
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 8, 2020

Developing a Radiating L-shaped Search Algorithm
for NASA Swarm Robots

Tariq Tashtoush*1, Jalil Ahmed2, Valeria Arce3, Heriberto Dominguez4, Kevin Estrada5, William Montes6,
Ashley Paredez7, Pedro Salce8, Alexia Serna9, Mireya Zarazua10

School of Engineering
Texas A&M International University

Laredo, TX, 78041 USA

Abstract—This paper focuses on designing a search algorithm
that the DustySWARM team used in the 2019 NASA Swarmathon
competition. The developed search algorithm will be implemented
and tested on multiple rovers, a.k.a. Swarmies or Swarm Robots.
Swarmies are compact rovers, designed by NASA to mimic Ants
behavior and perform an autonomous search for simulated Mars
resources. This effort aimed to assist NASA’s mission to explore
the space and discover new resources on the Moon and Mars.
NASA’s going-on project has the goal to send robots that explore
and collect resources for analysis before sending Astronauts,
as the swarm option is safer and more affordable. All rovers
must utilize the exact algorithm and collaborate and cooperate
to find all available resources in their search path and retrieve
them to the space station location. Additionally, swarmies will
autonomously search while avoiding obstacles and mapping the
surrounding environment for future missions. This algorithm
allows a swarm of six robots to search an unknown area for
simulated resources called AprilTags (cubes with QR codes).
The code was developed using C/C++, GitHub, and Robotics
Operation Systems (ROS) and tested by utilizing the Gazebo
Simulation environment and by running physical trials on the
swarmies. The team analyzed a few algorithms from previous
years and other researchers then developed the Radiating L-
Shape Search (RLS) Algorithm. This paper will summarize the
algorithm design, code development, and trial results that were
provided to the NASA Space Exploration Engineering team.

Keywords—NASA Swarmathon competition; swarm robotics;
search algorithm; autonomous; Robot Operating System (ROS);
NASA space exploration; simulation; autonomous robot swarm;
collaborative robots; autonomous behavior; cooperative robots;
swarmies; L-Shaped search; GitHub

I. INTRODUCTION

National Aeronautics and Space Administration (NASA)
has been leading the space exploration since before humans
even landed on the moon. The first probes and satellites are
designed to be unmanned. Nowadays, NASA is looking to
utilize robots to their full potential, because there are many
habitats in which humans will not be able to explore without
costly equipment to protect them from the planets hazardous
ecosystem [1-3]. This goal can be achieved by using small
and inexpensive rovers to explore new planets surfaces while
maintaining low costs. Not only costs would be kept low,
but safeguarding our astronauts from potential dangers until
planets have been analyzed enough to ensure their safety.
Robots help prevent putting humans in hazardous situations
and they will reduce the cost related to transporting humans

to space. For instance, humans would require a constant supply
of water, food, and oxygen. All this would prove to be far too
costly to be feasible whereas robots can be crammed anywhere
on a spaceship without the need for food or water just energy.
This energy could be harnessed from solar panels set up on
the planet by the robots themselves.

Not just any robot can be designed and sent into space,
for example, if an expensive rover is sent into outer space and
was damaged then it would be almost impossible or too costly
to send either another robot or a human to do the required
repair. With this in mind, NASA decided that the best course
of action would be to send inexpensive rovers, which are
mostly 3D printed and running on budget-friendly components
[2-6]. To make this more effective, NASA is analyzing the
possibility of having multiple small robots “swarmies” that are
programmed with an ant-like behavior. These rovers traverse
exploring multiple areas, collect resources, and communicate
with each other, which will allow searching a wider area at a
time, a swarmie robot is shown in Fig. 1.

Fig. 1. DustySWARM Swarmie Robot

The University of New Mexico (UNM) were the founders
of Swarmathon competition, Dr. Melanie Moses and Joshua

www.ijacsa.thesai.org 9 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 8, 2020

Hecker constructed the SwarmBaseCode-ROS to have a foun-
dation to start developing new search algorithms [2-10]. After
founding the competition with the support of Theresa Mar-
tinez, NASA manager of Minority University Research and
Education Program STEM Management, it was turned into
a national level competition. The competition has historically
been composed of three parts: Physical Competition, Virtual
Competition, and High School Competition.

For the 2019 competition, NASA has decided to have
a Virtual competition only. The focus was to develop and
simulate a code that will be used on multiple rovers at the
same time. One of the most significant changes to this year’s
challenge was the use of six rovers instead of three. Each
rover has around 16 main controller components that control
the swarmie’s behavior. The most fundamental controllers are
the Search Controller, the Pickup Controller, the Drop off Con-
troller, and the Obstacle Avoidance. All coding was conducted
using Ubuntu-based C programming and GitHub was utilized
to share codes and monitor updates and modifications between
the swarmies, team members, and NASA, which was a very
valuable tool to implement all Software Engineering principles.

Throughout the literature review, the team was able to
analyze the code provided by UNM, Durham Technical Col-
lege team, Florida International University, and the Japanese
Rovers on the asteroid. The team planned to modify the
search controller code as it is a major component in a
successful search algorithm. The change from the previous
DustySWARM team’s Square Spiral Search (SSS) into an L
-shaped search will allow the robots to move from the square
field center to its outside border. Swarmie team consist of six
rovers, where a rover will be located at the middle of each
side of the squared home base and two extra rovers that each
will be placed randomly at the home base corner. This means
two extra rovers would be covering same areas, as all rovers
must run the same code. Therefore, to solve this overlapping
of resources, DustySWARM team decided to set up these two
extra rovers with an alternate search route. Essentially, these
two extra rovers will go out beyond the scope of the side rovers
(using the L-Shape) and cover two quadrants each.

The paper is organized as follows: Section 2 is a back-
ground and literature review, Section 3 describes the problem
statement and challenge provided by NASA, Sections 4 deals
the methodology, while Section 5 illustrates the proposed so-
lutions and implementations, Section 6 summarises the results
of both simulations physical runs, and Section 7 concludes the
paper and describe the team future plan.

II. LITERATURE REVIEW

The purpose of the project is to create inexpensive im-
proved rover systems that can perform multiple functions, such
as image capturing, rock mining, and data collection. There
have already been many instances where rovers, as such, are
utilized [2-5].

One concurrent example is the Japan Aerospace Explo-
ration Agency (JAXA) small rover that was sent to analyze
the surface of an asteroid that is about 280 million kilometers
away from Earth. This rover has a designed movement that
allow a jumping action, which allowed capturing images of
the asteroid and transmit them back to researchers on Earth

[11-12]. This is one of many examples in the breakthrough of
space exploration using inexpensive space rovers, which lays
the foundation in the lore of how the project began its life.

To achieve the project goal, the team was engaged in the
engineering process formulating using past resources. Every
year, each new DustySWARM team may have the decision to
either revise and improve previous search patterns or create
a completely new algorithm that will be implemented from
scratch. DustySWARM teams developed a couple of search
algorithms for NASA Swarmathon challenge and competed
against multiple schools across the nation. They dedicate time
to obtain the most optimal path for rovers and alias swarmies
to work autonomously and in synchrony. The swarmies must
search, retrieve, and deliver AprilTags to the home base within
a designated arena and given time limit.

DustySWARM 1.0 team developed a reverse twister search
algorithm that depends on Archimedean Spiral using para-
metric equations, where rovers followed a counter-clockwise
rotation spiral shown in Fig. 2 [13-14].

Fig. 2. Archimedean Spiral

DustySWARM 2.0 team analyzed multiple other possible
search patterns before they selected their search pattern; Spiral
Search was listed as one of their alternatives. Throughout mul-
tiple endeavors, DustySWARM team decided on an original
path of a spiral path; however, this proved to be inefficient as
rovers were not able to explore corners as the team wished. As
a result, the team design evolved towards a Spiral Epicycloidal
Wave (SEW) path [15-16]. Fig. 3 shows a visual representation
of this path. In non-technical terms, the path is essentially
a continuous spiral, what would allow maximum coverage.
However, there are limitations with circular search patterns,
such as the competition field has squared corners. However,
the team was well aware of the corner situation and it was
decided as a constraint/trade-off to the selected path. They
proceeded with the path since it would be easier to implement
within three to six rovers with minimum complications.

The DustySWARM 2.0 team divided the effort into three

www.ijacsa.thesai.org 10 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 8, 2020

Fig. 3. DustySWARM Spiral Epicycloidal Search Pattern

main concepts, namely, rover task division, square spiral pat-
tern, and spiral motion. The purpose of the rover task division
was to dedicate two rovers searching the middle-section of
the arena and one of the rovers searching the boundaries.
However, this design was discarded since some regulation had
been enforced that rovers cannot be individually programmed;
meaning that there is only one search algorithm for all rovers.
The second concept was the square spiral pattern, where the
rovers will scan the area to perform a square spiral path.
However, whenever a rover encountered a resource, the rover
would return to the home original position and forget it last
AprilTags pick-up position it was in. The last design was
spiral motion following an Archimedean Spiral through the
implementation of parametric equations.

DustySWARM utilized two separate processes in the ex-
perimental observations period: a sinusoidal modulation and
pulsatory modulation. The sinusoidal modulation consists of
exposing the reactor with a rotation period of 30.31 seconds
and a wavelength of 1.71 millimeters. The obtained results
indicated the formation of hypocycloids and epicycloids. For
the pulsatory modulation, the reactor was exposed to the same
light luminosity, but with short light pulses, which resulted
in a different formation, it was a pronounced linear drift.
The shape of the spiral waves resembled a similar result as
the sinusoidal modulation: a hypocycloidal and an epicycloid
trajectory. DustySWARM 2.0 built the design based on the
Spiral Epicycloidal Wave (SEW), and the equations provided
the necessary shape after converting them into C++ language
[4-6].

DustySWARM 3.0 improved the SEW and developed the
Square-Spiral Search (SSS) path shown in Fig. 4. There are
numerous advantages of using a square-spiral pattern, it will
allow rovers to survey the entirety of the arena including
corners and its simplicity will allow future adjustments to
maximize the pattern. Additionally, the rovers will be allocated
to survey a dedicated area rather than searching collectively,
which will increase the coverage percentage as shown in Fig.
5 [17-18].

Florida International University (FIU) Swarmathon team
enhanced the rovers’ performances through code optimization,
by utilizing the sensor data, and compiling it to a single
location. This methodology developed a predetermined search
pattern in which the rovers would follow. For example, rovers
would move a one-meter increment in the X-direction, and

Fig. 4. The Snake Path a.k.a Square Spiral Pattern

Fig. 5. DustySWARM 3.0 Square Searching Algorithm Path

then another one-meter in the Y-direction [19-20]. Then the
rover’s coordinates were stored and a 360-degree radial turn
will be initiated to scan for any AprilTags. If none were found,
the rover will continue its stair-step motion, but if AprilTags
were detected within the rover’s proximity, the rover would
proceed to retrieve and return the tags to the home base in one
motion as shown in Fig. 6. The rover returns to home-based
by recording the summation of all X and Y displacements that
were traveled [7-8].

Additionally, FIU team increased the turning increment for
the Object Detection to 1.57 radians (90 degrees) from the
original value of 0.2 radians (11.45 degree) which was their
solution to avoid the frequent rover collisions.

The FIU team simplified the rover collected sensor data,

www.ijacsa.thesai.org 11 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 8, 2020

Fig. 6. FIU Rovers Path

which helped in implementing a viable accurate code that
will find AprilTags. The definitions of sensor data as stored
and generated is shown in Table I. Since the Swarmathon
competition prohibits the extraction of the rover’s IP addresses,
the FIU team assigned random numbers to each rover that was
saved in a local variable (R), where the rovers would compare
the individual saved variables to each other. The difference
in data would determine their rankings. The largest random
number created by the rover would be assigned rank one, and
subsequently, the rest would follow a numerical order. This
approached was discussed in other research and illustrate its
success [21-25].

TABLE I. SENSOR DATA

Symbol Variable Variable Name Variable Location
R Robot#
T Time
CC Cube Count Detections[i].pose Mobility.cpp
X x-position currentLocation.x Mobility.cpp
Y y-position currentLocation.y Mobility.cpp
θ angular-position currentLocation.theta Mobility.cpp
S1 Left Sensor sonarLeft-rang Obstacle.cpp
S2 Center Sensor sonarCenter-rang Obstacle.cpp
S3 Right Sensor sonarRight-rang Obstacle.cpp

Park, et al., reworked the Coverage algorithms to ac-
count for time constraints, which is a significant factor as
the Swarmathon competition is timed, so rovers must find,
collect, and deliver AprilTags quickly and efficiently [26]. The
Coverage algorithm was intended and best suited for intelligent
robots that are unaware of the surrounding environment, that
must be covered by the rovers within a certain period. The
most powerful coverage algorithms rely heavily on having
a complete grid map of the environment. For this reason,
the authors utilized Simultaneous Localization and Mapping
(SLAM) algorithms to help their robots to operate efficiently in
an unknown environment. In addition to being stationed within
an unfamiliar location, the rover robots must be able to adapt to
dynamic or static obstacles within the environment. Therefore,
a new proposed algorithm by the name of DMax Coverage

was taken into consideration for rover use. However, our
competition involves static obstacles and resources to retrieve,
so if SLAM were used, adjustments would be necessary [27-
30].

DMax algorithm works by first using the SLAM algorithm
to find out the boundaries of the unknown environment work-
space and the robot’s position and orientation. Then, the
area will be mapped where the DMax algorithm computes a
minimum bounding rectangle (MBR) [27-30]. An MBR is a
rectangle that includes all free areas and areas with obstacles.
Then this rectangle is simplified into smaller rectangles with
no obstacles found, this approach is a common mathematical
algorithm and called Rectangle Tiling Scheme, shown in Fig.
7.

Fig. 7. Examples of Tiling Rectangle Filling

Rectangle Tiling Scheme aims to see how many times the
rectangle in the bold outline can fit within the space without
being rotated or overlapping an obstacle. After separating the
rectangles into sub-spaces, the algorithm must then decide the
sequence in which to visit them. The size of the rectangle
estimates coverage time, number of turns the robot has to
make, number of obstacles, and estimates time to reach the
rectangle from its current location while taking into account
the maximum coverage [27-30]. While the robot is moving
from one point to another, it is continuously mapping the
environment and looking for changes that would affect its next
path.

Comparing the DMax algorithm to a Random and Bous-
trophedon algorithms in both simple and complex map envi-
ronment, showed its superiority by 5% as revealed in Table II.
The longer the given deadline, the more drastic the improve-
ment will appear. Although the test conducted is not catered
for object retrieval, this algorithm has some useful mapping
applications.

TABLE II. DMAX COVERAGE AREA (%) WITH VARIOUS DEADLINES

Deadline (Sec.) Covered Area (%)
without Deadline

Covered Area (%)
with Deadline

700 35.28 37.14

800 37.95 38.10

900 39.12 42.61

1000 44.12 48.312

www.ijacsa.thesai.org 12 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 8, 2020

III. PROBLEM STATEMENT

NASA Swarmathon 2019 challenge aimed to to develop
cooperative robotics to revolutionize space exploration and
further advance technology for future NASA space exploration
missions. This competition started with new and unexpected
rules and regulations. The first major change was making
previous competitions’ codes available to all teams, which
allowed every team to compare and enhance their code. The
second major change was six rovers per team would be
used bigger field, which posed the need of creating a search
algorithm that allows all six rovers to search equally and
efficiently and change parameters to adjust for a larger field.
The team goal is to design and test a new algorithm based on
all available information that can be used to control 6 swarmies
to collect and deliver the max number of simulated resources
within the allotted time.

IV. METHODOLOGY

Through rigorous planning and analysis, DustySWARM
4.0 found that the L-shaped pattern might be more viable
to use in covering the most area searching for AprilTags.
The Gazebo simulator showed that the L-shaped search pat-
tern could run better with few modifications. Although the
simulation went well, there were complications during the
physical trials. This comparison helped the team to identify
the complication sources, namely, the Drop-off controller has
the rover driving through the home base, thus knocking out
some of the collected AprilTags. Another issue found was
rover needs code adjustment to include error measurements
to follow the desired search pattern.

The team compared their code with other teams’ previous
codes. An important observation was that Durham Tech code
was based on several switch cases and multiple libraries,
thus making their code shorter in lines, which can essen-
tially help the rovers to “think” quicker as it executes code.
DustySWARM team decided to build their code utilizing all
such libraries’ knowledge gained from previous codes.

V. PROPOSED SOLUTIONS AND IMPLEMENTATION

The team planned to develop codes and libraries for every
rover motion such as the gripper, the movement, the commu-
nication, mapping, and so on. The team focused on five main
processes to achieve their successful search algorithm;
A) Basic search and return algorithms,
B) Inter-connectivity and intermediate search algorithm,
C) Mapping,
D) Advanced algorithms using Mapping Techniques and
E) Drop-Off Controller.

All these processes are discussed in the following subsec-
tions. Fig. 8 shows the differences between DustySWARM
developed SSS and the Radiant L-Shaped search Algorithms.

A. Basic Search and Return Algorithms

Based on the new base code, the team decided to optimize
it by addressing two key issues: the search algorithm and the
return algorithm. Improvements are suggested based on two
criteria: expected distance traveled between the resources’ pick

Fig. 8. DustySWARM SSS Vs. Radiant L-Shaped Search Algorithms

up location and the drop off location and the area in which
the robot travels.

The square spiral pattern is an efficient method for search-
ing a quadrant, but the implementation of the reverse pat-
tern prioritizes the resources furthest away from the deliv-
ery location, which resulted in significant time and distance
consumption compared to picking up the closest resources to
the delivery location. Additionally, this algorithm allows the
understanding of what areas had been covered and potential
obstacles had been reduced. DustySWARM 2.0 return algo-
rithm relies on Global Positioning System (GPS) to guide the
rover to return to its initial starting spot for drop-off, which
was a challenge as the rover small scale resulted in inaccurate
GPS readings while determining the correct position, therefore
the rovers will drift significantly as shown in Fig. 9.

Fig. 9. Swarmie Rover with AprilTags and Home Base

Using the reverse square algorithm resulted in a direct line

www.ijacsa.thesai.org 13 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 8, 2020

of travel between the pickup and the delivery locations, which
exposed a problem with resource picked up and ready for
delivery but blocking the sensor and front camera. This is a
major reduction in the rovers’ ability to detect and navigate
obstacles in unmapped terrains.

DustySWARM 4.0 search algorithm utilized the L-shaped
pattern to search a quadrant in a radiating fashion, which
resulted in collecting the closest resources and minimizing the
time needed for this task as illustrated in Fig. 10.

Fig. 10. Three Rovers following DustySWARM Radiating L-Shaped Search
Algorithm Path

This method made it easier to potentially map out the
covered area and provide a minimal obstacle for deliveries
of further resources. The return algorithm had been updated
to rely more heavily on the odometery instead of the GPS,
as the robot encoders have a more accurate calibration with
smaller drift values. In this algorithm, the two corner (extra)
rovers will be assigned to search an area outside the highest
parameter of the side rovers. This assignment was done by
developing a function called (IAmCorner), where the rover
will turn around and detect its location based on detecting the
surrounding rovers and home base QR codes. Therefore, the
side rovers will cover the area between the two corners (0, 0)
and (5, 5), while the corner rovers will search the area beyond
(6, 0) and explore from there out following a mirrored version
of the L-Shape pattern as shown in Fig. 11.

To conduct an accurate test, search pattern for corner
rovers was hard coded with IAmCorner value set to true. This
IAmCorner value is equal to the return of a function, which
at the start of the competition will see how many rovers it has
to its left and right. If the corner rovers are placed at opposite
corners then the side rovers will only see a maximum of one
(1) rover next to them. The corner rovers, on the other hand,
will always have two (2) rovers next to them. This function
simply returns either true or false and assigns it to IAmCorner,
which is shown in Fig. 12. If IAmCorner is false then the rover
will run the L-Shape pattern cases, if it is true then the rover
will use the extended mirrored L-Shape pattern. This method
has proven to work roughly around 80% of the time. There are
times when the northeast (north being up on the map) corner
rover follows the same pattern as the east side rover.

Fig. 11. Corner Rovers Searching Zones

Fig. 12. IAmCorner Function Process to Assign the L-Shape Path

B. Inter-connectivity and Intermediate Search Algorithm

Further improvement was done by implementing Robot
Operating System (ROS) to develop actual communication
channels between all rovers [30-33]. These communication
channels were used to send the position, sensor data, and
visible tag information of each rover. The rules for the NASA
Swarmathon allowed understanding the initial positioning and
orientation of the rovers based on the data provided by the
rover’s Inertial Measurement Unit (IMU). However, these data
did not take into account the orientation of the field. Correction
of the field orientation was done by analyzing the delivery
location AprilTags and drawing a straight line or corner to
establish the delivery zone by comparing the data provided by
other rovers.

The search algorithm depended on the ROS communica-

www.ijacsa.thesai.org 14 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 8, 2020

tions information to direct the rovers to the suitable behavior.
For example, in a three-rover system, if every rover had been
searching a quadrant and one of the rovers finished the area,
then that rover will be direct to move to the fourth quadrant to
prevent any duplication of the search effort. An active tally of
the collected resources allowed the team to change the behavior
of the search algorithm by increasing the size of the steps to
cover more area and find the resources that exist away from
the delivery zone.

C. Mapping

The mapping controller was developed to include two
different arrays that are updated continuously. These two arrays
represent the Drop-off controller and the Search controller,
they are composed of 1’s, 5’s, and 9’s and each number rep-
resents a different field representation and condition. Number
(1) represents the status of a rover being next to the home
base when it is going for a drop-off. Number (5) represents
the areas where it has to go; and there are AprilTags and the
rovers should head over in that direction, while Number (9)
means an area, where the rover cannot go because it represents
the home base or obstacles.

Each array had an additional “if/else” and “for” loop
statements, to let the rovers know what functions to perform
autonomously. In essence, the numbers served as the size of
the search nodes, as well as how far the search radius is
needed for the rovers to head in those directions to collect
AprilTags. The arrays are part of an algorithm that allows the
rovers to compute the lowest possible cost to search for and
collect AprilTags. Mapping using one rover with few obstacles
and AprilTags is illustrated in Fig. 13. Fig. 14 and 15 show
the mapping output of one/four rovers exploring the complete
field.

Fig. 13. Single Rover Mapping Simple Field with Obstacles and AprilTags

D. Integrating Mapping Techniques within Advanced Search
Algorithms

In this stage, the automated processes of rovers driving to
possible resource zones were developed. These zones will be
established by using ultrasound detection, mapping techniques
to prioritizing areas with probable resources over those that
lack resources. All rovers will be programmed to communicate
and share the location of any resources or obstacles they
discover and any probable resource locations. Based on the
percentage of collected resources and/or area covered, this

Fig. 14. One Rover Mapping a Complete Field

Fig. 15. Four Rovers Mapping a Complete Field

mapping will go into full effect and override the base search
sequence.

Depending on trials, the execution conditions of map
integration might change to default in the cases of ROS
Communication failure, searching in the immediate vicinity
of the delivery zone, and valid detection from the ultrasound
sensor. The automated process will map out the destination
location by prioritizing areas, which have been previously
transverse and potentially avoid obstacles. This system can
be improved by tracking the time required to move to the
location in question, which will allow the prediction of rover
motion and paths crossing. This will reduce the collisions
chance between rovers. An additional technique that can be
implemented before the search period ends is to establish a
routine for the rovers with no assigned task to move around

www.ijacsa.thesai.org 15 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 8, 2020

the delivery zone and push back resources that have fallen out.

E. Drop-off Controllers

One of the challenges was the inconsistency of the Drop-
off controller performance. In a few instances, once the rover
completed the search pattern, and proceeding with the retrieval
algorithm, it failed in dropping the AprilTags successfully,
where AprilTags will be dropped outside the home base. This
situation occurred when the rover would enter the home base
at an angle, which would initiate the drop off algorithm by
searching left and right for home base QR codes and following
only the edge of the base and then proceeded to leave the
AprilTag outside of the desired location as shown in Fig. 16
and 17.

Fig. 16. Illustration of Rover Dropping off the AprilTag Outside Home Base

Fig. 17. Rover Dropping off the AprilTag Outside Home Base

The first proposed solution was to assign a quadrant of
the home base to every rover, by assigning the quadrant x
and y coordinates to each rover. The rover would proceed
to go to the nearest cardinal axis of the grid and enter the
home base perpendicularly without any angular miscalculation.
This idea evolved into another approach that uses waypoints,
Fig. 18 shows a segment of the improved drop-off code. The
waypoints concept is a type of direction algorithm. It stores

the desired location and current location, which will be used
later in matching these two locations coordinates. The code
would calculate the nearest cardinal axis relative to the rover
current location and then proceed to the axis intercept to enter
the base perpendicularly for a drop-off.

Fig. 18. Waypoints Drop-off Code

VI. RESULTS SUMMARY

After several virtual simulation and physical trials, the
team was able to develop a new search algorithm that can be
implemented in NASA Swarmathon rovers, by programming
the swarmies to search a predefined quadrant in an L-shaped
radiating fashion. Additionally, These robots had been coded
to determined their proximate location based on the number
of surrounding robots through the IAmCorner function.

This Algorithm allowed the robots to collect the closest
AprilTags/resources while minimizing the search time needed
and without interfering or interrupting each other. Utilizing
ROS communication, the rovers were able to share the col-
lected AprilTags count that was used for changing the search
steps to cover more area and find the resources that exist
away from the delivery zone and if rovers finish searching the
assigned quadrant, they will be able to select the next search
area. Some of the results are shown in Table III.

TABLE III. L-SHAPED RADIATING SEARCH ALGORITHM RESULTS

Target Distribution Simulation Runs
Results

Physical Trials
Results

Clustered 32 27
Power Law 118 110
Uniform 72 63

Moreover, the team developed and integrated a mapping
technique, that used the ultrasound sensors, GPS and IMU,
where rovers will create their own map as an array by identi-
fying and prioritizing the home base, the obstacles and the safe
search areas. This map will be used as a fail-safe measurement
in case of ROS or WiFi connection failure. Additionally, the

www.ijacsa.thesai.org 16 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 8, 2020

drop-off controller had been improved by including the start
location of the rovers to determine the best home base entering
point. Fig. 19 shows the simulation run with four rovers to
search the predefined field.

Fig. 19. L-Shaped Radiating Search Gazebo Simulation Results

VII. CONCLUSION

In conclusion, the team developed a searching algorithm
that was implemented to control NASA swarmies to search
unknown terrain for simulated resources and retrieve them
back to the home base. The current code had multiple improve-
ments and both Gazebo simulation and real-life runs showed
an improved consistency of the rovers’ performance.

This opportunity was valuable for the team as they prac-
ticed the systems engineering and management principals
in a real-life project and expanded their computer science
techniques to contribute to NASA’s mission of exploring space.

Currently NASA Swarmathon had been paused but with
any code, there is room for improvement. The team will
continue to further improve the algorithm code especially the
rovers’ behavior when picking-up and dropping-off AprilTags
and enhance the rovers’ ability to communicate amongst each
other. Other areas of future improvements are to programming
the rovers with the ability to stack and push AprilTags when
dropping-off when swarmies are close to home base.

ACKNOWLEDGMENT

Thanks to NASA and the University of New Mexico
(UNM) teams for all the help and the opportunity to participate
in such great competition. Thanks to all our sponsors from
Texas A&M International University (TAMIU) and Laredo,
TX.

REFERENCES

[1] Voosen, Paul. ”Mars rover steps up hunt for molecular signs of life.”
(2017). Science 03 Feb 2017, Vol. 355, Issue 6324, pp. 444-445, DOI:
10.1126/science.355.6324.444

[2] Secor, P. (2016). “NASA Swarmathon”.
[3] Glenn, T., Ragland, S., Meyer, A., Pulliam, J., Holmes, E., and Riley, N.

NASA Swarmathon.

[4] Hecker, J. (2015). “Swarmie User Manual. Quick Start Guide for Physical
Robots”. University of New Mexico. www.Github.com.

[5] Montague, G. (2014). “Swarmie User Manual: A Rover Used for Multi-
agent Swarm Research”. www.ntrs.nasa.gov

[6] NASA Swarmathon Home Page. (2015). Retrieved from
http://nasaswarmathon.com/

[7] Ackerman, Sarah M., G. Matthew Fricke, Joshua P. Hecker, Kastro M.
Hamed, Samantha R. Fowler, Antonio D. Griego, Jarett C. Jones, J. Jake
Nichol, Kurt W. Leucht, and Melanie E. Moses. (2018). “The Swar-
mathon: An autonomous swarm robotics competition”. arXiv preprint
arXiv:1805.08320.

[8] BCLab-UNM. (2015). BCLab-UNM/SwarmBaseCode-ROS.
[9] Bhattacharya, S., and Agrawal, R. (2017, March). “Development of robot

swarm algorithms on an extensible framework”. In SoutheastCon 2017
(pp. 1-6). IEEE.

[10] Koris, Daniel R., and Jason Isaacs. (2017) ”A Formal Approach
to Extended State Machines for Multi-Objective Robots Operating in
Dynamic Environments.” Proceedings of the 2017 Midstates Conference
on Undergraduate Research in Computer Science and Mathematics

[11] Kubota, Takashi, and Tetsuo Yoshimitsu. ”Intelligent rover with hopping
mechanism for asteroid exploration.” In 2013 6th International Confer-
ence on Recent Advances in Space Technologies (RAST), pp. 979-984.
IEEE, 2013.

[12] Ulamec, Stephan, Patrick Michel, Matthias Grott, Ute Böttger, Heinz-
Wilhelm Hübers, Naomi Murdoch, Pierre Vernazza et al. ”A rover for
the JAXA MMX Mission to Phobos.” In 70th InternationalAstronautical
Congress, pp. IAC-19. International Astronautical Federation, 2019.

[13] Tashtoush, T., Hernandez, R., Yanez, R., Gonzalez, J., Moreno, H., and
Escobar, V. (2020). “Reverse-Twister Swarm Search Algorithm Design:
NASA Swarmathon Competition”, International Journal of Research
Studies in Computer Science and Engineering (IJRSCSE), 7(1), pp.13-
20.

[14] Hernandez, R., Yanez, R., Gonzalez, J., Moreno, H., Escobar, V.,
and Tashtoush. T., (2016) “Design of a Swarm Search Algorithm:
DustySWARM Reverse-Twister Code for NASA Swarmathon.” Texas
A&M International University, School of Engineering.

[15] Tashtoush, T., Gutierrez, O., Herrera, E., Medina, J., Peña, A., Varela,
E., and Hernandez, R. (2020). “Design of a Swarm Search Algorithm:
DustySWARM Spiral Epicycloidal Wave (SEW) Code for NASA Swar-
mathon”, International Journal of Research Studies in Computer Science
and Engineering (IJRSCSE), 7(1), pp.28-36.

[16] Gutierrez, O., Herrera, E., Medina, J., Peña, A., Varela, E., Hernandez,
R., and Tashtoush. T. (2017) “Design of a Swarm Search Algorithm:
DustySWARM Spiral Epicycloidal Wave (SEW) Code for NASA Swar-
mathon”. Texas A&M International University, School of Engineering.

[17] Tashtoush, T., Ruiz, C., Estevis, T., Herrera, E., Bernal, R., Martinez,
R., and Reyna, L. (2020). “Square Spiral Search (SSS) Algorithm
for Cooperative Robots: Mars Exploration”, International Journal of
Research Studies in Computer Science and Engineering (IJRSCSE), 7(1),
pp.21-27.

[18] Ruiz, C., Estevis, T., Herrera, E., Bernal, R., Martinez, R., Reyna, L.,
and Tashtoush, T., (2018) “Design of a Swarm Search Algorithm: Square
Spiral Search (SSS) Algorithm for NASA Swarmathon”. Texas A&M
International University, School of Engineering.

[19] FIU Panther Swarm Team (2016). NASA SWARMATHON 2016: FIU
Panther Swarm Team Technical Report.

[20] Jagolinzer, S., Larrarte, J., Guerrero, R., and Tosunoglu, S. (2016,
May). Development of Swarm Algorithms for Space Exploration. In
Proceedings of the 29th Florida Conference on Recent Advances in
Robotics, FCRAR 2016.

[21] Richard, W. K., and Majercik, S. M. (2012, July). Swarm-based path
creation in dynamic environments for search and rescue. In Proceedings
of the 14th annual conference companion on Genetic and evolutionary
computation (pp. 1401-1402).

[22] Aguilar, J., Blanchard, A., Sibiski, A., Soto, J., Jagolinzer, S., and
Tosunoglu, S.(2017) Performance Optimization of Swarm Algorithm and
Sensor Data for NASA Swarmathon Competition.

[23] Miller, P. (2007). The genius of swarms. National Geographic, 212(1),
126-147.

www.ijacsa.thesai.org 17 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 8, 2020

[24] Lim, S. S., and Bouffanais, R. (2019). From Senseless Swarms to
Smart Mobs: Tuning Networks for Prosocial Behaviour. arXiv preprint
arXiv:1910.01303.

[25] Park, J. K., Jeon, H. S., Noh, S. H., Park, J. H., and Oh, R., (2010,
October) “A practical coverage algorithm for intelligent robots with
deadline situations” In ICCAS 2010 (pp. 299-303) IEEE.

[26] Kantrasiri, S., Jirakanjana, P., and Kheowan, O. U., (2005) “Dynamics
of rigidly rotating spirals under periodic modulation of excitability”
Chemical physics letters, 416(4-6), 364-369.

[27] Ramalingam, B., Veerajagadheswar, P., Ilyas, M., Elara, M. R., and
Manimuthu, A. (2018). Vision-Based Dirt Detection and Adaptive Tiling
Scheme for Selective Area Coverage. Journal of Sensors, 2018.

[28] Monaci, M., and dos Santos, A. G. (2018). Minimum tiling of a

rectangle by squares. Annals of Operations Research, 271(2), 831-851.
[29] Idri, A., Oukarfi, M., Boulmakoul, A., and Zeitouni, K. (2017). Design

and Implementation Issues of a Time-dependent Shortest Path Algorithm
for Multimodal Transportation Network. In TD-LSG@ PKDD/ECML
(pp. 32-43).

[30] Martinez, A., and Fernández, E., (2013) “Learning ROS for robotics
programming” Packt Publishing Ltd.

[31] Shotts Jr, W. E. (2012) “The Linux command line: a complete intro-
duction” No Starch Press.

[32] J O’Kane, J. M. (2014) “A gentle introduction to ROS”. www.cs.rpi.edu
[33] Quigley, M., Gerkey, B., and Smart, W. D. (2015). Programming Robots

with ROS: a practical introduction to the Robot Operating System. ”
O’Reilly Media, Inc.”.

www.ijacsa.thesai.org 18 | P a g e

