

The comparative analysis of tradeoff for cuBLAS, kBLAS, 
MOC and M2C models (see Fig. 10). The vertical and 
horizontal lines respectively represent performance and power 
consumption. We can notice that cuBLAS, kBLAS and MOC 
libraries performed well in the DMM algorithm. However, the 
proposed model M2C outperformed all the implemented 
models by accomplishing 1278 GFlops and by consuming 
123W total power during larger matrix multiplication. 

 
Fig. 8. M2C Performance Comparison with MOC, kBLAS and cuBLAS. 

 
Fig. 9. Energy Efficiency in DMM for M2C vs (MOC, kBLAS & cuBLAS). 
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Fig. 10. Performance-Energy Efficiency Tradeoff. 

Hence, our proposed system could be envisioned as a 
promising model for achieving massive performance in 
emerging Exascale systems. In this regard, the most 
challenging step towards Exascale computing systems is that it 
does not exist yet. However, the performance of HPC systems 
has been improved based on the current results and predictions 
to achieve Exascale performance. The fundamental challenges 
mentioned in this paper would require targeted investments to 
acquire Exascale computing. The primary goal of Exascale 
computing systems is to handle massive data HPC 
applications. Performance and power consumption are the two 
primary HPC metrics that have been taken into consideration 
the most challenging factors for Exascale computing systems. 
These challenges have a direct relationship with the number of 
resources. An increase in the number of resources 
consequently enhance the performance in the system and so 
increase the power consumption as well. 

VI. CONCLUSION 
Towards the race of achieving Exascale performance, 

power consumption has been the most significantly 
constrained resource among all the others. Therefore, 
achieving practical Exascale computing with optimum 
performance is of interest. In this regard, an advanced 
computing system can deliver a thousand-fold performance 
improvement compared to the current Petascale computing. 
However, new system-wide methodologies and methods for 
power monitoring and administration are somewhat necessary. 
Novel programming models and programming methodologies 
are undergone rapid growth, but the quest for enhanced 
programming models always exists. There are significant 
questions and research regarding the models that will be used 
at the Exascale level to achieve better performance than the 
current Petascale systems. Contributing to the quest for the 
optimum programming model for Exascale systems, a novel 
parallel programming model named M2C has been proposed. 
The proposed model has been evaluated by implementing 
linear DMM application on heterogeneous architecture and the 
results have been compared with well-known libraries such as 
MOC, kBLAS, and cuBLAS. M2C results using 4 kernels for 
GPU processing outperformed all the other implemented 
models while achieving 1278 GFlops by consuming 123W 

total power. Nevertheless, the proposed M2C model could be 
a promising and leading model for emerging Exascale 
systems. 
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