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Abstract—Big Data technologies and their analytical methods 
can help improve the quality of education. They can be used to 
process and analyze classroom video streams to predict student 
attention, this would greatly improve the learning-teaching 
experience. With the increasing number of students and the 
expansion of educational institutions, processing and analyzing 
video streams in real-time become a complicated issue. In this 
paper, we have reviewed the existing systems of student attention 
detection, open-source real-time data stream processing 
technologies, and the two major data stream processing 
architectures. We also proposed a new Big Data architecture for 
real-time student attention detection. 
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I. INTRODUCTION 
Student attention plays a significant role in the teaching-

learning operation. It allows the student to focus on 
information and ignore any disturbing or distracting factor. The 
teacher can easily and in a natural way know if a student is in a 
state of attention or not. In small classrooms, students are 
naturally more engaged than in the largest one with a large 
student population or in an amphitheater. Indeed, a small 
classroom allows an environment that promotes student 
engagement as long as it is easier to monitor. In contrast, the 
more the classroom is large it influences the students’ attention. 
The teacher will have to spend more time to draw students’ 
attention and ended up losing control over part of the students. 
The automation of the continuous detection and evaluation of 
the student's attention during the lecture is the optimal solution 
for large audiences. In fact, it offers the teacher the possibility 
of knowing the attention level of the students at any time 
during the course. It can also notify the teacher of students with 
a very low level of engagement or those who are lost during 
the course session. Like that, the teacher can send corrective 
messages to less engaged students or review the course so that 
can be more attractive. In a previous work, we set up an 
architecture for the detection and the analysis of the student's 
attention through the use of different technologies of facial and 
body expressions detection. The system has been designed for 
monitoring a classroom with a limited number of students. It is 
based on the analysis of the video stream generated by a high 
definition camera placed in front of a classroom. The axes of 
analysis used are facial expressions, gaze direction, and body 

gestures. The analysis results of these axes are merged to 
deduce the level of attention of each student. The results must 
be obtained in real-time, for this, we opted for a parallelized 
computation. The analysis tasks are time-consuming, 
especially for a high definition image stream with a high 
frequency of 30 images/second. The generalization of this 
system on an entire school or a university will explode the 
number of images received by the system, that must be 
processed simultaneously and the output results must be 
provided in real-time. This high scaling requires the use of Big 
Data technologies in order to overcome these issues. 

The main objective of this article is to present a state of the 
art of existing student attention detection systems and some 
concepts of Big Data. We also present in detail and with a 
comparison the different tools and architectures allowing real-
time stream processing. Finally, we propose our own 
architecture based on the comparisons made. 

II. STATE OF THE ART 

A. Existing Systems 
Most of the works on detecting student attention has 

focused on the concept of attention and its relationship to 
different facial and body features. 

Whitehill et al. [1] based their study on the analysis of 
facial expressions. The goal of their work is the development 
of an automated system for real-time recognition of student 
engagement. 

Krithika et al. [2] have worked on the analysis of student 
concentration in an online learning environment. The main idea 
of their work is to be able to predict the level of concentration 
of the student from two measurements namely the rotation of 
the face and the eyes' movements. 

Zaletelj et al. [3] admit that the problem of detecting 
student attention was to establish the correct correlation 
between the student's attention and the teacher's observations. 
For this, they have designed a system that uses the capabilities 
of the Kinect One sensor. This device makes it possible to 
collect behavioral data from students in a non-intrusive way. 
They proposed a method to match the features of the data 
collected to the students' facial and body expressions. Then, 
they applied machine learning methods to build models for 
predicting student's attention. 
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Vettivel et al. [4] tried to establish the relationship between 
attention and human parameters such as heart rate variation, 
facial expressions, and brain waves. They used appropriate 
sensors to collect information on the three student parameters 
during the course. The student is alerted whenever he loses his 
concentration. This solution combines the three parameters to 
increase the accuracy of the system. The features are extracted 
from the collected data then they are classified to predict the 
attentive and non-attentive states. 

Goldberg et al. [5] developed a manual rating instrument, to 
continuously measure the observable behavior of students. 
They used then computer vision techniques to perform 
automated analysis of video recordings to extract features of 
the students' head pose, gaze direction, and facial expressions. 
Using these extracted features, they tried to estimate manually 
annotated attention levels for each student. As they opted for 
continuous labeling, a regressor is trained to relate the visible 
features to the manual labels. For more precision, they took 
into account the synchronous behavior of the neighboring 
students. 

B. Big Data 
In education, Big Data technologies can be used to collect 

and analyze huge amounts of information about students in 
order to develop more effective learning. This makes the 
experience more practical, especially for large establishments 
with classes whose size is constantly increasing. 

Big Data is an industrial term that was coined to describe 
huge volumes of data that we have never had or processed 
before. It also brings together techniques for storing, analyzing, 
and visualizing the results obtained from more varied and 
complex massive data structures. 

The International Data Corporation (IDC) defines the Big 
Data as a new generation of technologies and architectures 
designed to economically extract value from very large 
volumes of a wide variety of data by enabling high velocity 
capture, discovery, and/or analysis [6]. 

According to Jason Bloomberg [7] Big Data is a massive 
volume of both structured and unstructured data that is so large 
that it's difficult to process using traditional database and 
software techniques. 

In accordance with the Gartner definition of Big Data, 
which articulates its definition in three parts: Big Data is high-
volume, high-velocity and high-variety information assets that 
demand cost-effective, innovative forms of information 
processing for enhanced insight and decision making [8][7]. 

Big Data is a very broad concept that includes three 
essential dimensions: volume, variety, and velocity. This 
requires a real revolution in the methods of storage and data 
processing. Fig. 1 highlights the constraints raised by the Big 
data. 

The volume which designates the size of the data is now 
greater than terabytes and petabytes. The rapid transition to 
these scales greatly exceeds the traditional storage and 
processing capacities[9][10][11]. 

 
Fig. 1. The Three vs of Big Data. 

Variety: This characteristic amplifies the challenge of Big 
Data. Since we must not only manage structured data but also 
semi-structured and mainly unstructured data. The vast 
majority of Big Data is in unstructured or semi-structured 
formats, such as text files, log files, audio, image, video files, 
social media updates, machine data, and sensors signals, etc. 
[9][11]. 

Velocity refers mainly to the speed at which data is being 
generated, produced, created, or refreshed. It is required not 
only for Big Data, but also for data processing. For time-
limited processes, Big Data should be used as it streams into 
the organization in order to maximize its value [9][10][11]. 

Big Data does not primarily mean a huge amount of data or 
a database, they constitute the core set of technologies and 
components for large-scale data processing and analysis. 
Regardless of the type of data (structured, unstructured, or 
semi-structured), the data can be in one of the following three 
states: Data at Rest, Data in Motion, and Data in Use. Each of 
the formats previously mentioned requires specific processing 
methods. 

In this paper, we deal with a case of processing data in 
motion, since the data is a stream of images from multiple high 
definition cameras. In what follows, we will present certain 
data stream processing tools with a comparison in order to 
choose the tool that best satisfies our need and that performs 
real-time processing. 

III. STREAM PROCESSING PLATFORMS 
There are many architectures and platforms to choose from. 

However, selecting the right architecture with the right 
implementation is often difficult. In what follows we will 
present the most efficient stream processing tools with the 
details of their features as well as the most used Big Data 
architectures. 

A. Apache Flink 
Apache Flink [7] is an open-source platform that came 

from Berlin TU University. It supports both batch and stream 
processing and can guarantee an exactly-once-processing. The 
Flink cluster architecture is illustrated in Fig. 2. Flink is 
scalable, has an in-memory option, and provides input APIs in 
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Scala and Java. It can be integrated into the Hadoop ecosystem 
(HDFS, YARN), or run in a completely independent way since 
it has its own runtime. The core of Flink is a distributed 
streaming dataflow, accepting programs structured as graphs 
(JobGraph) of activities that produce and consume data. Each 
JobGraph can be executed using one of the different 
distribution options available for Flink (like single JVM, 
YARN, or cloud) [8]. Flink’s processing model applies 
transformations to parallel data collections [9][10][11]. 

DataStreams represent the abstraction of Flink streams. 
They are similar to Storm tuples, in the form of partially 
ordered recording sequences. DataStreams are fed by data from 
different external sources such as log files, message queues, 
etc. DataStreams support multiple operators such as map, 
filtering, and reduction in a parallelized way. 

FlinkML has its own machine learning library. Moreover, it 
provides an adapter for the SCALABLE ADVANCED 
MASSIVE ONLINE ANALYSIS (SAMOA) library, which 
offers a variety of machine learning algorithms for stream 
processing. 

Flink fault-tolerance approach is based on snapshots over 
distributed checkpoints that maintain the status of jobs. 
Snapshots act as consistency checkpoints to which the system 
can return in case of failure [12]. 

B. Storm 
Apache Storm [13] is an open-source platform for real-time 

stream processing, written in Java and Clojure. The origin of 
this project goes to the Back type company specialized in the 
analysis of social media data and which was sold later to 
Twitter. The project became an Apache top-level project in 
September 2014 [14]. The main data structure in Storm is the 
tuple, a list of serializable values that are user-defined types. 
Fig. 3 explains the architecture of Storm. 

 
Fig. 2. Architecture of Flink Cluster. 

 
Fig. 3. Storm Cluster Architecture. 

The backbone of Storm Architecture is spouts and bolts. A 
spout is the entry point to the stream, it connects to an external 
data source such as a message queue and retrieves the data in 
tuple format. Stream processing is performed by bolt nodes. 
Each bolt performs a transformation of limited complexity, in 
this way, several bolt nodes are grouped in a coordinated 
manner to perform the entire computation. A Storm application 
can be defined through a topology of spout and bolt nodes 
forming a directed acyclic graph (DAG), with arcs representing 
streams of tuples flowing from one node to another [15]. 

Apache Storm handles fault tolerance through its backup 
and acknowledgment (ACK) mechanism imposed by its 
topology. To ensure that the tuples are re-processed after 
failure, the spouts will always keep the tuples in their output 
queues until the bolts acknowledge them. When a tuple enters 
the topology, the spout which receives it adds an identifier, 
then sends this identifier to the acker bolt. The aker bolt is as a 
register for all tuples Ids that enter the Storm topology. Once a 
bolt processes a tuple, it sends an ACK to the acker bolt. While 
the tuples leave the topology, the acker bolt removes their 
identifiers. In case of failure, all tuples that have not received 
an acknowledgment will be re-processed. 

Although Storm does not come with a machine learning 
library, it interfaces perfectly with the SAMOA tool offering 
implementations for classification and clustering algorithms for 
Big Data streams. 

C. Spark 
Spark is a project supported by the Apache community. It 

was initiated by the Berkeley University of California, it is a 
distributed data processing platform, written in Java and Scala. 
Fig. 4 shows the architecture of Spark cluster. Spark has four 
libraries running on top of the Spark engine: Spark SQL, 
MLlib for machine learning, GraphX, and Spark Streaming for 
stream processing. 

Spark stores data in a distributed data set called resilient 
distributed dataset (RDD), which represents an immutable 
collection of read-only fault-tolerant objects (Python, Java, or 
Scala). Data will be stored in memory in a partitioned manner 
across multiple machines in the cluster. The sequence of 
operations to obtain a particular RDD is stored in the RDD 
itself, so in case of failures, the RDD can be rebuilt. 

The operations that can be performed on RDDs are: The 
transformation which allows the construction of a new RDD 
from one or more input RDDs and the action which is an 
operation producing a single value or writing of the output on 
the disk. 

 
Fig. 4. Architecture of Spark Cluster. 
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The stream abstraction is called Discrete Stream (D-
Stream) defined as a set of short, stateless, deterministic tasks. 
In Spark, streaming computation is treated as a series of 
deterministic batch computations on small time intervals [12]. 
In this approach, an incoming stream is packaged into 
sequences of small chunks of data, which can then be 
processed by a batch system [16]. While this may be adequate 
for many projects, it is not a true real-time system [14]. 

Table I summarizes the main features of stream processing 
systems. Flink and Storm perform real streaming while Spark 
is able to do micro-batching. The three systems present two 
different programming models: the compositional model which 
provides basic building blocks, such as spouts and bolts while 
the declarative model offers operators to generate functional 
code capable of automatically creating the topology. 

TABLE I. DISTRIBUTED STREAM PROCESSING ENGINES 

 Spark Flink Storm 

Source Model Open source Open source Open source 

Architecture Master-Slave master-slave master-slave 

Coordination Zookeeper Zookeeper Zookeeper 

Execution 
model 

Batch, micro-
batch 

Batch, 
streaming Streaming 

Stream 
abstraction DStream DataStream Tuple 

Supported 
languages 

Java, Python, R, 
Scala Java, Scala Any 

Associated 
ML tools 

MLlib, Mahoot, 
H2O 

FlinkML 
SAMOA SAMOA 

In-memory 
processing yes yes yes 

Low latency <= Time of 
micro-batching yes yes 

Fault 
tolerance yes yes yes 

IV. BIG DATA ARCHITECTURES BENCHMARKING 
In this section, we will review the two main stream 

processing architectures, Kappa and Lambda. We will then 
compare these two architectures in order to propose the 
architecture which best suits our use case. 

A. Lambda Architecture 
Lambda architecture was introduced by Marz and Warren 

[17] and provides a set of architectural principles to ingest and 
process both stream and batch data, in a single Big Data 
architecture [18]. The main idea behind the Lambda 
architecture is to combine real-time and batch processing in a 
single technology stack. This ensures low latency and provide 
better results. Fig. 5 shows the main components of the 
architecture. In fact, it combines several paradigms into a 
single system that breaks down processing into three layers: 
Batch, serving, and speed. The batch layer is generally based 
on Hadoop technology, it stores the raw data as soon as it 
arrives and calculates the views that will be sent to the serving 
layer for indexing and tracking results. Batch processing is 
performed regularly at a defined interval on all data. The speed 

layer processes new data that are not already delivered in the 
batch view for rapid consumption. Incoming data are sent to 
both the batch layer and the speed layer for processing. When 
the system is queried, the results of the two layers will be 
merged to calculate the response. The views from the batch 
layer and those from the speed layer in near real-time are sent 
to the serving layer. This later indexes the views transmitted by 
the batch and speed layers so they can be queried in Ad-Hoc 
with low latency. 

 
Fig. 5. Lambda Architecture. 

B. Kappa Architecture 
Unlike Lambda, Kappa is only focused on the processing of 

data streams. Described for the first time by Kreps [19], the 
key idea for its implementation is not to replace the Lambda 
architecture but to use a single layer in real-time to process 
both stream and batch data. Fig. 6 shows the two layers of the 
Kappa architecture: The streaming layer responsible for data 
processing and the serving layer for querying results. Only one 
code is used for data processing, unlike lambda where it is 
necessary to generate a code version for each layer. Similarly, 
queries only search in one location instead of two for Lambda 
(speed and batch views). The Kappa architecture is more 
suitable for cases where permanent data storage is not 
necessary. 

Table II presents a brief comparison of the features of the 
Lambda and Kappa architectures. 

The Lambda and Kappa architectures provide both real-
time and historical data analysis in a single environment. 
Lambda uses two separate technology stacks to manage batch 
and stream processing. However, Kappa offers the possibility 
of building streaming and batch processing system based on 
the same technology. This is one major advantage of the Kappa 
architecture compared to the Lambda architecture. On the other 
hand, the Lambda architecture wins over Kappa when it comes 
to storing very large data sets (in terabyte range) and which can 
be processed more efficiently in Hadoop for large-scale 
historical analysis. 

 
Fig. 6. Kappa Architecture. 
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TABLE II. COMPARISON OF THE DIFFERENT FEATURES OF LAMBDA AND 
KAPPA ARCHITECTURES 

 Layers Processin
g 

Basic 
technologies 

Scalab
ility Real-time 

Lambd
a 

Batch, 
serving 
and real-
time layer 

Batch and 
real-time Immutable Yes Isn’t 

accurate 

Kappa 

Stream 
processin
g and 
serving 
layer 

Real-time Immutable Yes Accurate 

V. OUR PROPOSED BIG DATA ANALYTICS ARCHITECTURE 
FOR REAL-TIME STUDENT ATTENTION DETECTION 

Traditional Computer Vision (CV) systems have limitations 
in terms of reliability, scalability and fault tolerance. In fact, in 
this type of system, the CV processing unit collects and 
processes the data at the same time. Thus, in case of failure, the 
data of the video stream will be lost and the processing will be 
interrupted. Detecting a node failure and switching the 
processing to another node will fragment the data and increase 
the error rate on the output result. In order to ensure a reliable 
and efficient data processing of a large-scale video stream, it is 
necessary to have a highly scalable, fault-tolerant and loosely 
coupled distributed system. Video stream analysis requires 
large-scale parallel processing, fast extraction of features from 
each frame, deployment of multiple machine-learning libraries, 
and returns processing results in different formats. In our 
system, we propose a Big Data architecture that best meets the 
requirements mentioned above. It will be based on the Kappa 
architecture principle for real-time processing of the video 
stream and will also allow permanent storage of this data. As 
shown in Fig. 8, it has five main layers, the data producer, data 
ingestion, flow processing, storage and presentation. 

A. Design and Implementation 
1) Data collection: The video stream is produced by a 

cluster of a high definition IP (HD 1080P: 1920 x 1080 (16/9) 
video at 30Fps) cameras designed to provide real-time video 
streams. The volume of data video is so important that it can 
easily reach the terabyte scale. 

The cameras that make up the cluster provide data with 
precise specifications such as codec, resolution or the number 
of frames per second. For this, each camera has an ID that 
identifies it and keeps a mapping between the camera and its 
specifications. In this way, the stream processor can easily 
create images and video sequences from the video stream. 

2) Data ingestion: For large scale stream acquisition, we 
choose to use Apache Kafka, that is, basically an open-source 
messaging system consisting of three components: Message 
Producer, Message Broker and Message Consumer. Kafka 
exchanges data between applications. Using the OpenCV 
library, we convert the video stream coming from cameras to 
images. Each image is stored in a JSON object. The content of 
this object consists of six fields: Id(ID of the camera), 
cols(number of columns), rows( number of rows in a frame), 
type (are OpenCV Mat-specific details), data(is a base-64 

encoded string for the byte array of the frame), and the 
timestamp (the time at which the frame was generated). The 
JSON object obtained is a record which will constitute the 
body of a message to send to Kafka broker. Given the size of 
the frame that will be transported in the JSON objects, 
compression is needed to reduce the transfer time and ensure 
real-time processing. The compressed message is then 
transmitted to the producer, then to the Kafka Broker who is 
responsible for delivering it to consumers (stream processing 
unit). 

3) Stream processing: Stream processing is built on 
Apache Storm, a distributed computing infrastructure for data 
stream processing and allows programming in python. Storm 
does not have an API to handle the low-level image 
processing. To overcome this, we use the OpenCV library 
which provides low-level image processing services on the top 
of Storm. As shown in Fig. 7, the stream processing unit 
consists of three main layers: The image pre-processing, 
mainly responsible for performing basic image processing 
tasks such as restoration (JSON to frame), encoding 
images/video, image enhancement, grayscale images, etc. The 
features extraction is responsible for extracting the features 
required to the analysis. These features will be provided as 
input to the third layer which is the distributed data mining. To 
implement this layer, we will use the Apache SAMOA a 
platform for mining Big Data streams [20]. APACHE 
SAMOA is both a framework and a library. As a framework, 
it allows the algorithm developer to abstract from the 
underlying execution engine, and therefore, reuse their code 
on different engines such as Storm, Flink, Samza, and Apex 
[21]. As a library, Apache SAMOA contains implementations 
of state-of-the-art algorithms for distributed machine learning 
on streams. For classification, Apache SAMOA provides a 
Vertical Hoeffding Tree (VHT), a distributed streaming 
version of a decision tree. For clustering, it includes an 
algorithm based on CluStream. For regression, HAMR, a 
distributed implementation of Adaptive Model Rules. The 
library also includes meta-algorithms such as bagging and 
boosting [21][22]. 

 
Fig. 7. The Stream Processing unit's Layers. 
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Fig. 8. Video Stream Analytics System Architecture. 

4) Storage: The size of the video streams coming from 
multiple cameras installed in the different classrooms of a 
university can easily reach the Exabyte. So, scaling up, must 
be supported. Hence, storing such amounts of data is a real 
challenge. To solve this issue, video streams received from 
different cameras, through Kafka, encapsulated in JSON 
objects, are saved as MP4 files on the Hadoop Distributed File 
System storage (HDFS) of the Hadoop cluster. The storage 
will be distributed to ensure a fast flow recording. This also 
will ensure high data availability and the ability to perform 
distributed processing. Metadata for video streams and the 
result of video analysis are stored in an Hbase database, a data 
result duplication will be done in Elasticsearch for a possible 
visualization. 

The received video streams are stored as 90 seconds video 
files. The size of a video file is strongly related to its length and 
it impacts the speed of storage, transmission, and analysis. The 
duration of a 90-second video file is chosen after taking into 
account the intra-cluster bandwidth, processing, machine 
performance, and fault tolerance. A small video file is 
transmitted faster than a large file. Furthermore, in case of 
failure, retransmission is faster. 

The average size of a 90 second video stream is 16.2 GB, 
considering the average frame size which is 6M. Single-camera 
recording video (equivalent to 8 hours) requires a capacity of 
5,184 TB. Table III summarizes the storage capacity required 
to store video stream for different durations. 

5) Presentation: Visualization of analysis results is 
provided by Kibana, the official GUI visualization platform 
for Elasticsearch. Kibana has 4 main components: Discover, 
visualize, dashboards, and management. It provides access to 
the data stored in the Elasticsearch cluster through a Web 
interface that supports search, visualizes and analyzes 
functionalities. 

TABLE III. DISK SPACE REQUIREMENTS FOR ONE WEEK OF RECORDED 
VIDEO STREAM 

Duration Size of a frame Size of a video 
90 seconds 6MB 16,2 GB 

5 minutes 6MB 54GB 
1 Hour 6MB 648GB 
1 Day 6MB 5,184 TB 

1 Week 6MB 31,104TB 

VI. DISCUSSION 
We have drawn up a comparison of the two most known 

architectures in Section IV. We discuss here the criteria for 
choosing our architecture and to what extent it meets the 
requirements of our problem. 

The purpose of this study is to set up a real-time Big Data 
architecture capable of responding to the constraints of 
detecting and monitoring the student’s attention at large scale. 
In other words, it must handle and process continuously and in 
real-time a large stream of images coming from the HD 
cameras placed in the classrooms. The video stream must also 
be stored for later analysis, to serve as a support for creating 
attention detection datasets or for training and validation tasks. 

Our architecture is inspired by the concept of Kappa 
architecture since we only involve the processing of image data 
streams. The high capabilities of Apache Kafka make it 
possible to handle large incoming data streams. To overcome 
the real-time processing problem, Storm is used to pre-process 
the image streams, as well as the features extraction tasks. This 
is guaranteed, as Storm can be plugged-in as a pre-processor of 
the stream for each Kafka topic. In order to achieve real-time 
processing, the Storm topology must be created inside of it. For 
this purpose, we have coupled the use of Storm with SAMOA 
to benefit from its distributed machine learning libraries. The 
business logic of our architecture implies the need to store the 
data received for possible uses. Storage is provided by Hadoop 
with the possibility of processing which gives our architecture 
a hybrid form and makes it benefit from the advantages of the 
two traditional architectures. 

The constraints regarding scalability and reliability were 
respected. Our architecture can scale-out on-demand to adapt 
to the increased load resulting from an expansion of university 
establishments and the number of students. Storm and Kafka 
clusters can scale horizontally. In addition, in case of machine 
failures, the data replication mechanisms allow fault tolerance, 
without loss of data. 

VII. CONCLUSION 
The main concern of this paper was to study the different 

technologies and architectures of Big data to propose an 
architecture capable of dealing with the problems linked to the 
high scale transition for student’s attention detection systems. 
We compared the two main architectures on the market, 
namely, Lambda and Kappa, in order to choose the one that 
best meets our needs. Given the constraint of real-time 
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processing, we chose to base our architecture on the Kappa 
architecture which is simple and requires only a single 
implementation of the business logic. The choice of Apache 
Storm was not arbitrary but deduced from a comparison of 
stream processing tools. Storm is real-time processing with no 
restrictions on the implementation language. Furthermore, to 
implement machine learning algorithms in a distributed way, 
Storm can interface perfectly with Apache SAMOA. 

The main limitation of this study is the lack of real-world 
data, which we take into consideration in future research. The 
next step of our work is to create a data set for the student's 
attention detection and to analyze it with several machine 
learning algorithms. Finally, we intend to perform the test and 
performance evaluation of our architecture. 
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