
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 7, 2020

M2C: A Massive Performance and Energy Throttling
Framework for High-Performance Computing

Systems
Muhammad Usman Ashraf1

Department of Computer Science
University of Management and
Technology, Sialkot, Pakistan

Kamal M. Jambi2
Department of Computer Science

King Abdulaziz University
Jeddah, Saudi Arabia

Amna Arshad3, Rabia Aslam4
Iqra Ilyas5

Department of Computer Science
GCWUS, Sialkot, Pakistan

Abstract—At the Petascale level of performance, High-
Performance Computing (HPC) systems require significant use
of supercomputers with the extensive parallel programming
approaches to solve the complicated computational tasks. The
Exascale level of performance having 1018 calculations per second
is another remarkable achievement in computing with a
fathomless influence on everyday life. The current technologies
are facing various challenges while achieving ExaFlop
performance through energy-efficient systems. Massive
parallelism and power consumption are vital challenges for
achieving ExaFlop performance. In this paper, we have
introduced a novel parallel programming model that provides
massive performance under power consumption limitations by
parallelizing data on the heterogeneous system to provide coarse
grain and fine-grain parallelism. The proposed dual-hierarchical
architecture is a hybrid of MVAPICH2 and CUDA, called the
M2C model, for heterogeneous systems that utilize both CPU and
GPU devices for providing massive parallelism. To validate the
objectives of the current study, the proposed model has been
implemented using bench-marking applications including linear
Dense Matrix Multiplication. Furthermore, we conducted a
comparative analysis of the proposed model by existing state-of-
the-art models and libraries such as MOC, kBLAS, and cuBLAS.
The suggested model outperforms existing models while
achieving massive performance in HPC clusters and can be
considered for emerging Exascale computing systems.

Keywords—High performance computing; Exascale
computing; compute unified device architecture

I. INTRODUCTION
The High-Performance Computing (HPC) can practice

computing power and parallel processing techniques to
resolve extensive enigmas in various disciplines, e.g.,
medicine, engineering, commercial enterprise, smart cities
[51] and so on, by providing much higher performance than
that of a traditional desktop computer [1, 2]. A traditional
computer system has a single CPU in general. However, an
HPC system usually consists of a community of CPUs where
each processor contains multi-cores along with its local
memory to execute a variety of complicated tasks [38]. HPC
systems utilize supercomputers and parallel processing
techniques to execute extensive jobs. Therein, thousands of
processors operate in parallel to solve extensive problems by
supercomputing. On the other hand, large problems are broken

down into smaller ones that could be resolved at the same time
to enhance the overall performance of HPC systems by
parallel computing. If a traditional desktop computer takes
200 hours to complete a specific task while it could be
completed in 1 hour by utilizing 200 computers at once by the
HPC system. Therefore, a single desktop computer might not
be as useful as it could be while utilizing all the resources
collectively as a community.

There exist various advancements in the performance of
the HPC system from GigaScale to Terascale, to Petascale, to
Exascale, each of which constitutes an extraordinary
improvement in computing performance. HPC system
provides high-end designing and simulation environments,
helps applications to deal with marketing delivery challenges
by providing the facility to accelerate or even get rid of
prototyping and testing phases. The HPC system not only
enhances the quality but also predict the failure rate to
enhance the overall performance of the product [4, 13].
Moreover, the HPC system supports existing technologies in
the research and development process to deliver products to
the marketplace more quickly. Similarly, organizations and
industries use supercomputers before the actual
implementation to build and examine their strategies [5]. The
fastest supercomputer can currently solve complex problems
using Petascale systems that can perform 1015 (quadrillion)
calculations each second. Though these Petascale systems are
going well in this era, the next milestone in computing
advancement is to pace relatively towards high-performance
Exascale systems offering outstanding computing power.
These advance and powerful HPC systems will reveal many
Scientific mysteries and will have a fathomless impact on
everyday life [1, 2, 3].

The architecture of such a system might vary from
conventional order. The following two options could be
possible in this regard. First, all the accelerated processing
General Purpose Graphics Processing Unit (GPGPU), and
conventional CPU devices will reside exclusively within the
node. In the second option, accelerated devices will be
separated at the cabinets/rack level. We have shown the broad
level conceptual depiction of future Exascale supercomputer
(see Fig. 1), in which the heterogeneous system is comprised
of a number of racks that can communicate with each other
over the network. These racks are further consisting of

529 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 7, 2020

multiple nodes and additional components resided in it where
each node contained Heterogamous Processing Chip (HPC)
having several heterogeneous devices including CPUs
GPGPUs as well.

Current supercomputers cannot deliver such a high level of
computation under the power consumption limitation.
Although developers can extend the cores in the current
Petascale systems to devise a way towards Exascale
computing system, the challenge of power consumption still
exists [43]. The United States Department of Energy has
pointed out some primary constraints for the roadmap of
Exascale computing systems by considering the financial and
power consumption limitations. These constraints include the
power consumption not more than 25 to 30 Mega Watts,
system development cost around 200 million USD by 2020
and integrated multi-cores no more than 100 million [6, 8, 45].

Current technologies are facing various challenges to meet
the above-defined constraints (see Fig. 2) [7].

Fig. 1. Predictive Structure of the Exascale Supercomputing System.

Fig. 2. Challenges of Exascale Supercomputing System.

Exascale systems generally include heaps of nodes
drawing excessive Megawatt power, system-wide strategies
for power monitoring, controlling, and scheduling. The power
consumption of both individual nodes and the overall system
is, therefore, an essential issue to cope with [8, 48]. However,
new energy-efficient algorithms with novel architecture and
devices are needed that can implement the advanced
programming models supporting both homogeneous and
heterogeneous systems [9, 10, 11].

A considerable number of practical components
(computing cores, memory chips, network interfaces) can
extensively increase the possibility of partial disasters, load
balancing, and reliability issues [3]. Developers cannot be
intended to continually cope with load balancing, data
management, and reliability issues. The operating system must
discover a scalable mechanism that can offer an effective way
for load management, memory management, and check-
pointing while allowing software developers to complete
control over the performance of the system [12, 38].

The objective of the current study is to deal with the two
fundamental issues including performance and power
consumption HPC Systems. These challenges have a direct
relation to the number of resources used. Increase in resources
consequently enhance the performance of the system and
increase the power consumption as well. The existing
programming models and approaches failed to attain such a
high level of performance under the constraints defined by the
United States Department of Energy [6, 8, 45, 48].

The purpose of this study was to focus on how to enhance
the performance of HPC systems with minimum power
consumption. Going towards the solution of the problem; we
have proposed a Massive Performance and Energy Throttling
Framework M2C, for HPC Systems that consumes less power
while achieving massive performance efficiently.

The key contributions of this paper can be summarized as
follows:

• We have proposed a novel hybrid parallel
programming for parallel computing, which is called as
MVAPICH2+ CUDA (M2C) model. The proposed
M2C model helps to achieve coarse-grained and fine-
grained parallelism while parallelizing the data in
heterogeneous systems.

• The MVAPICH2 module helps to reduce
communication overhead in the heterogeneous system
by utilizing the Message Passing Interface (MPI) local
handle in the proposed M2C framework and so reduces
power consumption.

• The accelerated GPU Computation through CUDA in
the M2C model that enables a larger task to run on
multiple processors at the same time to enhance the
overall performance of the proposed HPC system.

530 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 7, 2020

The rest of this paper is structured as follows. In Section 2,
we provided an overview of related systems. In Section 3, we
described the system model including architecture, flowchart,
and algorithm of the proposed M2C framework. In Section 4,
we discussed the fundamental HPC metrics which have
measured in our experiments. Further Section 5 presents the
experimental results, detailed discussion, and comprehensive
comparative analysis with existing state-of-the-art methods.
Finally, our conclusion follows in Section 6.

II. RELATED WORK
The concept of HPC has been a hot topic in the field of

parallel computing for the last two decades. As demonstrated
by Moore’s law, there has been a rapid evolution of novel
hardware and computer architectures to develop parallel
computing machines. However, the growth of parallel
computing software is not as fast as it should be. One of the
reasons for this gap could be the unavailability of desired
parallel programming models that support such novel
architectures [3]. The traditional models are not capable of
delivering such a massive performance as expected in the
modern era. Therefore, the demand for novel parallel
processing models is increasing day by day which should
support homogeneous and heterogeneous systems.
Homogeneous cluster systems made up of similar types of
cores typically CPUs guarantees the same storage
representation. On the other hand, heterogeneous cluster
systems usually use more than one kind of processors (or
cores) therein CPUs and GPUs are integrated on a single
cluster system. If the CPU itself is a multi-core architecture
but the cores are different in their capabilities i.e. at least two
cores are different in their architecture, such a multi-core
architecture is termed heterogeneous multi-core and any
embedded system based on it would be termed heterogeneous
embedded system. Similarly, an embedded system that has a
CPU and a Digital Signal Processor (DSP) is termed
heterogeneous embedded system because CPU and DSP are
fundamentally different in their architecture. We present an
overview of various systems of such types in the following.

A. Message Passing Interface
MPI is the basic library for distributing and

communicating the messages among host CPU processors of
all the connected nodes [14]. It is used for distributed
computing applications and provides an efficient and portable
way to address parallel programs. Moreover, to distribute and
parallelize data at the inter-node level MPI provides coarse-
grained parallelism and maintains synchronization via
blocking methods [15]. In the early stages, the basic version
MPI-1.0 was originally introduced for distributed memory
structures. Later, while evaluating the basic version many
modifications were made to enhance the usability of MPI-1.0.

Recently MPI came up with the advanced version MPI-3.1
that include many additional features and functionalities
including process groups, process creation & management,
environmental management and inquiry, the Info object and
point-to-point communication [29, 30].

Throughout the development of HPC, it has been
considered as the basic standard for distributing data to
multiple nodes and processors. Though MPI designers did not
consider the future Exascale systems, it still requires novel
MPI configurations and runtime. MPI could be considered a
promising model for communicating and passing messages
among heterogeneous systems. We have shown the basic
structure of how to use the MPI model (see Listing 1).

program main
Start
// Starts MPI
 MPI_Init();
// Get no. of processes
 MPI_Comm_size(MPI_COMM_WORLD, size);
// Get current process id
 MPI_Comm_rank(MPI_COMM_WORLD, rank);
// Print Message
 Print (“I am”, rank ,”of”, size);
// Finalize MPI
 MPI_Finalize ();
 End

Listing. 1. Basic Structure of MPI.

B. MPI+OpenMP
The hybrid of MPI and Open Multi-Processing (OMP) is

commonly being used for multi-cores distributed
homogeneous systems (see Fig. 3) [38]. Data is distributed
over multiple nodes and communicated with each other
through the MPI scheme. Then it further transferred to the
OMP region. OMP determines the available number of threads
for that particular node and data written in the OMP region is
computed over these threads in shared memory access [16, 17,
18]. MPI is used for inter-node communication to attain coarse
grain parallelism whereas OMP is used to achieve fine-grain
parallelism over intra-node. In the future, this hybrid approach
is one of the promising strategies for dealing with future HPC
applications. The latest OMP version is also capable to
program GPGPUs for accelerated computing. OMP shared
memory multi-processing the programming model is available
in C, C++, and FORTRAN for windows and UNIX platforms.
This hybrid model is useful for a homogeneous (CPU
processors) cluster system [25, 26]. However, it is not
preferred for heterogeneous (CPU + GPU) system.

Fig. 3. Processing Mechanism of Hybrid MPI and OMP.

531 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 7, 2020

C. Open Computing Language
OpenCL is an efficient parallel programming model for

heterogeneous frameworks. OpenCL supports run-time
compilation that excludes dependencies on instruction sets,
allowing hardware providers to make remarkable changes to
instruction sets, drivers, and supporting libraries. It grants
portability and compatibility of kernels across multiple
hardware and platforms [22, 23]. However, OpenCL requires
a complicated setup which includes preparation of settings,
command queues, alternatively in addition to a compilation of
kernel codes [23].

D. KAUST basic Linear Algebra Subprograms
KBLAS is a diminutive open-source CUDA library that

effectively utilizes significant numerical kernels on CUDA-
enabled GPUs. It performs a subset of Basic Linear Algebra
Subprograms (BLAS) and Linear Algebra PACKage
(LAPACK) libraries on NVIDIA GPUs [12, 33]. KBLAS
presents a subset of approved BLAS functions. It offers
remarkable function along with BLAS-like interface that
addresses single as well as multi-GPU systems. Using
recursive and batch algorithms, KBLAS maximizes the GPU
bandwidth, reuses locally cached data and increases device
occupancy. KBLAS’s ultimate intent is performance. The
collection of KBLAS’s tuning parameters have a great impact
on its performance regarding Compute Unified Device
Architecture (CUDA) runtime version and GPU architecture.
While the best performance using the default tuning
parameters cannot be promised. Such parameters could be
easily edited by users on their local systems. It supports
compute capabilities 2.0 (Fermi) or higher. KBLAS is written
in CUDA C and requires CUDA Toolkit for installation. In the
coming future, KBLAS might be exported with auto-tuners.

E. Compute Unified basic Linear Algebra Subprograms
The CUBLAS library has introduced by Nvidia for its

CUDA-enabled GPUs. This library is an implementation of
BLAS on the CUDA environment that does not provide ease
of parallelizing data automatically across multiple devices.
However, this library helps the user to gain access to all the
resources provided by Nvidia GPU devices [31, 32, 44]. This
API provides the facility to speed up the applications either by
scaling up and distributing data across multiple GPUs or by
processing expensive tasks on a single GPU configuration. For
the best utilization of the CUBLAS library, the application
needs to reserve the memory in GPU memory space against
each dataset, provides the data to memory, calls the CUBLAS
functions in a sequence and then needs to move the data from
GPU device back to the host memory [37]. It provides some
helper function that assists the user in retrieving and writing
data on the GPU memory space. CUBLAS can be used for
GPU-accelerated algorithms in various sectors such as image
analysis, machine learning and high-performance computing.

F. MOC (MPI + OpenMP + CUDA)
To achieve massive parallelism in parallel computing, a

Tri-Hierarchy hybrid MOC (MPI + OpenMP + CUDA) model
was proposed in 2018 [20]. This model helped in achieving

massive performance through monolithic parallelism when we
compute any HPC application over a large-scale cluster
system having multiple nodes and a number of GPUs > 2.
This model was incorporated of MPI, OpenMP and CUDA
where MPI is responsible for broadcasting data over
distributed nodes, OpenMP is to run received data in parallel
on CPU threads, and CUDA is responsible to execute data
over accelerated GPU cores, which is the third level of
parallelism [24, 27]. MOC provides massive parallelism by
achieving tri-level granularity such as coarse, fine, and finer
grain parallelism. Although, it is applicable for heterogeneous
single and multiple nodes but preferred to use for a large-scale
system.

G. Open Accelerators
OpenACC appeared as a high-level programming model

that makes use of high-end and supportive directives programs
to achieve parallel computing. The main aim of such
directories was to minimize the overhead of modifying the
source code and hence enabling the portability to a broad field
of computing architecture. It allows single source code to run
both on CPU and accelerated GPU devices. So, it supports
both homogenous and heterogeneous environments. However,
OpenACC does not provide flexibility, thread management,
thread synchronization, and optimization for the programs
being encountered while achieving massive parallelism [21].
A basic structure of OpenACC has been presented (see
Listing 2).

Start
#pragma acc data
{
#pragma acc parallel loop …
#pragma acc parallel loop
…
}
End

Listing. 2. Basic Structure of OpenACC.

H. MPI + CUDA
A dual hierarchical model, the hybrid of MPI and CUDA

is considered to be a promising model for node-level and
thread-level optimization. However, the use of more resources
decreases system efficiency. In this model, an equal number of
CPU processors are used as the number of GPU devices
connected to the system. The master MPI processor scatters
data to all slave processes. These slave processes help for
transferring data from CPU cores to GPU devices. Whenever
data is transferred to GPU devices, a kernel is invoked where
grid and thread block configurations are mentioned to
optimize the resources [19]. After GPU processing
completion, data is copied back on host CPU cores and
utilized [36]. A general data distributing and processing
mechanism through a hybrid of MPI+CUDA have been
presented (see Fig. 4). Using the MPI-CUDA hybrid
approach, we can call multi kernels to compute different
accelerated available devices to achieve finer-grain
parallelism. This model could be a leading model for future
HPC Exascale Computing System (ECS) applications [38].

532 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 7, 2020

Fig. 4. Processing Mechanism of Hybrid MPI and CUDA.

III. PROPOSED M2C MODEL
We have proposed a dual-hybrid model that includes the

MVAPICH2+CUDA module (M2C). This massive parallel
programming model achieves massive performance by
utilizing resources in an efficient manner to reduce power
consumption. Following is the elaboration of the proposed
M2C model.

A. MVAPICH2
MVAPICH2 is an implementation of the MPI-3.1, which

is a thread-safe library developed for high scalability, best
performance, and fault tolerance of high-performance
computing systems. MPI_Session is a local handle to MPI-3.1
that consumes fewer resources while utilizing the concept of
MPI_Group and enabling the scalable communication
between different environments [29, 30]. MPI Sessions began
as an effort to make aggressive additions/changes to MPI to
ensure its success at the Exascale level [38]. It enables better
scalability, increases abstraction for better resource isolation,
and supports less tightly coupled applications.

It is a new way to initialize (and re-initialize) MPI that
uses very few resources by keeping only the state for active
communications. It dynamically gathers required data when
needed and stores state for the future. It establishes
communication relationships/peers before communicating and
affect MPI initialization error behavior. The general scheme of
MPI_Session has been described (see Fig. 5). MPI Standard
3.1 describes the generic scheme of MPI Session in the
following steps [29]:

1) Session initialization and finalization: The compiler
creates the session when the constructor for MPI_Session is
called and destroys the session when its matching destructor is
called. It has elaborated on how these functions initialize and
finalize the session (see Listing 3).

int MPI_Session_init (
MPI_Info process_info,
MPI_Errhandler err,
MPI_Session *sessionName);

int MPI_Session_Finalize (
MPI_Session *sessionName);

Listing. 3. Session Constructor and Destructor.

Fig. 5. Overview of the MPI_SESSION.

The working of a new session is initialized whenever
MPI_Session_init() function is called by passing certain
parameters to it, which returns a valid handle i.e. sessionName
of the recently created session. The parameter ’err’ is passed
to this function which controls the MPI’s error handling
response during the creation of the session. One more
parameter ’process_info’ is passed which provides the
information to the user that can be helpful for MPI to manage
the session’s creation. For destroying a session, the function
MPI_Session_finalize() is used, which ensures that session no
more exists by setting the session handle i.e. sessionName to
MPI_SESSION_NULL.

2) Querying runtime system for named sets: MPI
processes use the concept of ’named set’ for querying the
runtime system to retrieve the named sets of processes to
utilize them for creating the corresponding MPI_Group
against each named set. The function MPI_Session
get_names() is used to retrieve all set’s names from the
runtime has been listed (see Listing 4).

int MPI_Session_get_names (
 MPI_Session sessionName,
 char **setName);

Listing. 4. Querying Runtime System for Named Sets.

MPI allocates space for the array of strings in the memory
(which we termed as ’setName’ in Listing 4) when the session
is created and freed the space on the session destruction.

3) Getting the size of set from runtime: Information
regarding a specific named set is exposed by the runtime using
function MPI_Session_get_info() has been prototyped (see
Listing 5). It provides an object called ’MPI_Info’ which
returns the ’size’. The value of this size actually provides the
information about each set i.e. the total number of processes in
each set. By using this information against each set provided
by the runtime, a user can easily decide which groups have to
be created for gaining access to the exact required resources.

533 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 7, 2020

int MPI_Session_get_info (
 MPI_Session sessionName,
 char *setName,
 MPI_Info *size);

Listing. 5. Getting Size of Named Set from the Runtime via a Session.

4) Converting set to group: The function
MPI_Group_create_session() is used to convert each named
set to the group by using the information of each set as
elaborated in Step 2 and Step 3 (see Listing 6). This group can
then be used for making the communicator for a group of
processes. MPI_Group helps to maintain the meta-data of all
the available resources stored by the runtime in a scalable
manner. If the information of sets stored by runtime internally
is scalable, then the internal representation of the
corresponding group can also be scalable [28]. Operations that
create a group ’non-scalable’ must be avoided in order to
achieve good scalability.

int MPI_Group_create_session (
 MPI_Session session,
 char *name,
 MPI_Group *group);

Listing. 6. Converting Named set to Group via a Session.

5) Assigning Communicator to each group: For creating a
communicator against each group, the MPI library introduces
MPI_Comm_create_group_X() function (see Listing 7). In
MPI, to initiate the communication, a parent communicator
(MPI_COMM_WORLD) is used generally containing the
information of all the processes. This parent communicator
consumes countless resources by storing the information of
processes even not to be used by the communicator in the
communication process. This new concept of creating a
communicator via a session provides the facility of assigning a
single communicator to each group by providing the same
functionality without even using a parent communicator [29].

int MPI_Comm_create_group_X (
 MPI_Group myGroup,
 char *tagID,
 MPI_Info size,
 MPI_Errhandler err,
 MPI_Comm *mycomm);

Listing. 7. Assigning a Communicator to a Group.

The parameter “myGroup” is passed to the function to
provide the specific group of processes to the communicator.
The parameter “mycomm” is used to return the new
communicator for the targeted group. Other parameters i.e.
“size” and “err” are passed to the function that will provide
the additional information, which is what is usually not
provided by MPI for this communicator creation function. The
‘size’ parameter is used to query the exact number of
processes for which the group has been made and the
corresponding communicator is going to be created. The “err”
parameter is added to the communicator function that will
catch error in case of any failure throughout the session
creation.

B. Accelerated Graphics Processing Unit Computation
CUDA is an efficient parallel programming model

utilizing accelerated GPUs and threads for massive parallelism
[23]. CUDA refers to as the most competent model for thread-
level optimization that allows application flexibility by
supporting heterogeneous computation where the application
uses both the CPU and GPU devices. CUDA parallel
programming utilizes the ’CUDA Kernel’ to parallelize the
data on GPU devices. According to the novel architecture of
CUDA GPUs, a block dispatcher has introduced that assign
one self-synchronized thread per computational core to
schedule the grid. Shared memory is assigned to each block
and all the cores within the block can have access to this
shared memory [19, 24, 27]. Threads use this shared memory
to process the data of a certain block and return the processed
data to the GPU block scheduler. The scheduler stores the
processed data to GPU global memory space accessible to all
the CPU cores of the host. The CPU cores in response read the
data from GPU memory and transfer it to CPU cores and then
to the main memory. Using this mechanism, CUDA helps to
achieve massive parallelism by utilizing both the CPU and
GPU devices. The basic structure of using CUDA in C++ has
been demonstrated (see Listing 8).

Begin
float *a_cpu,*a_gpu;
cudaMalloc ((void **) &a_d, size);
cudaMemcpy (a_gpu, a_cpu, cudaMemcpyHostToDevice);
kernel_function <<< n_blocks, block_size >>> (params);
cudaMemcpy (a_gpu, a_cpu, cudaMemcpyHostToDevice);
cudaFree(a_gpu);
End

// Cuda kernel to run on GPU
__global__ void kernel_function (params)

{
Statements;
}

Listing. 8. Basic Structure of CUDA.

C. M2C Framework
We have shown the architecture of our proposed model

M2C (see Fig. 6). Therein, the dual-hierarchy model of
MVAPICH2 and CUDA is incorporated. MVAPICH2 is
responsible for broadcasting data over distributed nodes while
CUDA is responsible to run the code on GPU. The HPC
cluster system is made up of multiple racks having thousands
of nodes that perform extensive calculations and computations
simultaneously.

A detailed workflow of the dual-level hybrid model has
been shown in which we have shown the steps of how the
proposed model works for a single node in the HPC cluster
environment (see Fig. 7). We have considered the DMM
application developed in the C++ language to interact with
MVAPICH2. The basic functionality of the proposed model is
embedded in the concerned user application. This user
application receives input data from MPI to solve the
extensive computational problem. In the MVAPICH2
communication world, the problem is divided into
subproblems by providing coarse-grained parallelism. MPI
master process further scatters these subproblems to multiple
slave processes and data is transformed from CPU to GPU

534 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 7, 2020

environment. GPU environment performs CUDA computation
on the received data by invoking the CUDA kernels.

The subproblems are divided into multiple
chunks/statements and are parallelized to multiple processors
and thousands of cores by providing fine-grained parallelism.
The thousands of accelerated cores work simultaneously on a
single problem and solve the extensive problem by utilizing
both coarse-grained and fine-grained parallelism. Once the
data processing is completed, the resultant data is returned in a
similar way where processed data is transferred from GPU to
CPU cores and so CPU cores return data to the MPI master
process. Then the reserved memory for CPUs and GPUs is
released.

A quick overview of how MVAPICH2 and CUDA in the
M2C model take part to provide massive parallelism. A
detailed algorithm for the basic Dense Matrix Multiplication
(DMM) application has been presented (see Listing 9). In our
proposed model, some significant specifications i.e. the total
number of nodes, number of CPUs per node, number of GPU
devices per node, number of cores per CPU, and memory
levels of the system are obtained in an initial phase. These
specifications help the programmer to acknowledge the best
resources for the proposed model. However, the rest of the
workflow of this proposed algorithm is elaborated as follows:

• Initialize session and getting set names and size of
processes (line 2-4): MPI Session in the proposed
model is a local handle to MPI-3.1, used to provide the

coarse-grained parallelism by passing the data to slave
processes. MPI Session query the runtime to obtain the
active processes. By using this information provided by
the runtime, a user can easily decide which groups of
processes have to be created for gaining access to the
exact required resources.

• Converting sets to groups, assigning communicators,
and getting rank of processes (line 5-7): A
communicator is assigned to each group that helps to
communicate between the processes. Some additional
necessary functions are called that return the
information of the sets and groups, size, and rank of the
active processes.

• Send and Receive data according to the ranks of
processes (line 8-15): Following the ranks, ’0’ ranks
are defined as a master rank process and rest of all are
considered as slave processes. In the case of master
rank, data is broadcasted over all other ranked
processes through appropriate methods. Generally,
MPI_Send() and MPI_Recv() are used for synchronous
(blocking) whereas MPI_Isend and MPI_Irecv() are
used for asynchronous (non-blocking) processing. The
current study deals with different HPC applications
instead of any specific application, in such case,
normally programmer is not sure about data
dependency then asynchronous processing may not
perform better.

Fig. 6. Architecture of Proposed M2C Model.

535 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 7, 2020

Fig. 7. Workflow of Proposed M2C Model.

536 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 7, 2020

Input: mA Input Matrix
 mB Input Matrix
Output: mC Resulting Matrix
Declarations: SessionName, SetName, Size,
GroupName, Comm, Rank, i, numDev, A_D, C_D.

1. Start MVAPICH2 Parallel Region
2. SessionName MPI_Session_init()// Initialize MPI session
3. SetName MPI_Session_get_names()// Group of processes = Set, obtaining set name from runtime via session
4. Size MPI_Session_get_info()// Get Communication size
5. GroupName MPI_Group_create_session()// Convert SetName into GroupName.
6. Comm MPI_Comm_create_group_X()// Group Communicator
7. Rank MPI_Comm_rank()// Get MPI Ranks
8. If Rank == Master // define master rank if rank (0)
9. Make local initialization.

10. Else
11. MPI_Isend() // Send data to all processes Rank>0
12. End If – Else
13. If Rank > 0 // If rank is slave but not master process
14. MPI_Irecv() // Receive data from all slave processes
15. End If
16. Start CUDA Parallel Region
17. While (i<numDev) Do // Until Number of GPU devices

 // Assign a device id to specific GPU device
18. cudaSetdevice(devID)

 // Copy data from host to NIVIDIA GPU Devices
19. cudaMemcpy() A_D mA
20. InvokeCUDAKernel << grdSize,blkSiz, >>> (A_D, A_B,A_C)

 // Copy data from GPU Devices to host.
21. cudaMemcpy() mC C_D
22. Free all device variables
23. End CUDA Parallel Region
24. // There is MPI master process
25. If Rank == 0

// Receive processed data from all rank
26. MPI_Irecv()

27. End If
// Finalize MVAPICH2 processing

28. MPI_Session_finalize()

29. End MVAPICH2 Processing/Parallel Region
// Return the results

30. Return mC

Listing. 9. The Dual-Hybrid M2C Model.

However, we implemented a synchronous (blocking)
strategy for all MPI based models in the current study. This
data distribution mechanism requires fewer resources (i.e. get
the information of only the active processes) and hence
consume less power while implementation and provides
coarse grain parallelism in the system [48].

Start CUDA parallel region and receive processed data
(line 16-20): Once data is distributed over all connected nodes
in the targeted system, the data is computed over accelerated

GPU devices. For this purpose, CUDA statements are defined
and kernels are invoked for GPU computation.

Finalize MPI Session, return results and End MVAPICH2
parallel region (line 26-30): Once the whole data processing is
completed, the resultant data is returned in the similar way
where processed data is transferred from GPU to CPU cores
then CPU cores return data to MPI master process and
reserved memory for CPUs and GPUs is released.

537 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 7, 2020

IV. PERFORMANCE ANALYSIS
In this section, we investigate the performance of the

proposed M2C system. In this regard, our experiments related
suggested dual-level hybrid model M2C were carried out on
Aziz-supercomputer manufactured by Fujitsu of HPC Centre
of King Abdul-Aziz University, Jeddah, Saudi Arabia [40, 41,
42].

A. Platform of Experiment
The platform of our experiment, Aziz-Fujitsu Primergy

CX400 Intel Xeon True-scale QDR supercomputer, was
ranked at 360th position in the list of top- 500 supercomputers
in 2015 [39]. This Aziz-supercomputer contains 380 thin
(regular) and 112 fat (large) computing nodes with a total of
492 computing nodes that interlinked through the InfiniBand
within the racks. Recently Aziz supercomputer was upgraded
from homogeneous to the heterogeneous system according to
the growing need of massively parallel computing by adding
two NVIDIA Tesla K20 GPUs based on SMID architecture of
2496 CUDA-cores per device. Two Intel Xeon Phi
Coprocessor (MIC) containing 60 integrated cores per
processor were also introduced into Aziz-supercomputer to
upgrade the system. The heterogeneous system of Aziz
supercomputer has total 11904 number of cores [39, 40, 41,
42]. Therein, the memory of a regular computing node and a
large node is 96GB and 256GB, respectively. Each node
consisting of Intel E5- 2695v2 processor with 12 physical
cores with 2.4GHz processing power, which is what is
operated by Cent Operating System-v6.4. CUDA toolkit
version-9.1 is installed along with other compilers essential
for accelerated programming in HPC libraries. MVAPICH2-
GDR 2.3.1 is used to enable MPI with the support of
accelerated GPU devices. All the accelerated devices and
computing nodes of the supercomputer are connected by
InfiniBand, User, and Management networks. InfiniBand is
used to parallelize the file system, while the user network is
used for login and job submission handling. Management and
controlling operations are usually supported by the
management network only. According to the LINPACK
benchmark and theoretical peak performance, the performance
of Aziz supercomputer was marked as 211.3 TFlops/sec and
228.5 TFlops/sec, respectively.

B. HPC Metrics
We have taken different metrics including total time for

execution, total number of Flops measured, energy efficiency,
and overall power consumption of the system. These metrics
can be categorized into the following two fundamentals
metrics.

1) Performance Measurement: The overall performance
of HPC system is considered as the most fundamental and
essential metric in massive parallel programming which is
measured in a total number of achieved floating-point
operations per second (Flops) [32]. The total number of
achieved Flops (FT) can be calculated by dividing the achieved
Flops calculated at the peak performance of the system (Fpp)
by the total execution time (TExec) [20], which can be written
as follows:

𝐹𝑇 = 𝐹𝑝𝑝
𝑇𝐸𝑥𝑒𝑐

 (1)

We have calculated the number of Flops (FT) based on
execution time by implementing the M2C model on DMM
application against varying datasets by considering the peak
performance of Aziz-supercomputer i.e. 211.3 TFlops /s, [47].

2) Power Measurement: In emerging supercomputers,
energy efficiency with less power consumption is of interest
[6, 8, 46]. In this regard, we have used well-known software
applications of Open Hardware Monitor [34] and GPU-Z.2.6.0
[35] for the measurement of CPU and GPU temperature and
power consumption, respectively. We have shown the running
states of Open Hardware Monitor and GPU-Z.2.6.0 (see
Appendix 1 and Appendix 2, respectively). The total energy
consumed by a system Esys can be calculated by integrating
the energy consumption composed of memory contention,
bandwidth, parallelism and behavior of the application [20] as
follows:

𝐸𝑠𝑦𝑠 = ∫ 𝑚𝑒𝑚𝐶 (𝑑𝑡) + 𝑏𝑎𝑛𝑑𝑊 (𝑑𝑡) + 𝑃𝑎𝑟𝑙𝑙 (𝑑𝑡) +𝑡
0

𝐵ℎ𝑣 (𝑑𝑡) (2)

As discussed earlier, the future Exascale supercomputing
system will be a heterogeneous architectural system. This is
how necessary to emphasize primarily on power consumption
for both homogeneous and heterogeneous architectural based
systems. The power consumption in a heterogeneous system is
considered into three major parts including power
consumption by host CPU processors, power consumption by
memory operations (inter-memory and intra-memory) and
power consumption by accelerated GPU devices. Power
consumption for the systems having GPU installed on it is
calculated by [20] as follows,

𝑃 𝑠𝑦𝑠 (𝑤) = ∑ 𝑃 𝐺𝑃𝑈
𝑖𝑁

𝑖=1 (𝑤𝑖) + 𝑃 𝐶𝑃𝑈 ∑ (𝑤𝑗) + 𝑃 𝑚𝑎𝑖𝑛 (𝑤)𝑀
𝑗 (3)

where, Pcpu, Pgpu, Psys, Pmain indicate power of the CPU,
GPU, system and motherboard, respectively. N and M denote
the number of GPUs and the total CPU threads in the system,
respectively. wi and wj account for the workload of GPU i and
CPU j, respectively.

The power consumption on a specific application (Papp) of
the system can be calculated as follows [20],

𝑃 𝑎𝑝𝑝(𝑤) = ∑ 𝑃 𝐺𝑃𝑈
𝑖𝑁𝑎𝑝𝑝

𝑖=1 (𝑤𝑖) + 𝑃 𝐶𝑃𝑈 ∑ (𝑤𝑗) +𝑀
𝑗

 𝑃𝑚𝑎𝑖𝑛 �𝑤 𝑎𝑝𝑝� (4)

Where Papp is proportional to the workload of the system.

V. RESULTS AND DISCUSSION
We have investigated our M2C model by implementing it

into the Dense Matrix Multiplication (DMM) application on
Aziz-supercomputer for emerging Exascale systems that
provide tremendous performance through massive parallelism
and limiting the overall power consumption. Therein, two
fundamental HPC metrics i.e. performance and power
consumption were observed during the experiments. All
results have been executed using four kernels for GPU
processing of supercomputers. The quantified metrics were

538 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 7, 2020

observed for different matrix sizes. The performance in linear
DMM application was observed against different datasets by
determining the floating-point operations in GFlops/sec while
the power consumption was calculated for different matrix
sizes in GFlops/ Watt. We quantified different metrics
including performance and power consumption. We measured
the fundamental parameters including time execution,
speedup, and number of flops whereas power consumption
related metrics were including as power consumption and
temperature.

We have implemented three well-known libraries named
MOC, kBLAS, and cuBLAS [49, 50] in DMM application for
the same HPC metrics taken on Aziz-supercomputer. For
datasets 1000-10000, kBLAS and cuBLAS were able to
achieve their peak performances as 830 and 690 GFlops/sec,
respectively. We observe that MOC outperformed all the three
implemented models by delivering peak performance up to
1TFlops. The results against each dataset for MOC, kBLAS,
and cuBLAS were compared with that of the proposed M2C
model.

Our proposed model outperforms all the other
implemented models for datasets 1000-10000 by delivering
peak performance even more than that of the MOC model
with 1.27 TFlops (see Fig. 8).

Similarly, the energy efficiency by all of the implemented
algorithms was observed, therein cuBLAS, kBLAS and MOC
achieved 5.2, 5.6 and 6 number of GFlops/Watt for small
matrix size, respectively. For the same small matrix size, the
proposed M2C model attains 7.099 number of GFlops/Watt. It
is noticed that cuBLAS, kBLAS and MOC models attain the
maximum number of GFlops/Watt as 6.2, 6.5 and 8,
respectively. On the other hand, M2C delivered 8
GFlops/Watt in initial matrix size and by increasing the matrix
size the energy efficiency also increased and reached up to a
maximum of 10.38 GFlops/Watt for the large matrix size (see
Fig. 9).

We observe that our M2C model delivered better
performance in 1Watt compared to that of the other
implemented models. In M2C the framework, the idea of
MPI_Session and MPI_Group has worked well for limiting
power consumption. MPI_Session a local handle of MPI-3.1
i.e. MVAPICH2 uses very few resources by keeping only the
state for active communications. So, it helps to reduce
communication in the heterogeneous system. This parent
communicator consumes countless resources by storing the
information of processes even not to be used by the
communicator in the communication process. The new
concept of creating a communicator via a session provides the
facility of assigning a single communicator to each group
(created via MPI_Group) to provide the same functionality
without even using a parent communicator.

MVAPICH2 by consuming fewer resources and reducing
communication over-head has helped us to limit the power
consumption and provided remarkable performance in 1Watt

compared to that in kBLAS, cuBLAS, and MOC models. This
could be helpful to notice that performance and power
consumption are directly related to each other. However, there
exists a trade-off between these two metrics which can be
determined as follows:

 𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒
𝑃𝑜𝑤𝑒𝑟

= 𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑤𝑖𝑡ℎ𝑖𝑛 𝑡ℎ𝑒 𝑡𝑖𝑚𝑒 𝑢𝑛𝑖𝑡
𝐸𝑛𝑒𝑟𝑔𝑦 𝑑𝑢𝑟𝑖𝑛𝑔 𝑡ℎ𝑒 𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒 𝑢𝑛𝑖𝑡

 (5)

where the rate of change of performance under specific
power consumption measured in Glops and GFlops/Watt,
respectively.

The comparative analysis of tradeoff for cuBLAS, kBLAS,
MOC and M2C models (see Fig. 10). The vertical and
horizontal lines respectively represent performance and power
consumption. We can notice that cuBLAS, kBLAS and MOC
libraries performed well in the DMM algorithm. However, the
proposed model M2C outperformed all the implemented
models by accomplishing 1278 GFlops and by consuming
123W total power during larger matrix multiplication.

Fig. 8. M2C Performance Comparison with MOC, kBLAS and cuBLAS.

Fig. 9. Energy Efficiency in DMM for M2C vs (MOC, kBLAS & cuBLAS).

539 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 7, 2020

Fig. 10. Performance-Energy Efficiency Tradeoff.

Hence, our proposed system could be envisioned as a
promising model for achieving massive performance in
emerging Exascale systems. In this regard, the most
challenging step towards Exascale computing systems is that it
does not exist yet. However, the performance of HPC systems
has been improved based on the current results and predictions
to achieve Exascale performance. The fundamental challenges
mentioned in this paper would require targeted investments to
acquire Exascale computing. The primary goal of Exascale
computing systems is to handle massive data HPC
applications. Performance and power consumption are the two
primary HPC metrics that have been taken into consideration
the most challenging factors for Exascale computing systems.
These challenges have a direct relationship with the number of
resources. An increase in the number of resources
consequently enhance the performance in the system and so
increase the power consumption as well.

VI. CONCLUSION
Towards the race of achieving Exascale performance,

power consumption has been the most significantly
constrained resource among all the others. Therefore,
achieving practical Exascale computing with optimum
performance is of interest. In this regard, an advanced
computing system can deliver a thousand-fold performance
improvement compared to the current Petascale computing.
However, new system-wide methodologies and methods for
power monitoring and administration are somewhat necessary.
Novel programming models and programming methodologies
are undergone rapid growth, but the quest for enhanced
programming models always exists. There are significant
questions and research regarding the models that will be used
at the Exascale level to achieve better performance than the
current Petascale systems. Contributing to the quest for the
optimum programming model for Exascale systems, a novel
parallel programming model named M2C has been proposed.
The proposed model has been evaluated by implementing
linear DMM application on heterogeneous architecture and the
results have been compared with well-known libraries such as
MOC, kBLAS, and cuBLAS. M2C results using 4 kernels for
GPU processing outperformed all the other implemented
models while achieving 1278 GFlops by consuming 123W

total power. Nevertheless, the proposed M2C model could be
a promising and leading model for emerging Exascale
systems.

ACKNOWLEDGMENTS
This project was funded by the Deanship of Scientific

Research (DSR) at King Abdul Aziz University, Jeddah, under
grant no. (D-154-611-1440). The authors, therefore,
acknowledge with thanks DSR technical and financial support.

REFERENCES
[1] Perarnau, Swann, Rinku Gupta, Pete Beckman: ‘Argo: An Exascale

Operating System and Runtime’, 2015.
[2] Shalf, Dosanj, Morrison: ‘Exascale computing technology challenges.’

International Conference on High Performance Computing for
Computational Science 2010, pp. 1-25.

[3] Reed, Dongarra: ‘Exascale computing and big data.’ Communications of
the ACM 2015, vol. 58, no. 7, pp. 56-68.

[4] Zhou, Min: ‘Petascale adaptive computational fluid dynamics’, Diss.
RENS- Selaer Polytechnic Institute, 2009.

[5] Dongarra, Walker: ‘The quest for petascale computing.’ Computing in
Science & Engineering 2001, vol. 3, no. 3, pp. 32-39.

[6] Reed, Berzins, Pennington, Sarkar, Taylor: ‘Report: Exascale
Computing Initiative Review’. ASCAC 2015.

[7] Gropp, Snir: ‘Programming for Exascale Computers.’ Computing in
Science & Engineering 2013, vol. 15, no. 6, pp. 27-35.

[8] Ashraf, Muhammad Usman, Fathy Alboraei Eassa, and Aiiad Ahmad
Albeshri. "Massive Parallel Computational Model for Heterogeneous
Exascale Computing System." 2017 9th IEEE-GCC Conference and
Exhibition (GCCCE). IEEE, 2017.

[9] Ashraf, Muhammad Usman, et al. "Toward exascale computing systems:
An energy efficient massive parallel computational model." International
Journal of Advanced Computer Science and Applications 9.2 (2018).

[10] Rajovic, Vilanova: ‘The low power architecture approach towards
Exascale computing.’ Journal of Computational Science 2013, vol. 4,
no. 6, pp. 439-443.

[11] Kogge, Shalf: ‘Exascale Computing Trends: Adjusting to the “New
Normal” for Computer Architecture.’ Computing in Science &
Engineering 2013, vol. 15, no. 6, pp. 16-26, 2013. Available:
10.1109/mcse.2013.95.

[12] Workshop on programming abstractions for data locality, PADAL 2015,
Available online: https://sites.google.com/a/lbl.gov/padal
workshop/,2015.

[13] Ashraf, Muhammad Usman, et al. "Empirical investigation: performance
and power-consumption based dual-level model for exascale computing
systems." IET Software (2020).

[14] Message Passing Interface (MPI). Available Online: https://
computing.llnl.gov/tutorials/mpi/. [Accessed: 10- Nov- 2019].

[15] Dinan, Balaji: ‘An implementation and evaluation of the MPI 3.0 one-
sided communication interface.’ Concurrency and Computation:
Practice and Experience 2016, vol. 28, no. 17, pp. 4385-4404, 2016.
Available: 10.1002/cpe.3758.

[16] Shuangshuang Jin, Chassin: ‘Thread Group Multithreading:
Accelerating the Computation of an Agent-Based Power System
Modeling and Simulation Tool -- C GridLAB-D’. Hawaii International
Conference on System Sciences, 2014.

[17] Martineau, McIntosh-Smith: ‘Evaluating OpenMP 4.0's Effectiveness as
a Heterogeneous Parallel Programming Model.’ IEEE (IPDPSW), 2016.
Available: 10.1109/ipdpsw.2016.70.

[18] Artur Podobas, Sven Karlsson: ‘Towards Unifying OpenMP Under the
Task-Parallel Paradigm, International Workshop on OpenMP 2016’.
Springer International Publishing.

[19] CUDA Toolkit 10.1 Update 2 Download, NVIDIA Developer. Available
Online: https://developer.nvidia.com/cuda-downloads. [Accessed: 11-
Nov- 2019].

540 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 7, 2020

[20] Muhammad Usman, Alburaei, Ahmad: ‘Toward Exascale Computing
Systems- An Energy Efficient Massive Parallel Computational Model’.
IJACSA 2018, vol. 9, no. 2. Available: 10.14569/ijacsa.2018.090217.

[21] Alsubhi, K., et al. "A Tool for Translating Sequential Source Code to
Parallel Code Written in C++ and OpenACC." 2019 IEEE/ACS 16th
International Conference on Computer Systems and Applications
(AICCSA). IEEE, 2019.

[22] Khronos OpenCL Working Group, The OpenCL Specification Version
1.2, November 2011. [Online]. Available: http://www.
khronos.org/.

[23] NVIDIA Corporation, OpenCL Best Practices Guide, 2011.
[24] Ong, Weldon: ‘Acceleration of large-scale FDTD simulations on high

performance GPU clusters.’ IEEE Antennas and Propagation Society
International Symposium, 2009. Available: 10.1109/aps.2009.5171722
[Accessed 11 November 2019].

[25] Jin, Jespersen: ‘High performance computing using MPI and OpenMP
on multi-core parallel systems.’ Parallel Computing 2011, no. 9, pp.
562-575.

[26] Mininni, Rosenberg: ‘A hybrid MPI–OpenMP scheme for scalable
parallel pseudospectral computations for fluid turbulence.’ Parallel
Computing 2011, no. 6-7, pp. 316-326.

[27] Langer, Totoni: ‘Energy-efficient computing for HPC workloads on
heterogeneous many-core chips’, Proceedings of the Sixth International
Workshop on Programming Models and Applications for Multicores and
Manycores - PMAM '15, 2015. Available: 10.1145/2712386.2712396
[Accessed 11 November 2019].

[28] Chai, Hartono: ‘Designing High Performance and Scalable MPI Intra-
node Communication Support for Clusters’. IEEE International
Conference on Cluster Computing, 2006. Available:
10.1109/clustr.2006.311850 [Accessed 11 November 2019].

[29] MPI Standard 3.1. Available Online: https://www.mpi-
forum.org/docs/mpi-3.1/mpi31-report.pdf, pp. 585-597.

[30] MPI-2 Journal of Development. Available Online: http://www.mpi-
forum.org/docs/mpi- jd/mpi-20-jod.ps.Z.

[31] CUBLAS. Available Online: https://developer.nvidia.com/cublas, Sep
2017 [Dec 11, 2017]

[32] NVIDIA Accelerated Computing “developer.nvidia.com/cuda-
downloads”, 02 Nov 2016

[33] Lilja, David: ‘Measuring computer performance: A practitioner’s guide.’
Cambridge university press, 2005.

[34] Pawliczek, Dzwinel: ‘Visual exploration of data by using
multidimensional scaling on multicore CPU, GPU, and MPI cluster.’
Concurrency and Computation: Practice and Experience 26, 2014, no. 3,
pp. 662-682.

[35] Satish, Harris: ‘Designing efficient sorting algorithms for manycore
GPUs. IEEE International Symposium on Parallel & Distributed
Processing’. 2009. Available: 10.1109/ipdps.2009.5161005 [Accessed
11 November 2019].

[36] Agostini, Rossetti: ‘Offloading Communication Control Logic in GPU
Accelerated Applications’. 17th IEEE/ACM International Symposium
on Cluster, Cloud and Grid Computing (CCGRID), 2017. Available:
10.1109/ccgrid.2017.29 [Accessed 11 November 2019].

[37] CUDA Samples. Available Online: http://docs.nvidia.com/cuda/cuda-
samples/index.htmlsimple-cublas.

[38] Muhammad Usman, Amna Arshad, Rabia Aslam: ‘Improving
Performance In Hpc System Under Power Consumptions Limitations’,
IJARS 2019, Volume. 10, No. 2, pp. 75-84, 2019.

[39] Chrysos, George: Intel Xeon PhiTM coprocessor-the architecture. Intel
Whitepaper 176, 2014.

[40] Muhammad Ashraf, Alburaei Eassa: ‘Performance and Power Efficient
Massive Parallel Computational Model for HPC Heterogeneous
Exascale Systems.’ EEE Access 2018, vol. 6, pp. 23095-23107.
Available: 10.1109/access.2018.2823299.

[41] King Abdul-Aziz University. Available Online: https://www.top
500.org/site/50585.

[42] Fujitsu to Provide High-Performance Computing and Services Solution
to King Abdul-Aziz University. Available Online:
http://www.fujitsu.com/global/about/resources/news/press-
releases/2014/0922-01.html.

[43] Amarasinghe. ASCR programming challenges for Exascale computing,
Rep. Workshop Exascale Program. Challenges, 2011.

[44] CUDA Toolkit 4.0. Available Online: https://developer.nvidia.
com/cuda-toolkit-40.

[45] ASCAC Subcommittee for the Top Ten Exascale Research Challenges,
U.S. Dept. Energy State, Washington, DC, USA, 2014.

[46] Hennecke, Michael: ‘Measuring power consumption on IBM Blue
Gene/P.’ Computer Science-Research and Development 27, 2012, no. 4,
pp. 329-336.

[47] Leung. Ed. Handbook of Scheduling: ‘Algorithms, Models, and
Performance Analysis.’ CRC Press, 2004.

[48] Ashraf, M. Usman, Fathy Alboraei Eassa, and Aiiad Ahmad Albeshri.
"High performance 2-D Laplace equation solver through massive hybrid
parallelism." 2017 8th International Conference on Information
Technology (ICIT). IEEE, 2017.

[49] Gallivan, Plemmons: ‘Parallel Algorithms for Dense Linear Algebra
Computations.’ SIAM Review 1990. vol. 32, no. 1, pp. 54-135.
Available: 10.1137/1032002.

[50] Anzt, Haugen: ‘Experiences in auto-tuning matrix multiplication for
energy minimization on GPUs.’ Concurrency and Computation -
Practice and Experience 2015. vol. 27, no. 17, pp. 5096-5113. Available:
10.1002/cpe.3516.

[51] Ashraf, Muhammad Usman, Fathy Alboraei Eassa, and Aiiad Ahmad
Albeshri. "Efficient Execution of Smart City’s Assets Through a
Massive Parallel Computational Model." International Conference on
Smart Cities, Infrastructure, Technologies and Applications. Springer,
Cham, 2017.

541 | P a g e
www.ijacsa.thesai.org

	I. Introduction
	II. Related Work
	A. Message Passing Interface
	B. MPI+OpenMP
	C. Open Computing Language
	D. KAUST basic Linear Algebra Subprograms
	E. Compute Unified basic Linear Algebra Subprograms
	F. MOC (MPI + OpenMP + CUDA)
	G. Open Accelerators
	H. MPI + CUDA

	III. Proposed M2C Model
	A. MVAPICH2
	1) Session initialization and finalization: The compiler creates the session when the constructor for MPI_Session is called and destroys the session when its matching destructor is called. It has elaborated on how these functions initialize and finalize th�
	2) Querying runtime system for named sets: MPI processes use the concept of ’named set’ for querying the runtime system to retrieve the named sets of processes to utilize them for creating the corresponding MPI_Group against each named set. The function MP�
	3) Getting the size of set from runtime: Information regarding a specific named set is exposed by the runtime using function MPI_Session_get_info() has been prototyped (see Listing 5). It provides an object called ’MPI_Info’ which returns the ’size’. The v�
	4) Converting set to group: The function MPI_Group_create_session() is used to convert each named set to the group by using the information of each set as elaborated in Step 2 and Step 3 (see Listing 6). This group can then be used for making the communica�
	5) Assigning Communicator to each group: For creating a communicator against each group, the MPI library introduces MPI_Comm_create_group_X() function (see Listing 7). In MPI, to initiate the communication, a parent communicator (MPI_COMM_WORLD) is used ge�

	B. Accelerated Graphics Processing Unit Computation
	C. M2C Framework

	IV. Performance Analysis
	A. Platform of Experiment
	B. HPC Metrics
	1) Performance Measurement: The overall performance of HPC system is considered as the most fundamental and essential metric in massive parallel programming which is measured in a total number of achieved floating-point operations per second (Flops) [32]. 	
	2) Power Measurement: In emerging supercomputers, energy efficiency with less power consumption is of interest [6, 8, 46]. In this regard, we have used well-known software applications of Open Hardware Monitor [34] and GPU-Z.2.6.0 [35] for the measurement 	

	V. Results and Discussion
	VI. Conclusion

