
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 8, 2020

A New Big Data Architecture for Real-Time Student
Attention Detection and Analysis

Tarik Hachad1, Abdelalim Sadiq2

Laboratory of Information Modelling and Communication
Systems, Faculty of Sciences

Ibn Toufail University
Kenitra, Morocco

Fadoua Ghanimi3

Laboratory of Technological Information and Modeling
Faculty of sciences Ben M’sick
University Hassan II Casablanca

Morocco

Abstract—Big Data technologies and their analytical methods
can help improve the quality of education. They can be used to
process and analyze classroom video streams to predict student
attention, this would greatly improve the learning-teaching
experience. With the increasing number of students and the
expansion of educational institutions, processing and analyzing
video streams in real-time become a complicated issue. In this
paper, we have reviewed the existing systems of student attention
detection, open-source real-time data stream processing
technologies, and the two major data stream processing
architectures. We also proposed a new Big Data architecture for
real-time student attention detection.

Keywords—Attention detection; big data analysis; stream
processing; real-time processing; Apache Flink; Apache Spark;
Apache Storm; Lambda architecture; Kappa architecture

I. INTRODUCTION
Student attention plays a significant role in the teaching-

learning operation. It allows the student to focus on
information and ignore any disturbing or distracting factor. The
teacher can easily and in a natural way know if a student is in a
state of attention or not. In small classrooms, students are
naturally more engaged than in the largest one with a large
student population or in an amphitheater. Indeed, a small
classroom allows an environment that promotes student
engagement as long as it is easier to monitor. In contrast, the
more the classroom is large it influences the students’ attention.
The teacher will have to spend more time to draw students’
attention and ended up losing control over part of the students.
The automation of the continuous detection and evaluation of
the student's attention during the lecture is the optimal solution
for large audiences. In fact, it offers the teacher the possibility
of knowing the attention level of the students at any time
during the course. It can also notify the teacher of students with
a very low level of engagement or those who are lost during
the course session. Like that, the teacher can send corrective
messages to less engaged students or review the course so that
can be more attractive. In a previous work, we set up an
architecture for the detection and the analysis of the student's
attention through the use of different technologies of facial and
body expressions detection. The system has been designed for
monitoring a classroom with a limited number of students. It is
based on the analysis of the video stream generated by a high
definition camera placed in front of a classroom. The axes of
analysis used are facial expressions, gaze direction, and body

gestures. The analysis results of these axes are merged to
deduce the level of attention of each student. The results must
be obtained in real-time, for this, we opted for a parallelized
computation. The analysis tasks are time-consuming,
especially for a high definition image stream with a high
frequency of 30 images/second. The generalization of this
system on an entire school or a university will explode the
number of images received by the system, that must be
processed simultaneously and the output results must be
provided in real-time. This high scaling requires the use of Big
Data technologies in order to overcome these issues.

The main objective of this article is to present a state of the
art of existing student attention detection systems and some
concepts of Big Data. We also present in detail and with a
comparison the different tools and architectures allowing real-
time stream processing. Finally, we propose our own
architecture based on the comparisons made.

II. STATE OF THE ART

A. Existing Systems
Most of the works on detecting student attention has

focused on the concept of attention and its relationship to
different facial and body features.

Whitehill et al. [1] based their study on the analysis of
facial expressions. The goal of their work is the development
of an automated system for real-time recognition of student
engagement.

Krithika et al. [2] have worked on the analysis of student
concentration in an online learning environment. The main idea
of their work is to be able to predict the level of concentration
of the student from two measurements namely the rotation of
the face and the eyes' movements.

Zaletelj et al. [3] admit that the problem of detecting
student attention was to establish the correct correlation
between the student's attention and the teacher's observations.
For this, they have designed a system that uses the capabilities
of the Kinect One sensor. This device makes it possible to
collect behavioral data from students in a non-intrusive way.
They proposed a method to match the features of the data
collected to the students' facial and body expressions. Then,
they applied machine learning methods to build models for
predicting student's attention.

241 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 8, 2020

Vettivel et al. [4] tried to establish the relationship between
attention and human parameters such as heart rate variation,
facial expressions, and brain waves. They used appropriate
sensors to collect information on the three student parameters
during the course. The student is alerted whenever he loses his
concentration. This solution combines the three parameters to
increase the accuracy of the system. The features are extracted
from the collected data then they are classified to predict the
attentive and non-attentive states.

Goldberg et al. [5] developed a manual rating instrument, to
continuously measure the observable behavior of students.
They used then computer vision techniques to perform
automated analysis of video recordings to extract features of
the students' head pose, gaze direction, and facial expressions.
Using these extracted features, they tried to estimate manually
annotated attention levels for each student. As they opted for
continuous labeling, a regressor is trained to relate the visible
features to the manual labels. For more precision, they took
into account the synchronous behavior of the neighboring
students.

B. Big Data
In education, Big Data technologies can be used to collect

and analyze huge amounts of information about students in
order to develop more effective learning. This makes the
experience more practical, especially for large establishments
with classes whose size is constantly increasing.

Big Data is an industrial term that was coined to describe
huge volumes of data that we have never had or processed
before. It also brings together techniques for storing, analyzing,
and visualizing the results obtained from more varied and
complex massive data structures.

The International Data Corporation (IDC) defines the Big
Data as a new generation of technologies and architectures
designed to economically extract value from very large
volumes of a wide variety of data by enabling high velocity
capture, discovery, and/or analysis [6].

According to Jason Bloomberg [7] Big Data is a massive
volume of both structured and unstructured data that is so large
that it's difficult to process using traditional database and
software techniques.

In accordance with the Gartner definition of Big Data,
which articulates its definition in three parts: Big Data is high-
volume, high-velocity and high-variety information assets that
demand cost-effective, innovative forms of information
processing for enhanced insight and decision making [8][7].

Big Data is a very broad concept that includes three
essential dimensions: volume, variety, and velocity. This
requires a real revolution in the methods of storage and data
processing. Fig. 1 highlights the constraints raised by the Big
data.

The volume which designates the size of the data is now
greater than terabytes and petabytes. The rapid transition to
these scales greatly exceeds the traditional storage and
processing capacities[9][10][11].

Fig. 1. The Three vs of Big Data.

Variety: This characteristic amplifies the challenge of Big
Data. Since we must not only manage structured data but also
semi-structured and mainly unstructured data. The vast
majority of Big Data is in unstructured or semi-structured
formats, such as text files, log files, audio, image, video files,
social media updates, machine data, and sensors signals, etc.
[9][11].

Velocity refers mainly to the speed at which data is being
generated, produced, created, or refreshed. It is required not
only for Big Data, but also for data processing. For time-
limited processes, Big Data should be used as it streams into
the organization in order to maximize its value [9][10][11].

Big Data does not primarily mean a huge amount of data or
a database, they constitute the core set of technologies and
components for large-scale data processing and analysis.
Regardless of the type of data (structured, unstructured, or
semi-structured), the data can be in one of the following three
states: Data at Rest, Data in Motion, and Data in Use. Each of
the formats previously mentioned requires specific processing
methods.

In this paper, we deal with a case of processing data in
motion, since the data is a stream of images from multiple high
definition cameras. In what follows, we will present certain
data stream processing tools with a comparison in order to
choose the tool that best satisfies our need and that performs
real-time processing.

III. STREAM PROCESSING PLATFORMS
There are many architectures and platforms to choose from.

However, selecting the right architecture with the right
implementation is often difficult. In what follows we will
present the most efficient stream processing tools with the
details of their features as well as the most used Big Data
architectures.

A. Apache Flink
Apache Flink [7] is an open-source platform that came

from Berlin TU University. It supports both batch and stream
processing and can guarantee an exactly-once-processing. The
Flink cluster architecture is illustrated in Fig. 2. Flink is
scalable, has an in-memory option, and provides input APIs in

242 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 8, 2020

Scala and Java. It can be integrated into the Hadoop ecosystem
(HDFS, YARN), or run in a completely independent way since
it has its own runtime. The core of Flink is a distributed
streaming dataflow, accepting programs structured as graphs
(JobGraph) of activities that produce and consume data. Each
JobGraph can be executed using one of the different
distribution options available for Flink (like single JVM,
YARN, or cloud) [8]. Flink’s processing model applies
transformations to parallel data collections [9][10][11].

DataStreams represent the abstraction of Flink streams.
They are similar to Storm tuples, in the form of partially
ordered recording sequences. DataStreams are fed by data from
different external sources such as log files, message queues,
etc. DataStreams support multiple operators such as map,
filtering, and reduction in a parallelized way.

FlinkML has its own machine learning library. Moreover, it
provides an adapter for the SCALABLE ADVANCED
MASSIVE ONLINE ANALYSIS (SAMOA) library, which
offers a variety of machine learning algorithms for stream
processing.

Flink fault-tolerance approach is based on snapshots over
distributed checkpoints that maintain the status of jobs.
Snapshots act as consistency checkpoints to which the system
can return in case of failure [12].

B. Storm
Apache Storm [13] is an open-source platform for real-time

stream processing, written in Java and Clojure. The origin of
this project goes to the Back type company specialized in the
analysis of social media data and which was sold later to
Twitter. The project became an Apache top-level project in
September 2014 [14]. The main data structure in Storm is the
tuple, a list of serializable values that are user-defined types.
Fig. 3 explains the architecture of Storm.

Fig. 2. Architecture of Flink Cluster.

Fig. 3. Storm Cluster Architecture.

The backbone of Storm Architecture is spouts and bolts. A
spout is the entry point to the stream, it connects to an external
data source such as a message queue and retrieves the data in
tuple format. Stream processing is performed by bolt nodes.
Each bolt performs a transformation of limited complexity, in
this way, several bolt nodes are grouped in a coordinated
manner to perform the entire computation. A Storm application
can be defined through a topology of spout and bolt nodes
forming a directed acyclic graph (DAG), with arcs representing
streams of tuples flowing from one node to another [15].

Apache Storm handles fault tolerance through its backup
and acknowledgment (ACK) mechanism imposed by its
topology. To ensure that the tuples are re-processed after
failure, the spouts will always keep the tuples in their output
queues until the bolts acknowledge them. When a tuple enters
the topology, the spout which receives it adds an identifier,
then sends this identifier to the acker bolt. The aker bolt is as a
register for all tuples Ids that enter the Storm topology. Once a
bolt processes a tuple, it sends an ACK to the acker bolt. While
the tuples leave the topology, the acker bolt removes their
identifiers. In case of failure, all tuples that have not received
an acknowledgment will be re-processed.

Although Storm does not come with a machine learning
library, it interfaces perfectly with the SAMOA tool offering
implementations for classification and clustering algorithms for
Big Data streams.

C. Spark
Spark is a project supported by the Apache community. It

was initiated by the Berkeley University of California, it is a
distributed data processing platform, written in Java and Scala.
Fig. 4 shows the architecture of Spark cluster. Spark has four
libraries running on top of the Spark engine: Spark SQL,
MLlib for machine learning, GraphX, and Spark Streaming for
stream processing.

Spark stores data in a distributed data set called resilient
distributed dataset (RDD), which represents an immutable
collection of read-only fault-tolerant objects (Python, Java, or
Scala). Data will be stored in memory in a partitioned manner
across multiple machines in the cluster. The sequence of
operations to obtain a particular RDD is stored in the RDD
itself, so in case of failures, the RDD can be rebuilt.

The operations that can be performed on RDDs are: The
transformation which allows the construction of a new RDD
from one or more input RDDs and the action which is an
operation producing a single value or writing of the output on
the disk.

Fig. 4. Architecture of Spark Cluster.

243 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 8, 2020

The stream abstraction is called Discrete Stream (D-
Stream) defined as a set of short, stateless, deterministic tasks.
In Spark, streaming computation is treated as a series of
deterministic batch computations on small time intervals [12].
In this approach, an incoming stream is packaged into
sequences of small chunks of data, which can then be
processed by a batch system [16]. While this may be adequate
for many projects, it is not a true real-time system [14].

Table I summarizes the main features of stream processing
systems. Flink and Storm perform real streaming while Spark
is able to do micro-batching. The three systems present two
different programming models: the compositional model which
provides basic building blocks, such as spouts and bolts while
the declarative model offers operators to generate functional
code capable of automatically creating the topology.

TABLE I. DISTRIBUTED STREAM PROCESSING ENGINES

 Spark Flink Storm

Source Model Open source Open source Open source

Architecture Master-Slave master-slave master-slave

Coordination Zookeeper Zookeeper Zookeeper

Execution
model

Batch, micro-
batch

Batch,
streaming Streaming

Stream
abstraction DStream DataStream Tuple

Supported
languages

Java, Python, R,
Scala Java, Scala Any

Associated
ML tools

MLlib, Mahoot,
H2O

FlinkML
SAMOA SAMOA

In-memory
processing yes yes yes

Low latency <= Time of
micro-batching yes yes

Fault
tolerance yes yes yes

IV. BIG DATA ARCHITECTURES BENCHMARKING
In this section, we will review the two main stream

processing architectures, Kappa and Lambda. We will then
compare these two architectures in order to propose the
architecture which best suits our use case.

A. Lambda Architecture
Lambda architecture was introduced by Marz and Warren

[17] and provides a set of architectural principles to ingest and
process both stream and batch data, in a single Big Data
architecture [18]. The main idea behind the Lambda
architecture is to combine real-time and batch processing in a
single technology stack. This ensures low latency and provide
better results. Fig. 5 shows the main components of the
architecture. In fact, it combines several paradigms into a
single system that breaks down processing into three layers:
Batch, serving, and speed. The batch layer is generally based
on Hadoop technology, it stores the raw data as soon as it
arrives and calculates the views that will be sent to the serving
layer for indexing and tracking results. Batch processing is
performed regularly at a defined interval on all data. The speed

layer processes new data that are not already delivered in the
batch view for rapid consumption. Incoming data are sent to
both the batch layer and the speed layer for processing. When
the system is queried, the results of the two layers will be
merged to calculate the response. The views from the batch
layer and those from the speed layer in near real-time are sent
to the serving layer. This later indexes the views transmitted by
the batch and speed layers so they can be queried in Ad-Hoc
with low latency.

Fig. 5. Lambda Architecture.

B. Kappa Architecture
Unlike Lambda, Kappa is only focused on the processing of

data streams. Described for the first time by Kreps [19], the
key idea for its implementation is not to replace the Lambda
architecture but to use a single layer in real-time to process
both stream and batch data. Fig. 6 shows the two layers of the
Kappa architecture: The streaming layer responsible for data
processing and the serving layer for querying results. Only one
code is used for data processing, unlike lambda where it is
necessary to generate a code version for each layer. Similarly,
queries only search in one location instead of two for Lambda
(speed and batch views). The Kappa architecture is more
suitable for cases where permanent data storage is not
necessary.

Table II presents a brief comparison of the features of the
Lambda and Kappa architectures.

The Lambda and Kappa architectures provide both real-
time and historical data analysis in a single environment.
Lambda uses two separate technology stacks to manage batch
and stream processing. However, Kappa offers the possibility
of building streaming and batch processing system based on
the same technology. This is one major advantage of the Kappa
architecture compared to the Lambda architecture. On the other
hand, the Lambda architecture wins over Kappa when it comes
to storing very large data sets (in terabyte range) and which can
be processed more efficiently in Hadoop for large-scale
historical analysis.

Fig. 6. Kappa Architecture.

244 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 8, 2020

TABLE II. COMPARISON OF THE DIFFERENT FEATURES OF LAMBDA AND
KAPPA ARCHITECTURES

 Layers Processin
g

Basic
technologies

Scalab
ility Real-time

Lambd
a

Batch,
serving
and real-
time layer

Batch and
real-time Immutable Yes Isn’t

accurate

Kappa

Stream
processin
g and
serving
layer

Real-time Immutable Yes Accurate

V. OUR PROPOSED BIG DATA ANALYTICS ARCHITECTURE
FOR REAL-TIME STUDENT ATTENTION DETECTION

Traditional Computer Vision (CV) systems have limitations
in terms of reliability, scalability and fault tolerance. In fact, in
this type of system, the CV processing unit collects and
processes the data at the same time. Thus, in case of failure, the
data of the video stream will be lost and the processing will be
interrupted. Detecting a node failure and switching the
processing to another node will fragment the data and increase
the error rate on the output result. In order to ensure a reliable
and efficient data processing of a large-scale video stream, it is
necessary to have a highly scalable, fault-tolerant and loosely
coupled distributed system. Video stream analysis requires
large-scale parallel processing, fast extraction of features from
each frame, deployment of multiple machine-learning libraries,
and returns processing results in different formats. In our
system, we propose a Big Data architecture that best meets the
requirements mentioned above. It will be based on the Kappa
architecture principle for real-time processing of the video
stream and will also allow permanent storage of this data. As
shown in Fig. 8, it has five main layers, the data producer, data
ingestion, flow processing, storage and presentation.

A. Design and Implementation
1) Data collection: The video stream is produced by a

cluster of a high definition IP (HD 1080P: 1920 x 1080 (16/9)
video at 30Fps) cameras designed to provide real-time video
streams. The volume of data video is so important that it can
easily reach the terabyte scale.

The cameras that make up the cluster provide data with
precise specifications such as codec, resolution or the number
of frames per second. For this, each camera has an ID that
identifies it and keeps a mapping between the camera and its
specifications. In this way, the stream processor can easily
create images and video sequences from the video stream.

2) Data ingestion: For large scale stream acquisition, we
choose to use Apache Kafka, that is, basically an open-source
messaging system consisting of three components: Message
Producer, Message Broker and Message Consumer. Kafka
exchanges data between applications. Using the OpenCV
library, we convert the video stream coming from cameras to
images. Each image is stored in a JSON object. The content of
this object consists of six fields: Id(ID of the camera),
cols(number of columns), rows(number of rows in a frame),
type (are OpenCV Mat-specific details), data(is a base-64

encoded string for the byte array of the frame), and the
timestamp (the time at which the frame was generated). The
JSON object obtained is a record which will constitute the
body of a message to send to Kafka broker. Given the size of
the frame that will be transported in the JSON objects,
compression is needed to reduce the transfer time and ensure
real-time processing. The compressed message is then
transmitted to the producer, then to the Kafka Broker who is
responsible for delivering it to consumers (stream processing
unit).

3) Stream processing: Stream processing is built on
Apache Storm, a distributed computing infrastructure for data
stream processing and allows programming in python. Storm
does not have an API to handle the low-level image
processing. To overcome this, we use the OpenCV library
which provides low-level image processing services on the top
of Storm. As shown in Fig. 7, the stream processing unit
consists of three main layers: The image pre-processing,
mainly responsible for performing basic image processing
tasks such as restoration (JSON to frame), encoding
images/video, image enhancement, grayscale images, etc. The
features extraction is responsible for extracting the features
required to the analysis. These features will be provided as
input to the third layer which is the distributed data mining. To
implement this layer, we will use the Apache SAMOA a
platform for mining Big Data streams [20]. APACHE
SAMOA is both a framework and a library. As a framework,
it allows the algorithm developer to abstract from the
underlying execution engine, and therefore, reuse their code
on different engines such as Storm, Flink, Samza, and Apex
[21]. As a library, Apache SAMOA contains implementations
of state-of-the-art algorithms for distributed machine learning
on streams. For classification, Apache SAMOA provides a
Vertical Hoeffding Tree (VHT), a distributed streaming
version of a decision tree. For clustering, it includes an
algorithm based on CluStream. For regression, HAMR, a
distributed implementation of Adaptive Model Rules. The
library also includes meta-algorithms such as bagging and
boosting [21][22].

Fig. 7. The Stream Processing unit's Layers.

245 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 8, 2020

Fig. 8. Video Stream Analytics System Architecture.

4) Storage: The size of the video streams coming from
multiple cameras installed in the different classrooms of a
university can easily reach the Exabyte. So, scaling up, must
be supported. Hence, storing such amounts of data is a real
challenge. To solve this issue, video streams received from
different cameras, through Kafka, encapsulated in JSON
objects, are saved as MP4 files on the Hadoop Distributed File
System storage (HDFS) of the Hadoop cluster. The storage
will be distributed to ensure a fast flow recording. This also
will ensure high data availability and the ability to perform
distributed processing. Metadata for video streams and the
result of video analysis are stored in an Hbase database, a data
result duplication will be done in Elasticsearch for a possible
visualization.

The received video streams are stored as 90 seconds video
files. The size of a video file is strongly related to its length and
it impacts the speed of storage, transmission, and analysis. The
duration of a 90-second video file is chosen after taking into
account the intra-cluster bandwidth, processing, machine
performance, and fault tolerance. A small video file is
transmitted faster than a large file. Furthermore, in case of
failure, retransmission is faster.

The average size of a 90 second video stream is 16.2 GB,
considering the average frame size which is 6M. Single-camera
recording video (equivalent to 8 hours) requires a capacity of
5,184 TB. Table III summarizes the storage capacity required
to store video stream for different durations.

5) Presentation: Visualization of analysis results is
provided by Kibana, the official GUI visualization platform
for Elasticsearch. Kibana has 4 main components: Discover,
visualize, dashboards, and management. It provides access to
the data stored in the Elasticsearch cluster through a Web
interface that supports search, visualizes and analyzes
functionalities.

TABLE III. DISK SPACE REQUIREMENTS FOR ONE WEEK OF RECORDED
VIDEO STREAM

Duration Size of a frame Size of a video
90 seconds 6MB 16,2 GB

5 minutes 6MB 54GB
1 Hour 6MB 648GB
1 Day 6MB 5,184 TB

1 Week 6MB 31,104TB

VI. DISCUSSION
We have drawn up a comparison of the two most known

architectures in Section IV. We discuss here the criteria for
choosing our architecture and to what extent it meets the
requirements of our problem.

The purpose of this study is to set up a real-time Big Data
architecture capable of responding to the constraints of
detecting and monitoring the student’s attention at large scale.
In other words, it must handle and process continuously and in
real-time a large stream of images coming from the HD
cameras placed in the classrooms. The video stream must also
be stored for later analysis, to serve as a support for creating
attention detection datasets or for training and validation tasks.

Our architecture is inspired by the concept of Kappa
architecture since we only involve the processing of image data
streams. The high capabilities of Apache Kafka make it
possible to handle large incoming data streams. To overcome
the real-time processing problem, Storm is used to pre-process
the image streams, as well as the features extraction tasks. This
is guaranteed, as Storm can be plugged-in as a pre-processor of
the stream for each Kafka topic. In order to achieve real-time
processing, the Storm topology must be created inside of it. For
this purpose, we have coupled the use of Storm with SAMOA
to benefit from its distributed machine learning libraries. The
business logic of our architecture implies the need to store the
data received for possible uses. Storage is provided by Hadoop
with the possibility of processing which gives our architecture
a hybrid form and makes it benefit from the advantages of the
two traditional architectures.

The constraints regarding scalability and reliability were
respected. Our architecture can scale-out on-demand to adapt
to the increased load resulting from an expansion of university
establishments and the number of students. Storm and Kafka
clusters can scale horizontally. In addition, in case of machine
failures, the data replication mechanisms allow fault tolerance,
without loss of data.

VII. CONCLUSION
The main concern of this paper was to study the different

technologies and architectures of Big data to propose an
architecture capable of dealing with the problems linked to the
high scale transition for student’s attention detection systems.
We compared the two main architectures on the market,
namely, Lambda and Kappa, in order to choose the one that
best meets our needs. Given the constraint of real-time

246 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 8, 2020

processing, we chose to base our architecture on the Kappa
architecture which is simple and requires only a single
implementation of the business logic. The choice of Apache
Storm was not arbitrary but deduced from a comparison of
stream processing tools. Storm is real-time processing with no
restrictions on the implementation language. Furthermore, to
implement machine learning algorithms in a distributed way,
Storm can interface perfectly with Apache SAMOA.

The main limitation of this study is the lack of real-world
data, which we take into consideration in future research. The
next step of our work is to create a data set for the student's
attention detection and to analyze it with several machine
learning algorithms. Finally, we intend to perform the test and
performance evaluation of our architecture.

REFERENCES
[1] J. Whitehill, Z. Serpell, Y.-C. Lin, A. Foster, and J. R. Movellan, “The

faces of engagement: Automatic recognition of student engagementfrom
facial expressions,” IEEE Trans. Affect. Comput., vol. 5, no. 1, pp. 86–
98, 2014.

[2] Krithika L.B and Lakshmi Priya GG, “Student Emotion Recognition
System (SERS) for e-learning Improvement Based on Learner
Concentration Metric,” Procedia Comput. Sci., vol. 85, pp. 767–776,
2016.

[3] J. Zaletelj and A. Košir, “Predicting students’ attention in the classroom
from Kinect facial and body features,” EURASIP J. Image Video
Process., vol. 2017, no. 1, p. 80, Dec. 2017.

[4] N. Vettivel, N. Jeyaratnam, V. Ravindran, S. Sumathipala, and S.
Amarakecrthi, “System for Detecting Student Attention Pertaining and
Alerting,” in 2018 3rd International Conference on Information
Technology Research (ICITR), 2018, pp. 1–6.

[5] P. Goldberg et al., “Attentive or Not? Toward a Machine Learning
Approach to Assessing Students’ Visible Engagement in Classroom
Instruction,” Educ. Psychol. Rev., Dec. 2019.

[6] J. Gantz and D. Reinsel, “Extracting value from chaos,” IDC iview, vol.
1142, no. 2011, pp. 1–12, 2011.

[7] S. Ali, A. Rauf, and J. Ahmad, “Protecting Unauthorized Big Data
Analysis using Attribute (Data) Relationship.”

[8] G. Glossary, “Big Data defintion.” 2013.
[9] P. Zikopoulos, C. Eaton, and others, Understanding big data: Analytics

for enterprise class hadoop and streaming data. McGraw-Hill Osborne
Media, 2011.

[10] S. Madden, “From databases to big data,” IEEE Internet Comput., vol.
16, no. 3, pp. 4–6, 2012.

[11] S. Sagiroglu and D. Sinanc, “Big data: A review,” in 2013 international
conference on collaboration technologies and systems (CTS), 2013, pp.
42–47.

[12] M. A. Lopez, A. G. P. Lobato, and O. C. M. B. Duarte, “A Performance
Comparison of Open-Source Stream Processing Platforms,” in 2016
IEEE Global Communications Conference (GLOBECOM), 2016, pp. 1–
6.

[13] A. Fundation, “storm.apache.org,” 1394. [Online]. Available:
https://storm.apache.org.

[14] S. Landset, T. M. Khoshgoftaar, A. N. Richter, and T. Hasanin, “A
survey of open source tools for machine learning with big data in the
Hadoop ecosystem,” J. Big Data, vol. 2, no. 1, p. 24, 2015.

[15] I. Bartolini and M. Patella, “Real-Time Stream Processing in Social
Networks with RAM3S,” Futur. Internet, vol. 11, no. 12, p. 249, 2019.

[16] S. Shahrivari, “Beyond batch processing: towards real-time and streaming
big data,” Computers, vol. 3, no. 4, pp. 117–129, 2014.

[17] N. Marz and J. Warren, Big Data: Principles and best practices of scalable
real-time data systems. New York; Manning Publications Co., 2015.

[18] V. Persico, A. Pescapé, A. Picariello, and G. Sperl\’\i, “Benchmarking
big data architectures for social networks data processing using public
cloud platforms,” Futur. Gener. Comput. Syst., vol. 89, pp. 98–109, 2018.

[19] J. Kreps, “Questioning the lambda architecture,” Online Artic. July, p.
205, 2014.

[20] G. De Francisci Morales, “SAMOA: A platform for mining big data
streams,” in Proceedings of the 22nd International Conference on World
Wide Web, 2013, pp. 777–778.

[21] N. Kourtellis, G. D. F. Morales, and A. Bifet, “Large-scale learning from
data streams with Apache SAMOA,” in Learning from Data Streams in
Evolving Environments, Springer, 2019, pp. 177–207.

[22] T. Vasiloudis, F. Beligianni, and G. De Francisci Morales, “BoostVHT:
Boosting distributed streaming decision trees,” in Proceedings of the
2017 ACM on Conference on Information and Knowledge Management,
2017, pp. 899–908.

247 | P a g e
www.ijacsa.thesai.org

	I. Introduction
	II. State of the Art
	A. Existing Systems
	B. Big Data

	III. Stream Processing Platforms
	A. Apache Flink
	B. Storm
	C. Spark

	IV. Big Data Architectures Benchmarking
	A. Lambda Architecture
	B. Kappa Architecture

	V. Our Proposed Big Data Analytics Architecture for Real-Time Student Attention Detection
	A. Design and Implementation
	1) Data collection: The video stream is produced by a cluster of a high definition IP (HD 1080P: 1920 x 1080 (16/9) video at 30Fps) cameras designed to provide real-time video streams. The volume of data video is so important that it can easily reach the t�
	2) Data ingestion: For large scale stream acquisition, we choose to use Apache Kafka, that is, basically an open-source messaging system consisting of three components: Message Producer, Message Broker and Message Consumer. Kafka exchanges data between app�
	3) Stream processing: Stream processing is built on Apache Storm, a distributed computing infrastructure for data stream processing and allows programming in python. Storm does not have an API to handle the low-level image processing. To overcome this, we �
	4) Storage: The size of the video streams coming from multiple cameras installed in the different classrooms of a university can easily reach the Exabyte. So, scaling up, must be supported. Hence, storing such amounts of data is a real challenge. To solve �
	5) Presentation: Visualization of analysis results is provided by Kibana, the official GUI visualization platform for Elasticsearch. Kibana has 4 main components: Discover, visualize, dashboards, and management. It provides access to the data stored in the�

	VI. Discussion
	VII. Conclusion

