
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 8, 2020

Intelligent and Scalable IoT Edge-Cloud System
Shifa Manihar1, Ravindra Patel3

Department of Computer Science
UIT RGPV, Bhopal, India

Tasneem Bano Rehman2

Department of Computer Science
Sage University, Bhopal, India

Sanjay Agrawal4

Department of Computer Science
NITTTR, Bhopal, India

Abstract—Scalability is an utter compulsory for the success of
the IoT’s unprecedentedly growing network. The operational and
financial bottlenecks allied with growth can be overwhelming for
those peeping to integrate IoT solutions. As the IoT technology
proceeds, so is the scale of operations desired to arrive at a wider
target region. Breakdown may take place not because of device’s
ability to scale, but due to data scale. As more devices are being
incorporated, more data/information will be amassed, stored,
processed, and scrutinized. The volume of this collection simply
cannot be managed from a single edge device by deploying
vertical approach. When starting small, it’s important to peep
into the future and anticipate growth. Companies that can’t
adapt to unpredictable market changes will fold without the right
IoT architecture in place. Therefore, a scalable IOT framework
has been proposed in the paper, which will provide load
balancing or scalability by deploying the provisions of horizontal
scalability for the system. The framework will be utilizing SOM
for the purpose of classifying applications (whether delay
sensitive or delay insensitive), so that proper decisions can be
made based on the incoming data (typically signals) and if edge
gets over flooded with the data, then edge is scaled to instigate
the other edge for computing additional requests . The proposed
system is termed as intelligent because its algorithm empowers
the edge to take decision and classify applications based on the
type of requirement of the application.

Keywords—Scalability; internet of things; self organizing map;
edge; horizontal scalability

I. INTRODUCTION
Internet of Things (IoT) was first introduced to the

community in 1999 for supply chain management [1], and
then the concept of “making computer sense information
without the aid of human intervention” was widely adapted to
other fields such as healthcare, home, environment, and
transports [2], [3]. A prediction has been made by Analysts
Firms that there will be around 2020 billion of active
connected products. Now with IoT, we will arrive in the post-
cloud era, where there will be a large quality of data generated
by things that are immersed in our daily life, along with lots of
applications deployed at the edge to consume these data.

IoT is an environment that encompasses the objects (living
and non-living) communicating with each other by means of
Internet. The basic purpose of IoT is to induce intelligence
into any object and providing it with the decision making
capability. Here we lay emphasis on the capacity building
capability of any device. We do not need to have storage
within the object itself. The whole system relies on offloading
the computing and storage on to the network by the IoT
devices.

Edge computing refers to the technologies empowering
computation to be performed at the edge of the network. Here
we define “edge” as any computing and network resources
along the path between cloud data centers and data sources.
For example, a smart phone is the edge between body things
and cloud, a gateway in a smart home is the edge between
home things and cloud, a micro data center and a cloudlet [4]
is the edge between a mobile device and cloud. The main logic
behind edge computing is that computing should happen in
close proximity of mobile devices or sensors. Data is
increasingly produced at the edge of the network; therefore, it
would be more efficient to also process the data at the edge of
the network. Previous work such as micro datacenter [5], [4],
cloudlet [6], and fog computing [7] has been introduced to the
community because cloud computing is not always efficient
for data processing when the data is produced at the edge of
the network.

Acting as a common interface or middleware for
unprecedentedly increasing number of disparate data from
variety of IoT devices, edge computing has gained a
tremendous impetus by many researchers from the last decade.
It not only provide a platform for heterogeneous and
unpredictable data from n number of IoT devices while
communicating with the cloud but also act as a computational
hub which encompasses intelligence for decision making and
encounters the bottleneck of latency and power consumption.
Performing computation at the end devices had the ramifying
effect on the global power consumption by the IoT devices.
Now the computational burden of IoT devices has been
offloaded to edge servers lying to the vicinity of the IoT
devices and hence alleviating the energy conservation. As per
the survey conducted by IEA based on 4E Agreement, the
standby power consumption by the IoT devices and their
respective edges globally is estimated to be 46 TWh by 2025
[8]. Thus recent researches are laying great emphasis on
conserving this standby or idle power consumption by IoT
devices by enhancing new technological developments. We
often encounter the problem of limited storage on edge servers
as contradictory to unlimited storage at the cloud. This
bottleneck of edge has attracted the users towards the
proliferating use of cloud. But this issues of limited storage at
edge can be tackled if data approaching edge server is
compressed beforehand, hence enhancing the capacity of the
edge to accommodate more number of applications. Edge
computing incorporates the intelligence, processing power and
communication capabilities of an edge gateway or appliance
directly into devices [19].

Scale, by definition, refers to “the capability of a system,
network, or process to handle a growing amount of work

359 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 8, 2020

(service requests), or its potential to be enlarged in order to
accommodate that growth” [9]. The Scalability is the
phenomenon which means accommodating and servicing the
ever increasing network traffic without creating a burden on
an edge server. Scalability can be two dimensional. One
dimension involves deploying more and more resources to
partition the incoming service requests among the multiple
servers to handle the requests. This is termed as horizontal
scalability. This dimension involves partitioning the tasks
based on the number of incoming requests. The second
dimension involves partitioning the incoming requests based
on action without deploying extra resources. This is termed as
vertical partitioning. This paper emphasizes on the first
dimension of the scalability.

The rest of the article is organized as follows: Section I
briefly discuss about some of the existing scalable based edge
IoT systems. In Section II, we describe our proposal of an
intelligent edge system in details. In Section III,
implementation and simulation of the algorithm is discussed.
Finally, the paper is concluded in Section IV.

II. RELATED WORKS
Many researchers have been working on the proliferation

of edge computing and have proposed various fog computing
layered architectures and paradigms. Shreshth Tuli et al. [20]
proposed a framework, known as EdgeLens, adapts itself to
the application or user requirements to provide high accuracy
or low latency modes of services. They tested the performance
of the software in terms of accuracy, response time, jitter,
network bandwidth and power consumption and show how
EdgeLens adapts to different service requirements. Gusev [10]
has suggested the concept of ‘Everything as a Service’, and
has emphasized on the significance of the distribution of
smaller servers in front of the central server and in the vicinity
of the user, hence promoting the concept of edge computing.
Wei Yu [11] has classified various edge computing
architectures and compared their influence on the performance
of various parameters of IoT networks such as network
latency, storage, bandwidth occupation, energy expenditure,
and the overhead incurred and various security issues such as
availability, integrity, availability and confidentiality.

Jalali [8] has compared various literatures which have been
proposed to curtail energy consumption in the IoT devices and
has proposed various fog computing techniques which can
alleviate power consumption in various IoT devices. Various
factors such as access network technologies; idle power
consumption of IoT devices, application type, virtualization
and network management which lead to higher power
consumption has been discussed. Case study on the effect of
using Fog computing along with microgrid to reduce energy
consumption has been proposed. Fei Li [12] in his work has
proposed IoT PaaS architecture promoting vertical scalability
by utilizing computing resources and middleware services on
the cloud. Domain mediation which is deployed for domain
specific control application by the solution providers has been
suggested. Two use cases have been put forward in building
management domain to show the results.

Sarkar [13] has proposed a layered architecture for
distributed environment that utilize scalability which is

coupled with cognitive capabilities that promoted intelligent
decision making. In his work, an usage control policy model
has been proposed to endorse security and privacy in the
distributed environment. Sarkar [14] has also proposed a
distributed architecture which emphasized interoperability,
heterogeneity and scalability, security and privacy of the IoT
devices, and named such architecture as Distributed Internet
like Architecture (DIAT). In this layered architectures, each
layer is classified based on the similar function, forming the
hierarchical structure of functionalities.

Onoriode [15] has compared various existing architectural
frameworks for integrating various heterogeneous IoT devices
and has put forward a viable solution based on micro service.
The proposed IoT integration framework takes advantage
from an cognitive API layer that makes use of an external
service assembler, service auditor, service monitor and service
router module to direct service publishing, subscription,
decoupling and service amalgamation within the architecture.
Ju Ren [16] has proposed a Transparent Computing based IoT
architecture to build scalable IoT platforms. With the help of
case study, he has build scalable lightweight wearables
deploying the proposed architecture.

Kajal [17] has worked for compressing the data especially
video frames using Self Organizing Map (SOM) and stored
the output feature using Hopfield networks. The frames are
preprocessed by making it to pass through the SOM that
outputs the helpful features diminishing redundant and
irrelevant tenets [17]. Hopfield network is deployed in turn, to
store various output patterns. The compressed data can be
restored by increasing the dimensions of the frame.

III. LEARNING BASED SCALABLE IOT SYSTEM (LSI)
Taking into account the issue of idle power consumption

by IoT devices, a framework has to be proposed that can be
deployed to reduce the idle time of edge servers. Also as
mentioned above, one of the basic tasks of deploying the edge
server is to minimize the latency when addressing several
simultaneous requests by IoT devices. Delay sensitive
applications are time sensitive thus possess high priority, need
to be addressed at first instance. This paper proposes a
mechanism that provides intelligence (a learning mechanism)
to the edge server by exploiting which the type of application
can be classified whether delay sensitive or delay insensitive.
This paper also addresses the issue of scalability when edge
server gets flooded with delay sensitive applications taking
into account horizontal scalability.

Objects (e.g. sensors) are provided with IP address, which
aid communication with each other. Various sensors send
numerous and variety of incompatible data to the edge for
processing. In this paper, the proposed system employ Self
organizing map for classifying the delay sensitive data and the
delay insensitive data. The delay sensitive data is immediately
forwarded to the edge server for further processing. The SOM
not only clusters the type of data but also compresses the
incoming data, hence enabling the edge server to
accommodate more data as edge is limited by its storage
capacity, and therefore data compression is of vital importance
to edge computing. Whenever the edge gets enormous delay
sensitive data, its throughput declines, therefore this paper laid

360 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 8, 2020

emphasis on providing additional edge servers, which at sleep
initially. It activates only when data overflow at the server 1.
This additional server can also be deployed to handle delay
sensitive data. This server comes to play only at high peak
times, but at normal times, it is just set to sleep. This can be
accomplishes through the use of Aneka Auto-scaling
provision. Through this mechanism load balancing has been
achieved without much affecting the energy consumption rate.
The comparison of LSI with the already existing researches
and algorithms has been listed in the Table I.

TABLE I. COMPARISON OF VARIOUS IOT ARCHITECTURES

IoT Features DIAT [14]

Transparent
Computing
Architecture
[16]

IoT PAAS
[12] LSI

Horizontal
Scalability Yes Yes Not Known Yes

Vertical
Scalability No No Yes No

Energy
Consumption Not Known Yes Not Known Yes

Response Delay Not Known Yes Not Known Yes

Context Aware
Service Support Yes Yes Not Known Yes

Intelligence Yes Not Known Not Known Yes

A. Self Organizing Map (SOM)
With the purpose of data visualization which in turn

endorse in realizing high dimensional data by short sizing the
dimensions of the data to a map, SOM is of crucial weight and
has grabbed the attention of many scholars and researchers.
SOM deploys competitive learning paradigm to cluster data by
amassing similar data altogether. Thus SOM reduces data
dimensions and displays similarities among data. With the aid
of SOM, clustering is accomplished through having several
units compete or race for the current element. Once the SOM
is provided with the data, the network of artificial neurons
goes through competitive training. The weight vector of the
unit that is found nearest to the current element is proclaimed
to be the winning or active unit. While undergoing training,
SOM preserves the neighborhood relationship that persists
among the input data sets. As it approaches near to vicinity of
the input object, the weights of the winning unit are put to
adjustment as well as its neighbor’s nodes.

In contradiction to other learning technique, SOM do not
employ target vector. A SOM learns to classify the training
data with no external interference. Normally, Euclidean
distance is the most rapidly used method for determining the
distances of the input vector from the weight vector. The input
vector whose distance is shortest from the weight vector is
proclaimed to be the winner. SOM algorithm can be
summarized as follows:

1) Initial steps involve the weights to be provided with
arbitrary weights.

2) Next we choose any random input vector.

3) We examine each node by evaluating which node’s
weights are found to be closest to the input vector. We call
this winning node as Best matching node.

4) Next we find out the neighbors of the winning node.
5) The winning weight is rewarded with becoming more

like the sample vector. The neighbors tend to be more like the
sample vector. The closer a node is to the winner node, the
more its weights adjusted and the farther away the neighbor is
from the winning node, the less it learns.

6) Go to step 2 for next samples.

B. LSI Working
Raw data and/or information in the form of signals are

amassed based on whatever is sensed by the Sensors and
actuators. The most clear-cut demonstration of a time series
signal is based on its time-domain form, and then distances
between time series relate to differences between the time-
ordered measurements themselves. A traditional approach to
the classification of time series problem used in data mining
domain, focus on classifying short time series which encode
meaningful patterns. This is termed to as instance based
classification. Here new time series are classified by matching
them to similar instances of time series with a known
classification. These incompatible data has to be preprocessed
and normalized before being used as input for any further
action. Collected sensed data is forwarded to the edge device,
where it first encounters Self organizing map (SOM) where
the learning is basically relied upon only the input data and
such unlabelled data is independent of the desired output. We
call such learning mechanism as unsupervised learning. Since
SOM tend to respond to several output categories after
performing training. Hence an additional mechanism is added,
so that SOM can respond to which one unit will respond (this
is termed as Competition, often called Winner take all
strategy). The number of output unit has been limited to two,
either cluster into delay insensitive data or to delay sensitive
data. During training, SOM identifies which output unit best
matches the input sensed data. The sensed data is preprocessed
and input to the SOM situated at the edge. Kohonen feature
map is created, which determine the winner unit (whether
delay insensitive or delay sensitive data unit). Kohonen
feature map can also be trained to compress the sensed input
data, so that more number of data can be accommodated at the
edge, hence compensating the limited size of the edge server
to a limit. Based on the winner unit, data is forwarded to either
Queue 1 or Queue 2. Queue 1 is maintained for delay
insensitive data, whereas Queue 2 is maintained for delay
sensitive data. Kohonen network will undergo two phases:
training and testing. During the training phase, the SOM is
trained to form the cluster of inputs based on the similarity (or
minimum Euclidean distance). During the test phase, we
evaluate the performance by measuring to what extent our
network classifies delay sensitive and delay insensitive data.

Data stored in the Queue 2 is basically stored for
processing at the edge device. A variable counter is
maintained on the number of the requests arriving at a time
and being served by the edge server. If the counter exceeds 30,
then additional edge is initialized and any further request is
forwarded to this edge 2 provided Aneka auto-scaling.

361 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 8, 2020

Queue 2 is provided with a threshold (T) on its size. Whenever
overflow occurs i.e. Queue 2 reaches its threshold (T), an
alternative Queue 3 is maintained which will store the further
data. With the instigation of Queue 3, an additional edge
which is maintained in order to handle the traffic at the edge
device 1, is also provoked. This edge server 2 will process the
further data arriving after the overflow at the Queue 2.
Initially, additional edge device is at sleep, and provoked only
after the initialization of the Queue 3. After processing the
data at Queue 3, the edge server 2 can be disabled by the
Aneka and again goes to sleep. This is done to curtail the extra
energy consumption, which would have been expended due to
the idle state of the edge server 2 during its free time. Thus,
this feature ensures horizontal scalability without much energy
expenditure.

Queue 1 is maintained for the delay insensitive data, hence
data in the Queue 1 can either be directly forwarded to the
cloud for processing, or additionally we provide a mechanism
called cycle steal. Sometimes, while processing delay
sensitive data at edge server 1 and edge server 2, the processor
may be found in an idle state. During such time, data in
Queue 1 or training at the SOM can be processed at these edge
servers. This mechanism not only enhances CPU throughput,
but also saves energy consumption due to idle state at the edge
servers.

C. Inputs
This proposed research encompasses the following

application areas: Hospital, Surveillance, Organization,
Inventory, and Smart Home. Each of these applications is
facilitated with the following types of Sensor: Smoke,
Temperature, Proximity, Thumb, and Smoke. The utility of
each sensor varies according to the application areas, for
example the data sensed by smoke sensors is of highest
priority and has to be processed immediately; the thumb
sensors finds importance for the Organization but is of less
importance if found in the Inventory; the temperature sensor is
critical for the applications like Hospital and Inventory, etc. It
is proposed to process the data sensed by the higher priority
sensor (Priority vary according to the application area) in the
edge, forwarding the rest data to the cloud. The inputs are
basically signals which can be represented in time series.

D. LSI Algorithm
The LSI algorithm is explained in detail as follows:

Here T (threshold) = 30 /*Threshold T is set to be 30
keeping in view the processing
capacity of the edge & IoT sensors
are low power devices and require
less processing power and an Edge
can easily process at least 30
requests at a time without causing
Overloading. */

If (Sensed_Data == True)
{
Initialize SOM;
SOM Sensed_Data; /*SOM evaluates the Euclidean

distance of the signals with the
already stored ones.*/

If Output(SOM)==1
Queue1Sensed_Data; //Send data to the Cloud.

If Output(SOM)==2
Counter++;
If (Counter<=T) /*Check whether counter value

<=Threshold */
Queue2Sensed_Data; /*Send data to

the Edge Processor 1 */
else

Queue3Sensed_Data; /* Send data to
the Edge Processor 2 */

If Processing(Sensed_Data)==True /*If the processing of the
request is completed.*/

 Counter--;
If (Queue3==Empty)//Check if no task at Edge processor 3

Dissolve(Queue3); /*Disable the Edge
processor 3 if under
load.*/

 }

This particular system and algorithm can be well
illustrated in Fig. 1.

E. Multi-Application use Case
To validate architecture, a composite use case is described

in this section. The instances consist of various IoT
applications like smart city, smart transportation, smart home,
smart healthcare, smart retail and supply chain system, smart
biometric system, smart agriculture, smart logistics, smart
fitness system etc. The proposed LSI architecture overcomes
the barrier of separate heterogeneous IoT applications, and
thus achieves a global IoT system. When multiple such sensed
data is collected by the sensors and sent to the LSI, the SOM
classifies real time data such as smart healthcare, smart
transportation, etc. and non-real time data such as smart
biometric, logistics, fitness, etc., and pass them either to the
edge or to the cloud respectively for further processing.

Fig. 1. LSI Flowchart.

362 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 8, 2020

IV. SIMULATION AND RESULT ANALYSIS
This research is simulated in the Aneka platform, which is

a software platform for developing cloud computing
applications [18]. It is a Pure PaaS solution for cloud
computing. It is a framework which provides both middleware
for managing and scaling distributed applications and an
extensible set of APIs for developing them. Aneka 5.0 can be
installed on the Virtual machine which may be configured as
per the user requirements and agreed SLA. Aneka is interfaced
with Matlab 8.0 which contains the code for implementing the
scheduling of the delay sensitive and delay sensitive data. An
Aneka server was developed locally with a single master and
multiple workers, which create the environment of an edge,
and have installed Aneka on the virtual machine created on the
AWS cloud. Hence, creating edge-cloud environment. Aneka
5.0 has the provision of Autoscaling, which varies according
to our algorithm.

In order to create the edge environment, a master and two
workers have been created. The algorithm for SOM is run on
the Aneka master computer which installed with Matlab 8.0 in
which algorithm for classification implemented, which
decides whether to forward the data to its worker computers or
to the cloud. Initially only single worker computer is in the
processing state, while the other inactive. Whenever the
number of requests crosses 30 (the threshold T) to be served at
the edge, the Aneka transfers the workload to its other worker
along with its first worker. Here in this scenario, only two
workers have been created, but many more worker computers
can be created for processing the unprecedentedly increasing
incoming requests. This research has been performed at a
small level. Alternatively a virtual machine has been created
with the Aneka PaaS installed in it on the AWS cloud. The
classified delay insensitive applications are forwarded to this
particular cloud. This cloud is also provisioned with the
Autoscaling of VMs as the number of requests gets flooded.
But in our research, any such requests flood at the cloud was
not witnessed, since performed at the small level. When the
workload at the edge gets low, the edge master automatically
disables its other worker computer. The master does not
perform any task on its own except classification and load
distribution.

Initially, the research is simulated by taking number of
incoming requests as: 5, 15, 25, 35, 45, 55, 65, and 75. Firstly
these entire requests were forwarded to the cloud and their
performance was evaluated. Then these requests were
processed on the LSI system as proposed above. Then
comparison on the following parameters were made and the
proposed algorithm is found to prone to succeed not only in
achieving the primary characteristics of IoT like
heterogeneity, scalability, etc. but also attained the following
metrics:

1) Throughput: The amount of service requests processed
by the device per unit time. Since LSI incorporates the feature
of scalability by providing the facility of additional edge
server (Aneka worker), the network throughput is prone to
enhance tremendously as multiple requests are being
processed simultaneously at edge worker 1, another additional

edge worker, and the cloud. Thus number of requests
processed per unit time improves.

The average number of requests per second was found to
be 63 in case of LSI, and 48 in case of Cloud.

2) Response time/delay: The duration of time required
taking delivery of a response to a request. It can also be seen
as the average time the client has to wait to get its job done.
Delay sensitive applications are to be responded immediately
without any delay in processing. By setting the priority for the
delay sensitive data, LSI improves the response time
tremendously. The observations are manifested in Fig. 2.

3) Packet loss: It is termed as the number of packet drops
due to traffic or network congestion during a specified
duration of time. LSI reduces the number of packet loss since
it endorses the factor of horizontal scalability by deploying the
provision of additional edge device whenever edge device 1
exceeds the threshold. Thus LSI is least prone to network
congestion and improves the packet delivery factor for the
measured duration of time. The use of mirror server aid in
processing the majority of the requests at the edge server
level, and not at the cloud level, therefore the packets are least
faced with the network congestions. Hence reducing the
probability of packet loss as shown in Fig. 3.

Fig. 2. Comparison of Response Delays wrt Cloud and LSI.

Fig. 3. Comparison of Packet Loss wrt LSI and Cloud.

363 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 8, 2020

V. CONCLUSION AND FUTURE WORK
As can be clearly manifested by the current scenario, the

unprecedented growth of IoT devices has generated the
urgency of deploying such edge devices which are scalable
and can accommodate the varying and consistently increasing
number and types of IoT devices. Whether accurate or not, we
must prepare for it or risk becoming the victims of our own
success. In the paper an intelligent IOT framework has been
proposed where in Self Organizing Map is deployed, in order
to differentiate between delay sensitive data and delay
insensitive data. This leads to the improvement in response
time of the critical applications such as related to healthcare
which to be immediately addressed, promoted scalability by
utilizing the additional edge device, in turn improving the
throughput. It reduced the idle time of the edge server 2 by
promoting disabling phenomenon supported by Aneka Auto-
scaling provision, which in turn reduced energy expenditure
that may have incurred due to the idle state of the edge
processor 2. As compared to the existing work, LSI not only
reduces latency but also work in enhancing resource
utilization, throughput and reduction in packet loss as
manifested by our results. This research is done at small scale,
but can be extended to incorporate various other applications.
This research improves the performance to an extent as
compared to the cloud because classification of delay sensitive
and delay insensitive data is accomplished on the pattern of
the data itself (time series), which may generate inaccurate
results sometimes (i.e. may not classify data correctly) due to
overlapping range of values of data of various sensors, but it
shown good results specially in terms of response delay,
because we are bifurcating the sensed data to the edge as well
as cloud, as compared to performance when processing done
at cloud only. Furthermore pre-processing can be deployed on
the data to give better classification results. Also, scalability
can be achieved at higher level by deploying several more
additional edge servers. Further, in order to increase the
scalability and to have better performance other algorithms
like deep learning or machine learning can also be applied in
future.

REFERENCES
[1] K. Ashton, “That Internet of Things thing,” RFiD J., vol. 22, no. 7, pp.

97–114, 2009.
[2] H. Sundmaeker, P. Guillemin, P. Friess, and S. Woelfflé, “Vision and

challenges for realising the Internet of things,” vol. 20, no. 10, 2010.

[3] J. Gubbi, R. Buyya, S. Marusic, and M. Palaniswami, “Internet of
Things (IoT): A vision, architectural elements, and future directions,”
Future Gener. Comput. Syst., vol. 29, no. 7, pp. 1645–1660, 2013.

[4] E. Cuervo et al., “MAUI: Making smartphones last longer with code
offload,” in Proc. 8th Int. Conf. Mobile Syst. Appl. Services, San
Francisco, CA, USA, 2010, pp. 49–62.

[5] A. Greenberg, J. Hamilton, D. A. Maltz, and P. Patel, “The cost of a
cloud: Research problems in data center networks,” ACM SIGCOMM
Comput. Commun. Rev., vol. 39, no. 1, pp. 68–73, 2008.

[6] M. Satyanarayanan, P. Bahl, R. Caceres, and N. Davies, “The case for
VM-based cloudlets in mobile computing,” IEEE Pervasive Comput.,
vol. 8, no. 4, pp. 14–23, Oct./Dec. 2009.

[7] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, “Fog computing and its
role in the Internet of things,” in Proc. 1st Edition MCC Workshop
Mobile Cloud Comput., Helsinki, Finland, 2012, pp. 13–16.

[8] Fatemeh Jalali ; Safieh Khodadustan, et.al, “Greening IoT with Fog: A
Survey”, IEEE International Conference on Edge Computing (EDGE),
IEEE, 11 September 2017.

[9] https://en.wikipedia.org/wiki/Scalability.
[10] Marjan Gusev, Schahram Dustdar, “Going Back to the Roots—the

Evolution of Edge Computing, an IoT Perspective” IEEE Computer
Society, March/April 2018.

[11] Wei Yu, Fan Liang, Xiaofei He, et.al, “A Survey on the Edge
Computing for the Internet of Things” IEEE Access, Volume 6, 9 March
2018.

[12] Fei Li, Michael Vogler, et.al, “Efficient and scalable IoT service
delivery on Cloud” , 2013 IEEE Sixth International Conference on
Cloud Computing.

[13] Chayan Sarkar, Akshay Uttama Nambi S. N., et.al, “A Scalable
Distributed Architecture Towards Unifying IoT Applications”, 2014
IEEE World Forum on Internet of Things (WF-IoT), March-2014.

[14] Chayan Sarkar, et.al, “DIAT: A Scalable Distributed Architecture for
IoT” IEEE INTERNET OF THINGS JOURNAL, VOL. X, NO. X.

[15] Onoriode Uviase, et.al, “IoT Architectural Framework: Connection and
Integration Framework for IoT Systems”, EPTCS 264, 2018, arXiv
preprint arXiv:1803.04780.

[16] Ju Ren, Hul Guo, et.al, “ Serving at the edge: A Scalable IoT
Architecture Based on Transparent Computing”, IEEE Networks,
September/October 2017.

[17] Dr. Manu Pratap Singh, Kajal Sharma, “Video Compression using Self
Organizing Map and pattern storage using Hopfield Neural Network”,
International Conference on Industrial and Information Systems (ICIIS),
IEEE, 11 March 2010.

[18] Vecchiola, Christian, Xingchen Chu, and Rajkumar Buyya. "Aneka: a
software platform for .NET-based cloud computing." High Speed and
Large Scale Scientific Computing 18 (2009): 267-295.

[19] Shreshth Tuli, Nipam Basumatary, Rajkumar Buyya.
[20] EdgeLens: Deep Learning based Object Detection in Integrated IoT, Fog

and Cloud Computing Environments” 4th IEEE ISCON (November 21-
22, 2019).

364 | P a g e
www.ijacsa.thesai.org

https://ieeexplore.ieee.org/author/37860338300
https://ieeexplore.ieee.org/author/37086127327
http://arxiv.org/abs/1803.04780

	I. Introduction
	II. Related Works
	III. Learning based Scalable IoT System (LSI)
	A. Self Organizing Map (SOM)
	1) Initial steps involve the weights to be provided with arbitrary weights.
	2) Next we choose any random input vector.
	3) We examine each node by evaluating which node’s weights are found to be closest to the input vector. We call this winning node as Best matching node.
	4) Next we find out the neighbors of the winning node.
	5) The winning weight is rewarded with becoming more like the sample vector. The neighbors tend to be more like the sample vector. The closer a node is to the winner node, the more its weights adjusted and the farther away the neighbor is from the winning �
	6) Go to step 2 for next samples.

	B. LSI Working
	C. Inputs
	D. LSI Algorithm
	E. Multi-Application use Case

	IV. Simulation and Result Analysis
	1) Throughput: The amount of service requests processed by the device per unit time. Since LSI incorporates the feature of scalability by providing the facility of additional edge server (Aneka worker), the network throughput is prone to enhance tremendous�
	2) Response time/delay: The duration of time required taking delivery of a response to a request. It can also be seen as the average time the client has to wait to get its job done. Delay sensitive applications are to be responded immediately without any d�
	3) Packet loss: It is termed as the number of packet drops due to traffic or network congestion during a specified duration of time. LSI reduces the number of packet loss since it endorses the factor of horizontal scalability by deploying the provision of �

	V. Conclusion and Future Work

