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Abstract—The huge demand for spectrum has created 
immediate need to make available new licensed and/or unlicensed 
spectrum bands to satisfy the explosive growth of spectrum 
demands and to satisfy the quality of service requirements of 
diverse applications. Spectrum shortage and harsh environment 
have become a challenging bottleneck to achieve reliable 
communications in the smart grid. Cognitive radio is the 
emerging technology to achieve both spectrum and reliability 
awareness. Cooperative spectrum sensing takes advantage of 
spatial diversity to reduce the impact of receiver uncertainty. 
However, the harsh smart grid environments limit advantageous 
of cooperation due to variations of signal to noise ratio on which 
energy detection technique depends on. This paper proposes a 
reliable spectrum detection for a cluster based cooperative 
spectrum sensing in harsh smart grid environment, where 
cognitive cluster heads and a centralized cognitive radio based  
fusion center are deployed to solve both spectrum and reliability 
problems. The proposed fuzzy inference system is based on three 
fuzzy descriptors of energy difference, link quality, and local 
probability of detection. The results show the superiority of 
proposed fuzzy based fusion scheme to enhance accuracy of 
spectrum decision in harsh environment. 

Keywords—Cognitive radio; wireless networks; cooperative 
spectrum sensing; reliable fusion; fuzzy inference system 

I. INTRODUCTION 
The recent technological developments in wireless 

technologies have enabled the deployment of the smart grid 
[1], which is the next generation of electrical power grid 
proposed to solve problems associated with traditional power 
grid [2]. The massive increase in diverse applications have 
resulted in exponential increase in demand for spectrum which 
have created immediate need to make available new licensed 
and/or unlicensed spectrum bands [3]. Wireless Sensor 
Networks (WSNs) have been considered as a promising 
technology to enhance capabilities of monitoring, control, and 
maintenance of the entire smart grid from power generation to 
transmission, distribution and consumption [4]. Different types 
of communication technologies are currently used to collect, 
aggregate, and analyze data collected from all sectors of the 
smart grid. However, the severe conditions of electrical power 
grid may adversely affect network reliability. Furthermore, 
WSNs are typically operate in the unlicensed Industrial, 
Scientific and Medical (ISM) frequency band which is already 
congested and overloaded with many other coexisting 
technologies. This increases interferences from neighboring 

networks and makes communication a challenging task due to 
spectrum scarcity and interference problems which could result 
in failure to establish and maintain reliable communications. 
There is need to sustainably support the continuously growing 
demand and to overcome both spectrum shortage and 
unreliable communications [4]. Cognitive radio (CR) 
technology allows the unlicensed Secondary Users (SUs) to 
opportunistically access the available licensed spectrum 
assigned to Primary Users (PUs) [5]. These underutilized 
licensed spectrum bands are assigned temporarily without the 
need to purchase the spectrum which offer reliable 
communications to ensure reliable communication in highly 
congested periods by transmitting data either on the original 
unlicensed channel or the additional licensed channel [6]. 

Spectrum Sensing is the most important function to detect 
the presence or absence of PUs at a certain location, at a given 
time, and in a specified frequency band. One of the spectrum 
sensing techniques is the transmitter detection which is further 
divided according to detection method into several methods, 
one of which is the energy detection [7]. Energy detection is 
the preferred technique for resource constraint nodes due to its 
low computational requirements compared to other techniques. 
Nodes in different spatial locations individually make local 
decision in a non-cooperative spectrum sensing by comparing 
the sensed energy with a predefined threshold to decide 
accordingly. However, due to the effect of propagation 
impairments, the Signal to Noise Ratio (SNR) of the received 
PU signal can be very low and individual SUs may not be able 
to distinguish between severely attenuated signal and vacant 
channel. Accurate spectrum sensing is important to mitigate the 
effect of environments and to guarantee reliable 
communications [8]. 

Cooperative Spectrum Sensing (CSS) has been proposed to 
enhance local spectrum decisions, where a group of SUs share 
their sensing reports with a Fusion Center (FC) either 
centralized or distributed to overcome receiver uncertainty by 
exploiting the spatial diversity [9]. In centralized CSS, the FC 
collects local spectrum sensing reports either as one-bit, 
quantized multi bits, or raw energy to identify spectrum 
occupancy, and broadcasts final global spectrum decision back 
to all nodes. Whereas in distributed CSS, each node shares 
spectrum reports with all of its neighbor nodes. CCS consumes 
energy in resource constraints nodes which cannot tolerate the 
heavy computations in distributed CSS. On the other hand, 
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centralized CSS consumes large bandwidth and also consumes 
energy which reduce network’s lifetime [10]. 

CR based communications can be utilized in all sectors of 
the smart grid [11]. Reliable communication is urgently needed 
to sustainably solve spectrum scarcity problem, satisfy the ever 
increasing demand, and support the diverse applications [12]. 
However, the detection of available spectrum depends on 
multiple parameters which form a multi-objective optimization 
problem.  Fuzzy logic can be utilized to solve this optimization 
problem that is difficult to be modeled using the mathematical 
methods. Fuzzy logic models are relatively simple and less 
computationally complex which make it suitable for resource 
constraints WSNs [13]. 

This paper proposes a Fuzzy Inference System (FIS) to 
enhance accuracy of cooperative spectrum detection in harsh 
smart grid environment. The harsh environment is prone to 
error and spectrum sensing reports will not be received 
correctly. To the best of our knowledge, none of the previous 
work have proposed a FIS to enhance detection accuracy in 
harsh smart grid environment. The contribution of this paper is 
the development of fuzzy logic based soft fusion strategy to 
accurately detect the opportunistic spectrum in harsh 
environment. The proposed system is based on three fuzzy 
descriptors of energy difference, channel condition, and local 
probability of detection. 

The organization of this paper is as follows. Section II 
provides the related work. Section III describes the local 
spectrum sensing decisions in various environments. The 
performance indicators are also mathematically formulated.   
Section IV presents the cooperative hard fusion strategies in 
harsh environments. Section V proposes the FIS. The 
simulation results are demonstrated in Section VI. Finally, 
Section VII provides conclusion and future research work. 

II. RELATED WORK 
The increasing demand for more spectrum has motivated 

the development of CR based network to solve both spectrum 
scarcity and reliability problems facing the introduction of a 
wide range of new applications [14]. However, most of the 
previous work on spectrum sensing have assumed simplified 
propagation model in which received signal depends only on 
distance between transmitter and receiver. Additive White 
Gaussian Noise (AWGN) channel model for sensing channels 
was assumed while reporting channels were assumed to be 
dedicated error free channels. This model cannot accurately 
represent the real environments where propagation of 
electromagnetic signals suffers from propagation impairments 
which negatively impact the performance and present great 
challenge to reliability of wireless communications. The 
reliability of communication channels varies significantly from 
channel to channel and over time which impact the diverse 
applications which have stringent Quality of Service (QoS) 
requirements with respect to throughput, delay, and availability 
of the communications channels [15]. The random variation of 
the received signal makes spectrum sensing decision not 
accurate and nodes may fail to detect the spectrum due to 
presence of fading, shadowing, and time-varying nature of 
wireless channels. The randomness features of communication 
channels and variations in SNR causes uncertainty in sensing 

reports and makes it difficult to accurately achieve reliable 
spectrum detection decisions which could results in severe 
threat to reliability of network and sever threat to data integrity 
due to failure to satisfy spectrum demand by the diverse 
applications. 

In Cluster-Based CSS, SUs perform spectrum sensing and 
send spectrum sensing reports to a Cluster Head (CH) and 
aggregate sensing reports to FC to perform the energy 
consuming functions [16]. The FC combines the individual 
reports either by hard-decision or soft-data fusion to increase 
the accuracy of local spectrum sensing. In hard combining, 
sensing reports are received as a one-bit decision and combined 
using the counting rule of “𝑙 𝑜𝑢𝑡 𝑜𝑓 𝑁”, where “OR”  rule, 
“AND” rule, and  Majority rule are special cases [17]. Hard 
fusion decreases overhead on reporting channel, however the 
use of one energy threshold introduces information loss which 
degrade performance. On the other hand, soft fusion rules 
depend on raw sensed energy reports. The conventional soft 
combining schemes such as Square Law Combining (SLC), 
Maximal Ratio Combining (MRC), and Selection Combining 
(SC) enhance detection performance at a cost of increasing 
communication overhead. Nodes send their raw data to FC 
which consumes energy and bandwidth due to periodical 
transmission of raw data [18]. 

A tradeoff between overhead and detection performance is 
achieved by using a softened quantized multi-bit hard fusion 
[19]. Each SU quantizes its local observations into multiple 
decision regions to reduce overhead and achieve reliable 
sensing performance simultaneously. A quantization based 
multibit soft fusion rule is proposed in [20] to provide a 
compromise between sensing performance and control channel 
overhead. SUs use energy detector to observe the received 
signal level and compare it with quantization thresholds to 
estimate the multibit data. The data from all SUs are 
transmitted to FC to perform inverse quantization for the 
spectrum occupancy decision [21]. However, the more the 
number of bits, the more the overhead and the accurate the 
final global decision [22]. When the number of SUs is high, 
increasing the quantization bits provides no performance gain 
and quantized two bits energy report can be used. A softened 
two bits hard scheme that divides energy level into four 
quantization levels is developed in [23]. While in [24] a soft 
combining rule is proposed that assumed SNR is available at 
SUs. Similarly, a two-bit softened hard scheme is proposed in 
[25] for a cluster based CSS. One bit hard fusion is used based 
on SNR and one bit majority vote is used to combine the 
results. 

Fuzzy logic can be utilized with CR based WSNs to 
produce the spectrum decision [26]. It is similar to natural 
language and can deal with uncertainty and imprecise 
knowledge for decision making. It allows phrases of real 
situations to feed mathematical models of reasoning. The 
statement truth of fuzzy logic depends on the degree of 
membership which have values between 0 and 1. Fuzzy logic is 
used in [27] with three descriptors of spectrum utilization 
efficiency of the secondary user, of mobility, and its distance to 
the primary user. Fuzzy channel ranking estimation was 
presented in [28] using four descriptors of variability of the 
channel duration availability, duration of the channel idle time, 
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channel condition and distance. Similarly, in [29] fuzzy based 
spectrum allocation was proposed to enhance spectrum 
efficiency based on three descriptors. IEEE 802.22 wireless 
regional area network (WRAN) is proposed for the smart grid 
to allow unlicensed broadband network to opportunistically 
access the unused TV white space [30]. Fuzzy logic is also 
applied to the IEEE 802.22 to prioritize channels in the backup 
and candidate channel list [31]. Finally, fuzzy logic was also 
proposed for IEEE 802.22 WRAN in [32] to select channels 
based on required QoS using throughput, latency and 
reliability. 

III. LOCAL DECISION  IN VARIOUS ENVIRONMENTS 
The FC is responsible of coordinating the spectrum 

availability and providing the list of available spectrum to be 
scanned and utilized. SUs sense the spectrum and transmit their 
local spectrum decisions about spectrum availability to their 
corresponding CR based Cluster Head (CH). The network is 
clustered into 𝑐 clusters with cluster 1, cluster 2, and cluster j, 
each has cluster members of 𝑘1 , 𝑘2,.., 𝑘𝑐  respectively, where 
1 ≤ 𝑗 ≤ 𝑘𝑐 . The CHs collect sensing reports, schedule and 
distribute the spectrum sensing tasks among the cluster 
members. Upon joining a cluster, 𝑗, a 𝑆𝑈𝑖  becomes a cluster 
member defined as  𝑆𝑈𝑖

𝑗. The sensing reports from all cluster 
heads 𝐶𝐻𝑗  are collected, to make the spectrum sensing 
decision, and this decision is propagated back to SUs to access 
the available spectrum. 

The functionality of spectrum sensing is implemented at 
both physical and MAC layers [33]. Physical layer detects 
PU’s signal using energy detection and MAC focuses on time 
to sense and channels to sense [34]. CHs schedule and transmit 
sensing reports in a Time Division Multiple Access (TDMA) 
where total sensing period is divided into a number of sensing 
slots, each has a duration of  𝑇𝑡𝑖  that is divided into two sub-
slots: a sensing sub-slot of  𝑇𝑠𝑖  and a reporting sub-slot of 𝑇𝑟𝑖 . 
All SUs sense the channels in the assigned time slot and then 
forward sensing report over the reporting channel in the 
scheduled reporting time slots [35]. The spectrum sensing may 
behave as binary with hypothesis testing problem, if there are 
no activities on the channel, it is considered as a null 
hypothesis 𝐻0 or otherwise it is considered as busy channel 𝐻1. 

All 𝑆𝑈𝑠  forward their sensing reports to FC about each 
channel. Without loss of generalities, the following is for one 
channel, where the local spectrum decision is decided based on 
local energy threshold, sensing parameters, and environment. 
The propagation is modeled as a simplified AWGN non fading, 
or realistic environments lognormal shadowing with no 
channel errors, or harsh environment with errors. 

A. Non-Fading AWGN Environments 
The spectrum sensing in AWGN assumes sensing channels 

to be error free with AWGN [33]. For each cluster member 
𝑆𝑈𝑖

𝑗 , the received signal in the 𝜏𝑡ℎ sensing time is defined as 
𝓎𝑖(𝜏), where  𝑖 = 1, … , 𝑘𝑐 , is formulated as: 

�
𝓎i(τ) =  𝓃i(τ)                           ∶  H0
𝓎i(τ) = 𝒽pi .𝒳p(τ) +  𝓃i(τ) ∶   H1            (1) 

where 𝜏 = 1, … ,𝒮 , where 𝒮  is the number of received 
samples within the spectrum sensing period  𝑇𝑠  such as 
𝒮 = 𝑇𝑠 𝑓𝑠  . The PU signal sensed over the sensing channel 
𝒳𝑝𝑖(𝜏)  has a carrier frequency of 𝑓𝑠  with zero mean and 
variance of  𝜎𝑝𝑖 . The AWGN noise signal  𝓃𝑖(𝜏)  has zero 
means and variance of 𝜎𝑛𝑖 . Both PU’s signal 𝒳𝑝𝑖(𝜏) and noise 
signal  𝓃𝑖(𝜏)  are assumed to be independent and identically 
distributed random processes. 𝒽𝑝𝑖  is the channel fading 
coefficient. When number of samples “𝒮” is large enough, the 
Probability Distribution Function (PDF) of 𝒴𝑖 follows a central 
chi square distributed under hypothesis 𝐻0  and a non-central 
chi-square distributed with 𝒩  degree of freedom under 
hypothesis 𝐻1 . Then the observed sensed energy statistics 𝐸𝑖 
can be approximated by the Gaussian distributions and 
formulated as: 

𝐸𝑖 =  1
𝒮

 ∑ |𝓎𝑖(𝜏)|2𝒮
𝜏=1               (2) 

The local hard decision 𝑢𝑖 of the individual SU is computed 
by comparing its received energy 𝐸𝑖  with a predetermined 
threshold  𝜆𝑡ℎ  to decide on hypothesis ℋ1  and ℋ0  that is 
formulated as: 

𝑢𝑖 = �ℋ1  ∶ 𝐸𝑖 ≥ 𝜆𝑡ℎ     
ℋ0 ∶   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒             (3) 

The performance indicators are evaluated to know whether 
the sensed value is generated under hypothesis ℋ0  or 
hypothesis ℋ1  which represent idle and occupancy state the 
PU. The probability of detection (𝑃𝑑  ) is the probability that 
decision is ℋ1 when ℋ1 is true which is formulated as: 

𝑃𝑑 = 𝑃[ ℋ1| ℋ1] = 𝑃 [𝐸𝑖  > 𝜆𝑡ℎ |ℋ1]           (4) 

The probability of false alarm (𝑃𝑓𝑎) is the probability that 
decision is ℋ1 but is true which is formulated as. 

𝑃𝑓𝑎 = 𝑃[ ℋ1| ℋ0] = 𝑃 [𝐸𝑖  > 𝜆𝑡ℎ |ℋ0]           (5) 

𝑃𝑓𝑎 is an indicator of the spectrum utilization, where a high 
value of 𝑃𝑓𝑎 means less spectrum utilization and lower value of 
𝑃𝑓𝑎  means higher spectrum utilization. Both higher (𝑃𝑑 ) and 
lower (𝑃𝑓𝑎) provide more protection for the PUs and improved 
spectrum utilization. As 𝐸𝑖   follows a Gaussian distribution 
with zero mean and variance of 𝜎𝑛2 , then performance is 
approximated as follows: 

𝐸𝑖|ℋ1 =  𝑃𝑑  ~𝒩�(1 +  𝛾) 𝜎𝑛2, 2(1+ 𝛾)2𝜎𝑛4

𝒮
 �             (6) 

𝐸𝑖|ℋ0 =  𝑃𝑓𝑎~𝒩�𝜎𝑛2, 2𝜎𝑛
4

𝒮
 �              (7) 

where 𝛾  is SNR. The performance indicators in AWGN 
environment are computed as follows: 

𝑃𝑑  =  𝐸𝑖  |ℋ1 = 𝑄��
𝜆𝑡ℎ
𝜎𝑛2

(1+ 𝛾)
− 1�  �𝑇𝑠𝑓𝑠

2
 �            (8) 

𝑃𝑓𝑎  =  𝐸𝑖  |ℋ0 = 𝑄 ��𝜆𝑡ℎ
𝜎𝑛2
− 1�  �𝑇𝑠𝑓𝑠

2
 �            (9) 
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where Q(.) is the complementary distribution function of 
the standard Gaussian function. 

B. Error Free Fading Environment 
The smart grid have noise, interferences, and multipath 

propagation effects [36], and the received SNR at different SUs 
is not the same and can be computed as follows. 

 𝑆𝑁𝑅𝑖
𝑗 = 𝛾𝑖

𝑗 =    𝒽𝑝𝑖 (𝜏) 𝒳𝑝𝑖(𝜏) 

∑ 𝒽𝑙𝑖 (𝜏)𝒳𝑙𝑖(𝜏)+ 𝜎𝑙
2𝑘𝑐

𝑙=1,𝑙≠𝑖
         (10) 

where there is l node index and 𝑙 <  𝑘𝑐 , 
∑ 𝒽𝑙𝑖 (𝜏)𝒳𝑙𝑖(𝜏)𝑘𝑐
𝑙=1,𝑙≠𝑖  is the accumulated interfering signals 

coming from 𝑙 nodes. For the error free fading Environments 
(channel error probability 𝑃𝑒  = 0), the sensing channels will 
have variable channel fading coefficient 𝒽𝑝𝑖 and consequently 
have variable 𝑆𝑁𝑅.  The average probability of detection  𝑃�𝑑,𝑖  
will be computed as 

𝑃�𝑑,𝑖  = ∫ 𝑄 ��
𝜆𝑡ℎ
𝜎𝑖𝑛
2

(1+ 𝛾𝑖 )
− 1�  �𝑇𝑠𝑓𝑠

2
 �∞

0  𝑓(𝛾𝑖 )𝑑𝛾𝑖         (11) 

where 𝑓(𝛾𝑖 ) is the Probability Distribution Function (PDF) 
of 𝛾𝑖 . Under 𝐻0  case, the 𝑃𝑓𝑎  is independent of 𝛾𝑖  and the 
average 𝑃�𝑓𝑎,𝑖  is the same for all 𝑆𝑈𝑖  as computed in equation 
(9). Then the PDF of 𝛾𝑖  can be approximated. 

𝑓(𝛾𝑖 ) =  �
𝛼𝑖

2𝜋𝛾𝑖 

1
𝛾𝑖 

exp−  𝛼𝑖(𝛾𝑖 − 𝛽𝑖)2

2𝛽𝑖
2𝛾𝑖 

;  𝛾𝑖 ≥ 0         (12) 

where 𝛽𝑖 is the expectation of 𝛾𝑖  i.e., 𝛽𝑖 = 𝜺[𝛾𝑖 ], and 𝛼𝑖 is 
the shape parameter. In lognormal distribution, the relation 
between the parameters {𝛼𝑖 ,𝛽𝑖} and �𝜇𝑖 ,𝜎𝑖𝑑𝐵  � is specified as 
follow: 

𝛽𝑖 = exp �𝜇
𝛹

  , 𝜎𝑖𝑑𝐵
2

2𝛹2�,   𝛼𝑖 =  𝛽𝑖

exp�
𝜎𝑖𝑑𝐵
2

𝛹2
� −1

         (13) 

where = 10
ln (10)

  , 𝜇  is mean, and 𝜎𝑖𝑑𝐵   is the standard 
deviation of the 𝑆𝑁𝑅𝑖  in logarithmic scale (10 log 10 𝛾𝑖 ) . 
Then 𝒬(𝑥)  function is computed as   1

2
𝑒𝑟𝑓𝑐 � 𝑥

√2
�  , where 

𝑒𝑟𝑓𝑐(. ) represents complementary error function and defined 
as follows: 

𝑒𝑟𝑓𝑐 (𝑥) = 1 −  2
√𝜋
∑ (−1)𝑘 𝑡2𝑘+1

2𝑘+
1
2   𝑘!(2𝑘+1)

∞
𝑘=0           (14) 

In this case,  𝒬(𝑥) function is computed as 

𝑄 (𝑥) = 1
2

  1
√𝜋
∑ (−1)𝑘 𝑡2𝑘+1

2𝑘+
1
2   𝑘!(2𝑘+1)

∞
𝑘=0           (15) 

Where  𝑡 =  �
𝜆𝑡ℎ
𝜎𝑖2

(1+𝛾𝑖 )
− 1� �𝑇𝑠𝑓𝑠

2
 

The average probability of detection  𝑃�𝑑,𝑖 at different 𝑆𝑈𝑖 is 
a function of 𝛾𝑖  and is formulated as: 

𝑃�𝑑,𝑖 =  �
𝛼𝑖
8𝜋

  � 𝛾𝑖 − 3 2�  𝑒𝑥𝑝 �−  
𝛼𝑖(𝛾𝑖 − 𝛽𝑖)2

2𝛽𝑖
2𝛾𝑖 

�  𝑑𝛾𝑖 
∞

0
 − 

 �
𝛼𝑖

2𝜋2
  �
𝑇𝑠𝑓𝑠

2
�
2𝑘 + 1

�
(−1)𝑘

2𝑘  +  12 (2𝑘 +  1)𝑘!
 

∞

𝑘=1

× 

∫ �
𝜆𝑡ℎ

𝜎2�

1 + 𝛾𝑖 
 −  1�

2𝑘+1

𝛾𝑖  
−3

2�  𝑒𝑥𝑝 �−  𝛼𝑖 (𝛾𝑖  − 𝛽𝑖)2

2𝛽𝑖
2𝛾𝑖 

�  𝑑𝛾𝑖 
∞
0       (16) 

For a target performance and if each cluster is assumed to 
have the same channel gain, the performance indicators can be 
approximated as follow: 

𝑃�𝑑,𝑖 = 𝑃𝑟{𝑢𝑖 = 1|ℋ1},  𝑃�𝑑,𝑖 =  𝑃�𝑑;  ∀𝑖         (17) 

𝑃�𝑓𝑎,𝑖 = 𝑃𝑟{𝑢𝑖 = 1|ℋ0},𝑃�𝑓𝑎,𝑖 =  𝑃�𝑓𝑎;  ∀𝑖         (18) 

𝑃�𝑚𝑑,𝑖 = 𝑃𝑟{𝑢𝑖 = 0|ℋ1},𝑃�𝑚𝑑,𝑖 =  𝑃�𝑚𝑑;  ∀𝑖         (19) 

where  𝑃�𝑚𝑑 = 1 −  𝑃�𝑑 is the probability of miss detection. 

C. Harsh Environment 
Due severe noise and shadow fading in sensing channels in 

each cluster, the interference increases packet loss rate, which 
increases demand due packet retransmissions and consequently 
deteriorate QoS due increase in retransmission. This causes 
errors and the performance indicators should be modified to 
include the channel error probability 𝑃𝑒  as follows: 

𝑃�𝑓𝑒 =  𝑃�𝑓𝑎(1 − 𝑃𝑒) + �1 −  𝑃�𝑓𝑎�𝑃𝑒          (20) 

𝑃�𝑚𝑑𝑒 =  𝑃�𝑚𝑑𝑒(1 − 𝑃𝑒) + (1 −  𝑃�𝑚𝑑𝑒)𝑃𝑒          (21) 

IV. COOPERATIVE HARD FUSION IN HARSH ENVIRONMENT 
Local spectrum sensing performs poorly in harsh 

environment. CSS exploits the spatial diversity from multiple 
spectrum sensing nodes, where each 𝑆𝑈𝑖  submits a one bit 
local decision to the 𝐶𝐻𝑗  through the reporting channels to 
aggregate these reports to the FC to combine these reports 
using hard fusion strategies or soft fusion strategy if reports 
have raw data. CSS improves detection performance where 
nodes in different spatial locations share their sensing reports 
with the FC to overcome uncertainties of individual decision. 
Either hard or soft fusion strategies can be used [37]. Local 
binary decisions are transmitted to FC to combine these 
sensing reports to evaluate performance indicators based on 
OR, AND, or majority voting strategies [38]. Similar to the 
local decision, the final CSS decision is measured based on 
both 𝑃𝑑 and 𝑃𝑓𝑎. 

Under ’AND’ rule FC decides the presence of PU when all 
the SU’s detects the PU signal. 

𝑃𝐷𝐴𝑁𝐷 =  ∏ 𝑃𝑑
𝑘𝑐
𝑖=1  ,  𝑃𝐹𝐴𝐴𝑁𝐷 =  ∏ 𝑃𝑓𝑎

𝑘𝑐
𝑖=1          (22) 

Under ’OR’ rule, at least one of the SU’s involved in the 
sensing decides the presence of the PU. 

𝑃𝐷𝑂𝑅 =  1 −∏ �1 − 𝑃𝑑𝑖�
𝑘𝑐
𝑖=1 , 

𝑃𝐹𝐴𝑂𝑅 =  1 −∏ �1 −  𝑃𝑓𝑎𝑖�
𝑘𝑐
𝑖=1           (23) 

Under majority fusion rule (half voting rule), the 
cooperative probabilities can be simplified and formulated 
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using the normal Binomial distribution (instead of Poisson-
Binomial) to become: 

𝑄𝑑𝑀𝐴𝐽 =   ∑ �𝑘𝑐𝑙 �
𝑘𝑐
𝑙=𝑖 𝑃𝑑𝑙  (1 −  𝑃𝑑)𝑘𝑐−𝑙         (24) 

𝑄𝑓𝑎𝑀𝐴𝐽 =   ∑ �𝑘𝑐𝑙 �
𝑘𝑐
𝑙=𝑖 𝑃𝑓𝑙  (1 −  𝑃𝑓)𝑘𝑐−𝑙         (25) 

In harsh environment, performance indicators are modified 
to include 𝑃𝑒  as follow: 

𝑄𝑑𝑒𝑀𝐴𝐽𝑂𝑅𝐼𝑇𝑌 =   ∑ �𝑘𝑐𝑙 �
𝑘𝑐
𝑙=𝑖 𝑃𝑑𝑒𝑙  (1 −  𝑃𝑑𝑒)𝑘𝑐−𝑙        (26) 

𝑄𝑓𝑎𝑒𝑀𝐴𝐽𝑂𝑅𝐼𝑇𝑌 =   ∑ �𝑘𝑐𝑙 �
𝑘𝑐
𝑙=𝑖 𝑃𝑓𝑎𝑒𝑙  (1 −  𝑃𝑓𝑎𝑒)𝑘𝑐−𝑙        (27) 

𝑄𝑚𝑑𝑒𝑀𝐴𝐽𝑂𝑅𝐼𝑇𝑌 = 1 −  ∑ �𝑘𝑐𝑙 �
𝑘𝑐
𝑙=𝑖 𝑃𝑚𝑑𝑒

𝑘𝑐−𝑙  (1 −  𝑃𝑚𝑑𝑒)𝑙       (28) 

V. PROPOSED FUZZY INFERENCE SYSTEM 
In harsh environments, depending on energy statistic as the 

only parameter to detect 𝑃𝑈 is not enough to correctly detect 
the spectrum, as the received energy samples are corrupted by 
propagation impairments which cause performance degradation 
at low values of SNR. Fuzzy logic can deal with uncertainty in 
data by converting imprecise data into precise data. The FIS 
utilizes four steps of fuzzification, fuzzy inference engine, 
fuzzy rule base, and defuzzification as depicted in Fig. 1. 

The fuzzification converts crisp values into linguistic 
variables to determine the membership function in which the 
fuzzy rule IF-THEN is applied to form the new outputs set. 
Three antecedents or descriptors are combined compute the 
spectrum detection decision. The first descriptor is energy 
difference, the second is the channel condition or SNR, and 
third is the local probability of detection which is directly 
computed. Each descriptor is assigned three linguistic variables 
to compute the reliable probability of detection. The defuzzifier 
computes the crisp output from the rule output sets. 

The FIS computes reliable spectrum decision based on 
these three descriptors. Each is divided into three levels of 
linguistic values to reflect different degree of membership of 
input linguistic variables. These values are set after analyzing 
their range. The Fuzzification converts crisp values into 
linguistic variables. The rule base consists of a number logic 
rules in the form IF-THEN statements, where ‘IF’ part of the 
rule is called ‘antecedent’ and the ‘THEN’ part of the rule is 
called ‘consequent’. These rule clauses depend on the number 
of linguistic variables and membership functions to find 
optimal solutions. The three descriptors are computed as 
follows. 

A. Energy Matrix 
The energy matrix is constructed from the received reports 

and the absolute energy difference 𝐷𝐼𝐹𝐹 𝑖
𝑗 for each 𝑆𝑈𝑖

𝑗  from 
the average energy for all other 𝑆𝑈𝑠  in each cluster 𝑗  is 
computed by neglecting the 𝑆𝑈𝑖

𝑗 result in each sensing interval 
to evaluate impact of not including this particular 𝑆𝑈𝑖

𝑗  in the 
result. The energy difference matrix 𝐷𝐼𝐹𝐹 𝑖

𝑗 for each node 𝑖 in 
cluster 𝑗 is formulated as 

𝐷𝐼𝐹𝐹 𝑖
𝑗 =  �𝐸𝑖

𝑗 −  1
𝑘𝑐

 ∑ 𝐸𝑖
𝑗𝑘𝑐

𝑗=1 (𝑗 = 1,2, … , 𝑐)�        (29) 

 
Fig. 1. Proposed Fuzzy Inference System. 

The total number of 𝑆𝑈𝑖
𝑗
𝑖
 in cluster j is 𝑘𝑗 , where 𝑘1, 𝑘2 , 

…., 𝑘𝑐 and  1 ≤ 𝑗 ≤ 𝑐 means that  𝑘1 𝑆𝑈𝑠 in Cluster 1, 𝑘2 𝑆𝑈𝑠 
in Cluster 2,… 𝑘𝑐 𝑆𝑈𝑠 in cluster “c”, respectively. The average 
value of energy reports of all other SUs is evaluated by keeping 
away the sensing report of the 𝑆𝑈𝑖 out of the average cluster’s 
energy. This value is standardized to get its consistent 
dimensions as follows: 

𝐷𝐼𝐹𝐹 𝑖
𝑗 =  𝐷𝑖𝑓𝑓𝑚𝑎𝑥− 𝐷𝐼𝐹𝐹 𝑖

𝑗

𝐷𝑖𝑓𝑓𝑚𝑎𝑥− 𝐷𝑖𝑓𝑓𝑚𝑖𝑛
           (30) 

Energy difference to cluster average ( 𝐷𝑖𝑓𝑓 𝑗𝑖 ) is the 
Absolute differences of the sensing energy of 𝑆𝑈𝑖

𝑗  with the 
average sensing energy provided by all other SUs in each 
cluster. It has three linguistic values of Low, Medium, and 
High. 

B. Channel Condition Matrix 
The SNR, computed as (𝛾𝑖

𝑗)  , is standardized to get its 
consistent dimensions as follows: 

𝛾𝑖
𝑗 =  𝛾𝑚𝑎𝑥−𝛾𝑖

𝑗

𝛾𝑚𝑎𝑥− 𝛾𝑚𝑖𝑛
            (31) 

𝛾𝑖
𝑗  has three linguistic values of Poor, Adequate, and 

Excellent. 

C. Probability of Detection Matrix 
The local probability of detection for each 𝑆𝑈𝑖

𝑗 is defined 
as 𝑃𝑑𝑖  which has three linguistic values of Low, Medium, and 
High. 

D. Reliable Probability of Detection 
The output linguistic values that represent reliable decision 

for each 𝑆𝑈𝑖
𝑗and defined as 𝑃𝑑𝑖

𝑗 has seven linguistic values of 
Very High, High, Med High, Mid, Mid Low, Low, Very Low.  
Since there are three inputs parameters, each of them have 
three levels, a total of 27 fuzzy rules are used. The output is 
defuzzified to convert fuzzy output into crisp values again 
which is the actual output of the system or the reliable 𝑃𝑑,𝑖

𝑗  
spectrum sensing decision. 
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E. Membership Functions 
Many types of membership functions can be used to cover 

the complete input and output range, from which triangle and 
trapezoidal membership functions are the most useful types 
due to their simplicity to determine their degrees of 
membership. The middle levels of the three inputs re 
represented by triangle membership functions and the other 
levels are represented by trapezoidal membership functions. 
The seven-output linguistic variable are represented by 
triangular function as shown in Fig. 2. The two extreme IF-
ELSE statement rules fall between these two cases: 

Case (1): If 𝐷𝑖𝑓𝑓 𝑗𝑖   is high, 𝛾𝑖
𝑗 is poor, and 𝑃𝑑,𝑖

𝑗  is low then 
Reliable 𝑃𝑑,𝑖

𝑗  is verylow. 

Case (2): If 𝐷𝑖𝑓𝑓 𝑗𝑖   is low, 𝛾𝑖
𝑗 is excellent, and 𝑃𝑑,𝑖

𝑗  is high 
then Reliable 𝑃𝑑,𝑖

𝑗  is veryhigh. 

 
Fig. 2. The Input and Output Membership Functions. 

VI. SIMULATION AND RESULT DISCUSSIONS 
The cluster architecture is naturally suitable for all sectors 

of the smart grid, one of which is the Home Area Networks 
(HANs). HANs consist of a large number of smart appliances 
that communicate with utility to support various smart grid 
applications. This environment is simulated with all of the 
required simulation parameters selected based on this specific 
environment. The sensing reports are collected and transmitted 
to the corresponding CH which aggregate these reports to the 
FC to compute reliable spectrum decision based on the 
proposed FIS. The range of the inputs and outputs of the three 
descriptors are selected based on experience acquired from 
running several simulations. The numerical values are then 
correlated with linguistic variables describing their degree of 
belonging to each of the three variables. A rule table, in the 
form of if-then statements, is used to represent the fuzzy rules 
to generate the values after defuzzification is done on the 
output. 

A. Simulation Environment 
The network nodes are assumed to be static SUs and are 

deployed within an area of 100mx100m. SUs are assumed to 
have a single interface that can switch among C traffic 
channels accessed opportunistically, along with the predefined 
common control channel. These SUs coexist with M PUs that 

can appear on C channels. The SUs can opportunistically 
access the available licensed channels only when PU is not 
active. The PU activity is modelled as independent and 
identically distributed random process with busy and vacant 
probabilities. Nodes are assumed to sense highly correlated sets 
of channels. Each cluster is assumed to have only 5 available 
channels to generate congestion. The propagation parameters 
are selected to give a high impact of environment. The traffic 
parameters are also selected based on data traffic load found in 
most HAN applications, which have a periodic traffic that is 
generated with constant bit rate (CBR) packets and have a rate 
of one data packet every 5 seconds to overload the network. 
Each packet has a size of 512 bytes, which corresponds to most 
smart grid applications. In addition, the data rate is set to the 
maximum data rate 250 kbps. The common simulation 
parameters are presented in Table I. 

TABLE I. COMMON SIMULATION PARAMETERS 

Parameter Values Parameter Values 

Network radius 100 m Target Probability of 
false alarm 𝑃𝑓𝑎 0.1 

FC location 50 m,50 m Target Probability of 
detection 𝑃𝑑 0.9 

Unlicensed Band IEEE802.15.4 Channel Error 
probability 𝑃𝑒 

0.3 

Number of SUs 100 Super frame duration 10 msec 

SU coverage radius 35 m Sensing report duration 
𝑇𝑠 

1 msec 

Number of channels 5 Sampling duration 𝜏 0.1 msec 

Path loss exponent 4.2 Number of samples (𝒮) 500 

Shadowing Variance 4.0 PU coverage radius 50 m 

Receiver sensitivity -85 dBm Number of PU 5 

licensed Band IEEE802.11 Frequency band 2.4 GHz 

B. Simulation Results and Analysis 
The impact of various environments, for different values of 

𝑆𝑁𝑅, on the probability of detection for various fusion rules of 
OR, AND, Majority rule, and the proposed fuzzy fusion under 
both AWGN and harsh environment are presented in Fig. 3. 
Generally, the cluster based CSS enhances performance over 
local decision in harsh environment. The OR logic rule with 
and without error shows good performance compared to AND 
rule and Majority rule. The proposed fuzzy fusion has the 
highest detection probability in AWGN environment than other 
fusion rules due to enhancement in decision accuracy. 
However, the harsh environment has caused severe threat to 
reliability of sensing reports and threaten network operation 
due to failure to find any available spectrum. This has degraded 
performance in all schemes and reduced detection accuracy at 
lower values of SNR. The developed FIS was effective to 
enhance spectrum detection using three fuzzy descriptors of 
sensing node energy, channel condition, and local sensing 
decision. At the sensing node, lower values of 𝑆𝑁𝑅 indicate 
unreliable sensing environment which introduce errors and 
degrade the reliability of sensing reports. 

The performance of all fusion rules is degraded 
significantly under lower values of 𝑆𝑁𝑅 which made spectrum 
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sensing difficult due to incorrect reception of sensing reports 
and inability to differentiate signal from noise. The degradation 
in detection probability for all schemes is due to inaccurate 
sensing reports that cause uncertainty and render the energy 
detector useless. For a target 𝑃𝑓𝑎𝑖 , as 𝑆𝑁𝑅  increases, higher 
values of  𝑃𝑑𝑖  is achieved as nodes are able to properly detect 
spectrum and provide more reliable sensing reports. The 
proposed fuzzy fusion has better performance than AND and 
Majority fusion rules due to enhancement in decision accuracy 
even at smaller values of 𝑆𝑁𝑅. 

The harsh environment which is prone to error and sensing 
reports may not be received correctly have greatly affected all 
schemes and decreased the probability of detection. The fuzzy 
fusion was able to maintain the performance to a certain limit 
after which it could not compensate for errors introduced in 
environments. However, the OR logic fusion shows relatively 
good performance than the proposed fuzzy fusion and was able 
to achieve good performance even in harsh environment. 

The probability of detection against probability of false 
alarm is presented in Fig. 4, which the proposed fuzzy fusion is 
compared with both majority fusion and local detection under 
both AWGN and harsh environments. The proposed fuzzy 
fusion in AWGN is shown for comparison which has the 
highest detection probability than other fusion rules due to 
enhancement in decision accuracy. The proposed FIS has 
enhanced the detection probability compared to other schemes 
and it is able to provide a sustainable solution to solve both 
spectrum scarcity and reliability problems in harsh 
environments. The reliable fuzzy based spectrum detection has 
accurately mitigated the impact of unreliable environment and 
has achieved more efficient and robust detection than other 
schemes. However, harsh environment is prone to error and 
sensing reports may not be received and this causes lower 
performance of the proposed fuzzy fusion under harsh 
environment as compared to the AWGN case. 

 
Fig. 3. The Probability of Detection Against Signal to Noise Ratio. 

 
Fig. 4. The Probability of Detection Against Probability of False Alarm. 

Fig. 5 plots the probability of miss detection against 
probability of false alarm 𝑃𝑓𝑎  for different SNR. At lower 
SNR, performance deteriorates mainly because the energy 
detection method is based on received signal’s energy and 
consequently higher noise levels at receiver greatly impact 
performance indicators. The probability of miss detection 
increases with the decrease in SNR and the harsh environment 
which introduces errors that leads to incorrect reception of 
sensing reports. At lower values of SNR, the probability of 
miss detection reaches 0 only when probability of false alarm 
is close to 1. However, for better values of SNR, lower values 
of probability of miss detection is achieved at lower values of 
probability of false alarm. 

 
Fig. 5. Probability of Miss Detection Against Probability of False Alarm. 

The lower values of probability of miss detection is 
achieved only at higher SNR. However, at lower SNR, nodes 
cannot recognize the signal and could identify the signal as a 
noise and consequently it will consider channel as vacant. The 
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harsh environment is subjected to errors that impact probability 
of false alarm  𝑃𝑓𝑎 which occurs if an idle channel is detected 
as busy and may lead to a potentially wasted opportunity for 
the SU to transmit. Also it impact the probability of miss 
detection  𝑃𝑚𝑑 which occurs when a busy channel is detected 
as idle and could potentially lead to a collision or interference 
with the PU, leading to wasted transmissions for both PU and 
SU. 

VII. CONCLUSION AND FUTURE WORK 
This paper proposes the use of a fuzzy inference system to 

enhance spectrum detection in a cluster based cooperative 
spectrum sensing in harsh environment. The proposed fuzzy 
based soft fusion is simulated and evaluated using the 
probability of detection and the probability of false alarm. The 
results indicated that the proposed FIS have significantly 
outperforms other fusion rules in harsh environment. It was 
effective to enhance probability of detection and provide more 
robust fusion decision by incorporating environment in 
decision making. 

In this paper, the QoS was assumed to be satisfied by only 
accessing the available spectrum, however, various 
applications demand different data rates and use different data 
size with various transmission times which need to adapt to the 
PU activities. The PU’s activities was fixed and the proposed 
FIS urgently needs to consider PU activities, sort the available 
channels based on their quality, and allocate available spectrum 
based on QoS requirements. Further maximization is expected 
by adapting sensing parameter to react to environment 
accordingly. However, these sensing parameters should be 
optimized along with other parameters to satisfy the QoS 
requirements of diverse applications. An immediate future 
work will be the development of this complex problem. 

REFERENCES 
[1] Melike Yigit, V. Cagri Gungor, E. Fadel, L. Nassef, N. Akkari and I. F. 

Akyildiz, “Channel-Aware Routing and Priority-Aware Multi-Channel 
Scheduling for WSN-Based Smart Grid Applictions”, Journal of 
Network and Computer Applications, vol. 71, pp. 50-58, 2015. 
https://doi.org/10.1016/j.jnca.2016.05.015. 

[2] Yin XC, Liu ZG, Nkenyereye L and Ndibanje B, “Toward an Applied 
Cyber Security Solution in IoT-Based Smart Grids: An Intrusion 
Detection System Approach”, Sensors (Basel), vol. 19, no. 20, 2019. 
DOI: 10.3390/s19224952. 

[3] Laila Nassef, Remah Elhebshi and Linta Jose, “Evaluating Performance 
of Wireless Sensor Network in Realistic Smart Grid Environment”, 
International Journal of Wireless & Mobile Networks, vol. 10, no. 3, pp. 
27-36, 2018. DOI: 10.5121/ijwmn.2018.10303. 

[4] Etimad Fadel, V.C. Gungor, Laila Nassef, Nadine Akkari, M.G. Abbas 
Malik, Suleiman Almasri and Ian F. Akyildiz, “A Survey on Wireless 
Sensor Networks for Smart Grid”, Computer Communications, vol. 71, 
pp. 22-33, 2015. https://doi.org/10.1016/j.comcom.2015.09.006. 

[5] Ian F. Akyildiz, Won-Yeol Lee, Mehmet C. Vuran and Shantidev 
Mohanty, “Next Generation/Dynamic Spectrum Access/Cognitive Radio 
Wireless Networks: A Survey”, Computer Networks, vol. 50, no. 13, pp. 
2127-2159, 2006. https://doi.org/10.1016/j.comnet.2006.05.001. 

[6] Xin-Lin Huang, Xiao-Wei Tang and Fei Hu, “Dynamic Spectrum 
Access for Multimedia Transmission Over Multi-User, Multi-Channel 
Cognitive Radio Networks”, IEEE Transactions on Multimedia, pp. 201 
- 214, 2020. DOI: 10.1109/TMM.2019.2925960. 

[7] James Adu Ansere, Guangjie Han, Hao Wang and Celimuge Wu, “A 
Reliable Energy Efficient Dynamic Spectrum Sensing for Cognitive 
Radio IoT Networks”, IEEE Internet of Things Journal, vol. 6, no. 4, pp. 
6748 - 6759, 2019. DOI: 10.1109/JIOT.2019.2911109. 

[8] Yu Qiao, Alex Liu and Lejun Zhang, “EESS: An Energy-Efficient 
Spectrum Sensing Method by Optimizing Spectrum Sensing Node in 
Cognitive Radio Sensor Networks”, Hidawi Journal, 2018. 
https://doi.org/10.1155/2018/9469106. 

[9] Xue Zhang, Xiaozhu Liu, Hooman Samani and Brian Jalaian, 
“Cooperative Spectrum Sensing in Cognitive Wireless Sensor 
Networks”, International Journal of Distributed Sensor Networks, 2015. 
https://doi.org/10.1155/2015/170695. 

[10] Laila Nassef , Reemah El-Habshi and Linta Jose, “Clustering-Based 
Routing For Wireless Sensor Networks In Smart Grid Environment”, 
International Journal of Advanced Smart Sensor Network Systems 
(IJASSN), vol. 8, no. 1, 2018. DOI:10.5121/ijassn.2018.8301. 

[11] E. Fadel, M. Faheem, V. Gungor, L. Nassef, N. Akkari, M. A. Malik, S. 
Almasri and I. F. Akyildiz, “Spectrum-Aware Bio-Inspired Routing in 
Cognitive Radio Sensor Networks for Smart Grid Applications”, 
Computer Communications, vol. 101, pp. 106-120, 2017. 
https://doi.org/10.1016/j.comcom.2016.12.020. 

[12] Dr. Laila Nassef and Reemah Alhabshi, “Energy Efficient Fuzzy Based 
Clustering for Cognitive Radio Wireless Sensor Networks”, 
International Journal of Electrical & Computer Sciences IJECS-IJENS, 
vol. 18, no. 5, 2018, ISSN: 2077-1231 (Online), 2227-2739 (Print). 

[13] Dost Muhammad Saqib Bhatti, Nasir Saeed and Haewoon Nam, “Fuzzy 
C-Means Clustering and Energy Efficient Cluster Head Selection for 
Cooperative Sensor Network”, Sensor, vol. 16, no. 9, 2016. DOI: 
10.3390/s16091459. 

[14] Dina Tarek, Abderrahim Benslimane, M. Darwish and Amira M. Kotb, 
“Survey on Spectrum Sharing/Allocation for Cognitive Radio Networks 
Internet of Things”, Egyptian Informatics Journal, 2020. 
https://doi.org/10.1016/j.eij.2020.02.003. 

[15] Muhammad Waqas Khan and Muhammad Zeeshan, “QoS-Based 
Dynamic Channel Selection Algorithm for Cognitive Radio Based Smart 
Grid Communication Network”, Ad Hoc Networks, vol. 87, pp. 61-75, 
2019. https://doi.org/10.1016/j.adhoc.2018.11.007. 

[16] Laila Nassef and Reemah Alhebshi, “Secure Spectrum Sensing In 
Cognitive Radio Sensor Networks: A Survey”, International Journal of 
Computational Engineering Research (IJCER), vol. 6, no. 3, p. 2250 – 
3005, 2016. 

[17] Pankaj Verma and Brahmjit Singh , “On the decision fusion for 
cooperative spectrum sensing in cognitive radio networks”, Wireless 
Networks, pp. 2253 - 2262, 2017. https://doi.org/10.1007/s11276-016-
1285-0. 

[18] Thuc Kieu-Xuan and Insoo Koo, “A Cooperative Spectrum Sensing 
Scheme Using Fuzzy Logic for Cognitive Radio Networks”, KSII 
TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS, 
vol. 4, no. 3, pp. 289 - 304, 2010. DOI: 10.3837/tiis.2010.06.006. 

[19] Jaewoo So and Wonjin Sung, “Group-Based Multibit Cooperative 
Spectrum Sensing for Cognitive Radio Networks”, IEEE Transactions 
on Vehicular Technology, vol. 65, no. 12, pp. 10193 - 10198, 2016. 
DOI: 10.1109/TVT.2016.2536659. 

[20] Junhai Luo and Xiaoting He, “A Soft–Hard Combination Decision 
Fusion Scheme for a Clustered Distributed Detection System with 
Multiple Sensors”, Sensor, vol. 18, 2018. DOI: 10.3390/s18124370. 

[21] Yin Mi, Guangyue Lu, Yuxin Li and Zhiqiang Bao, “A Novel Semi-Soft 
Decision Scheme for Cooperative Spectrum Sensing in Cognitive Radio 
Networks”, Sensor, vol. 19, no. 11, 2019. DOI: 10.3390/s19112522. 

[22] Yuanhua Fu, Fan Yang and Zhiming He, “A Quantization-Based 
Multibit Data Fusion Scheme for Cooperative Spectrum Sensing in 
Cognitive Radio Networks”, Sensor Journal, vol. 18, no. 2, 2018. DOI: 
10.3390/s18020473. 

[23] Dongho Seo, Hyeongyun Kim and Haewoon Nam, “SDR 
Implementation of Energy Detection With Non-Uniform Quantization 
Scheme”, in International Conference on Information and 
Communication Technology Convergence (ICTC), Jeju, South Korea, 
2017. DOI: 10.1109/ICTC.2017.8190814. 

[24] Huayan Guo, Nima Reisi, Wei Jiang and Wu Luo, “Soft Combination 
for Cooperative Spectrum Sensing in Fading Channels”, IEEE Access, 
vol. 5, pp. 975 - 986, 2016. DOI: 10.1109/ACCESS.2016.2628860. 

[25] Ibrahim Mustapha, Borhanuddin Mohd Ali, Mohd Fadlee A Rasid, 
Aduwati Sali and Hafizal Mohamad, “An Energy-Efficient Spectrum-

171 | P a g e  
www.ijacsa.thesai.org 



(IJACSA) International Journal of Advanced Computer Science and Applications, 
Vol. 11, No. 8, 2020 

Aware Reinforcement Learning-Based Clustering Algorithm for 
Cognitive Radio Sensor Networks”, Sensor, vol. 15, no. 8, 2015. DOI: 
10.3390/s150819783. 

[26] Dost Muhammad Saqib Bhatt, Nasir Saeed and Haewoon Nam, “Fuzzy 
C-Means Clustering and Energy Efficient Cluster Head Selection for 
Cooperative Sensor Network”, Sensor, vol. 16, no. 9, 2016, 
https://doi.org/10.3390/s16091459. 

[27] Hong-Sam T. Le, Hung D. Ly and Qilian Liang , “Opportunistic 
Spectrum Access Using Fuzzy Logic for Cognitive Radio Networks 
Hong-Sam”, Springer, vol. 18, p. 171–178, 2011, 
https://doi.org/10.1007/s10776-011-0148-y. 

[28] Sylwia Romaszko and Petri Mähönen, “Fuzzy Channel Ranking 
Estimation in Cognitive Wireless Networks”, in IEEE Wireless 
Communications and Networking Conference (WCNC), Istanbul, 
Turkey, 2014. DOI: 10.1109/WCNC.2014.6952964. 

[29] Giri Prasad Raman and Venkatesan Perumal, “Neuro-Fuzzy Based Two-
Stage Spectrum Allocation Scheme to Ensure Spectrum Efficiency in 
CRN–CSS Assisted by Spectrum Agent”, IET Circuits, Devices & 
Systems, vol. 13, no. 5, pp. 637 - 646, 2019. DOI: 10.1049/iet-
cds.2018.5128. 

[30] Vasudev Dehalwar, Akhtar Kalam, Mohan Lal Kolhe and Aladin 
Zayegh, “Compliance of IEEE 802.22 WRAN for Field Area Network 
in Smart Grid”, in IEEE International Conference on Power System 
Technology (POWERCON), Wollongong, NSW, Australia, 2016. DOI: 
10.1109/POWERCON.2016.7754046. 

[31] Gyanendra Prasad Joshi, Srijana Acharya and Sung Won Kim, “Fuzzy-
Logic-Based Channel Selection in IEEE 802.22 WRAN”, Information 
Systems, 2015. https://doi.org/10.1016/j.is.2014.05.009, vol. 48, pp. 
327-332, 

[32] Muhammad Waqas Khan and Muhammad Zeeshan, “Fuzzy Inference 
Based Adaptive Channel Allocation for IEEE 802.22 Compliant Smart 

Grid Network”. Telecommunication Systems, vol. 72, p. 339–353, 2019. 
https://doi.org/10.1007/s11235-019-00570-y. 

[33] Thompson Stephan, Fadi Al-Turjman, K. Suresh Joseph, Balamurugan 
Balusamy and Sweta Srivastava, “Artificial Intelligence Inspired Energy 
and Spectrum Aware Cluster Based Routing Protocol for Cognitive 
Radio Sensor Networks”, Journal of Parallel and Distributed Computing, 
2010, https://doi.org/10.1016/j.jpdc.2020.04.007, vol. 142, pp. 90-105. 

[34] Mir Mehedi Ahsan Pritom, Sujan Sarker, Md. Abdur Razzaque, 
Mohammad Mehedi Hassan, M. Anwar Hossain and Abdulhameed 
Alelaiwi, “A Multiconstrained QoS Aware MAC Protocol for Cluster-
Based Cognitive Radio Sensor Networks”, International Journal of 
Distributed Sensor Networks, 2015, https://doi.org/10.1155/2015/ 
262871. 

[35] Noor Salout, Faroq Awin, Esam Abdel-Raheem and Kemal Tepe, 
“Combined Fusion Schemes for Cluster-Based Spectrum Sensing in 
Cognitive Radio Networks”, in IEEE International Symposium on 
Signal Processing and Information Technology (ISSPIT), Louisville, 
KY, USA, USA, 2018, DOI: 10.1109/ISSPIT.2018.8642636. 

[36] V. C. Gungor and M. K. Korkmaz, “Wireless Link-Quality Estimation 
in Smart Grid Environments”, International Journal of Distributed 
Sensor Networks, 2012, https://doi.org/10.1155/2012/214068. 

[37] J. Wang, I.-R. Chen, J. J. Tsai and D.-C. Wang, “Trust-Based 
Mechanism Design for Cooperative Spectrum Sensing in Cognitive 
Radio Networks”, Computer Communication, vol. 116, pp. 90-100, 
2018, https://doi.org/10.1016/j.comcom.2017.11.010. 

[38] Ju Ren, Yaoxue Zhang, Qiang Ye, Kan Yang, Kuan Zhang and Xuemin 
Sherman Shen, “Exploiting Secure and Energy-Efficient Collaborative 
Spectrum Sensing for Cognitive Radio Sensor Networks”, IEEE 
Transactions on Wireless Communications, vol. 15, no. 10, pp. 6813 - 
6827, 2016. DOI: 10.1109/TWC.2016.2591006. 

 

172 | P a g e  
www.ijacsa.thesai.org 


	I. Introduction
	II. Related Work
	III. Local Decision  in Various Environments
	A. Non-Fading AWGN Environments
	B. Error Free Fading Environment
	C. Harsh Environment

	IV. Cooperative Hard Fusion in Harsh Environment
	V. Proposed Fuzzy Inference System
	A. Energy Matrix
	B. Channel Condition Matrix
	C. Probability of Detection Matrix
	D. Reliable Probability of Detection
	E. Membership Functions

	VI. Simulation and Result Discussions
	A. Simulation Environment
	B. Simulation Results and Analysis

	VII. Conclusion and Future Work

