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Abstract—Scalability is an utter compulsory for the success of 
the IoT’s unprecedentedly growing network. The operational and 
financial bottlenecks allied with growth can be overwhelming for 
those peeping to integrate IoT solutions. As the IoT technology 
proceeds, so is the scale of operations desired to arrive at a wider 
target region. Breakdown may take place not because of device’s 
ability to scale, but due to data scale. As more devices are being 
incorporated, more data/information will be amassed, stored, 
processed, and scrutinized. The volume of this collection simply 
cannot be managed from a single edge device by deploying 
vertical approach. When starting small, it’s important to peep 
into the future and anticipate growth. Companies that can’t 
adapt to unpredictable market changes will fold without the right 
IoT architecture in place. Therefore, a scalable IOT framework 
has been proposed in the paper, which will provide load 
balancing or scalability by deploying the provisions of horizontal 
scalability for the system. The framework will be utilizing SOM 
for the purpose of classifying applications (whether delay 
sensitive or delay insensitive), so that proper decisions can be 
made based on the incoming data (typically signals) and if edge 
gets over flooded with the data, then edge is scaled to instigate 
the other edge for computing additional requests . The proposed 
system is termed as intelligent because its algorithm empowers 
the edge to take decision and classify applications based on the 
type of requirement of the application. 

Keywords—Scalability; internet of things; self organizing map; 
edge; horizontal scalability 

I. INTRODUCTION 
Internet of Things (IoT) was first introduced to the 

community in 1999 for supply chain management [1], and 
then the concept of “making computer sense information 
without the aid of human intervention” was widely adapted to 
other fields such as healthcare, home, environment, and 
transports [2], [3]. A prediction has been made by Analysts 
Firms that there will be around 2020 billion of active 
connected products. Now with IoT, we will arrive in the post-
cloud era, where there will be a large quality of data generated 
by things that are immersed in our daily life, along with lots of 
applications deployed at the edge to consume these data. 

IoT is an environment that encompasses the objects (living 
and non-living) communicating with each other by means of 
Internet. The basic purpose of IoT is to induce intelligence 
into any object and providing it with the decision making 
capability. Here we lay emphasis on the capacity building 
capability of any device. We do not need to have storage 
within the object itself. The whole system relies on offloading 
the computing and storage on to the network by the IoT 
devices. 

Edge computing refers to the technologies empowering 
computation to be performed at the edge of the network. Here 
we define “edge” as any computing and network resources 
along the path between cloud data centers and data sources. 
For example, a smart phone is the edge between body things 
and cloud, a gateway in a smart home is the edge between 
home things and cloud, a micro data center and a cloudlet [4] 
is the edge between a mobile device and cloud. The main logic 
behind edge computing is that computing should happen in 
close proximity of mobile devices or sensors. Data is 
increasingly produced at the edge of the network; therefore, it 
would be more efficient to also process the data at the edge of 
the network. Previous work such as micro datacenter [5], [4], 
cloudlet [6], and fog computing [7] has been introduced to the 
community because cloud computing is not always efficient 
for data processing when the data is produced at the edge of 
the network. 

Acting as a common interface or middleware for 
unprecedentedly increasing number of disparate data from 
variety of IoT devices, edge computing has gained a 
tremendous impetus by many researchers from the last decade. 
It not only provide a platform for heterogeneous and 
unpredictable data from n number of IoT devices while 
communicating with the cloud but also act as a computational 
hub which encompasses intelligence for decision making and 
encounters the bottleneck of latency and power consumption. 
Performing computation at the end devices had the ramifying 
effect on the global power consumption by the IoT devices. 
Now the computational burden of IoT devices has been 
offloaded to edge servers lying to the vicinity of the IoT 
devices and hence alleviating the energy conservation. As per 
the survey conducted by IEA based on 4E Agreement, the 
standby power consumption by the IoT devices and their 
respective edges globally is estimated to be 46 TWh by 2025 
[8]. Thus recent researches are laying great emphasis on 
conserving this standby or idle power consumption by IoT 
devices by enhancing new technological developments. We 
often encounter the problem of limited storage on edge servers 
as contradictory to unlimited storage at the cloud. This 
bottleneck of edge has attracted the users towards the 
proliferating use of cloud. But this issues of limited storage at 
edge can be tackled if data approaching edge server is 
compressed beforehand, hence enhancing the capacity of the 
edge to accommodate more number of applications. Edge 
computing incorporates the intelligence, processing power and 
communication capabilities of an edge gateway or appliance 
directly into devices [19]. 

Scale, by definition, refers to “the capability of a system, 
network, or process to handle a growing amount of work 
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(service requests), or its potential to be enlarged in order to 
accommodate that growth” [9]. The Scalability is the 
phenomenon which means accommodating and servicing the 
ever increasing network traffic without creating a burden on 
an edge server. Scalability can be two dimensional. One 
dimension involves deploying more and more resources to 
partition the incoming service requests among the multiple 
servers to handle the requests. This is termed as horizontal 
scalability. This dimension involves partitioning the tasks 
based on the number of incoming requests. The second 
dimension involves partitioning the incoming requests based 
on action without deploying extra resources. This is termed as 
vertical partitioning. This paper emphasizes on the first 
dimension of the scalability. 

The rest of the article is organized as follows: Section I 
briefly discuss about some of the existing scalable based edge 
IoT systems. In Section II, we describe our proposal of an 
intelligent edge system in details. In Section III, 
implementation and simulation of the algorithm is discussed. 
Finally, the paper is concluded in Section IV. 

II. RELATED WORKS 
Many researchers have been working on the proliferation 

of edge computing and have proposed various fog computing 
layered architectures and paradigms. Shreshth Tuli et al. [20] 
proposed a framework, known as EdgeLens, adapts itself to 
the application or user requirements to provide high accuracy 
or low latency modes of services. They tested the performance 
of the software in terms of accuracy, response time, jitter, 
network bandwidth and power consumption and show how 
EdgeLens adapts to different service requirements. Gusev [10] 
has suggested the concept of ‘Everything as a Service’, and 
has emphasized on the significance of the distribution of 
smaller servers in front of the central server and in the vicinity 
of the user, hence promoting the concept of edge computing. 
Wei Yu [11] has classified various edge computing 
architectures and compared their influence on the performance 
of various parameters of IoT networks such as network 
latency, storage, bandwidth occupation, energy expenditure, 
and the overhead incurred and various security issues such as 
availability, integrity, availability and confidentiality. 

Jalali [8] has compared various literatures which have been 
proposed to curtail energy consumption in the IoT devices and 
has proposed various fog computing techniques which can 
alleviate power consumption in various IoT devices. Various 
factors such as access network technologies; idle power 
consumption of IoT devices, application type, virtualization 
and network management which lead to higher power 
consumption has been discussed. Case study on the effect of 
using Fog computing along with microgrid to reduce energy 
consumption has been proposed. Fei Li [12] in his work has 
proposed IoT PaaS architecture promoting vertical scalability 
by utilizing computing resources and middleware services on 
the cloud. Domain mediation which is deployed for domain 
specific control application by the solution providers has been 
suggested. Two use cases have been put forward in building 
management domain to show the results. 

Sarkar [13] has proposed a layered architecture for 
distributed environment that utilize scalability which is 

coupled with cognitive capabilities that promoted intelligent 
decision making. In his work, an usage control policy model 
has been proposed to endorse security and privacy in the 
distributed environment. Sarkar [14] has also proposed a 
distributed architecture which emphasized interoperability, 
heterogeneity and scalability, security and privacy of the IoT 
devices, and named such architecture as Distributed Internet 
like Architecture (DIAT). In this layered architectures, each 
layer is classified based on the similar function, forming the 
hierarchical structure of functionalities. 

Onoriode [15] has compared various existing architectural 
frameworks for integrating various heterogeneous IoT devices 
and has put forward a viable solution based on micro service. 
The proposed IoT integration framework takes advantage 
from an cognitive API layer that makes use of an external 
service assembler, service auditor, service monitor and service 
router module to direct service publishing, subscription, 
decoupling and service amalgamation within the architecture. 
Ju Ren [16] has proposed a Transparent Computing based IoT 
architecture to build scalable IoT platforms. With the help of 
case study, he has build scalable lightweight wearables 
deploying the proposed architecture. 

Kajal [17] has worked for compressing the data especially 
video frames using Self Organizing Map (SOM) and stored 
the output feature using Hopfield networks. The frames are 
preprocessed by making it to pass through the SOM that 
outputs the helpful features diminishing redundant and 
irrelevant tenets [17]. Hopfield network is deployed in turn, to 
store various output patterns. The compressed data can be 
restored by increasing the dimensions of the frame. 

III. LEARNING BASED SCALABLE IOT SYSTEM (LSI) 
Taking into account the issue of idle power consumption 

by IoT devices, a framework has to be proposed that can be 
deployed to reduce the idle time of edge servers. Also as 
mentioned above, one of the basic tasks of deploying the edge 
server is to minimize the latency when addressing several 
simultaneous requests by IoT devices. Delay sensitive 
applications are time sensitive thus possess high priority, need 
to be addressed at first instance. This paper proposes a 
mechanism that provides intelligence (a learning mechanism) 
to the edge server by exploiting which the type of application 
can be classified whether delay sensitive or delay insensitive. 
This paper also addresses the issue of scalability when edge 
server gets flooded with delay sensitive applications taking 
into account horizontal scalability. 

Objects (e.g. sensors) are provided with IP address, which 
aid communication with each other. Various sensors send 
numerous and variety of incompatible data to the edge for 
processing. In this paper, the proposed system employ Self 
organizing map for classifying the delay sensitive data and the 
delay insensitive data. The delay sensitive data is immediately 
forwarded to the edge server for further processing. The SOM 
not only clusters the type of data but also compresses the 
incoming data, hence enabling the edge server to 
accommodate more data as edge is limited by its storage 
capacity, and therefore data compression is of vital importance 
to edge computing. Whenever the edge gets enormous delay 
sensitive data, its throughput declines, therefore this paper laid 
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emphasis on providing additional edge servers, which at sleep 
initially. It activates only when data overflow at the server 1. 
This additional server can also be deployed to handle delay 
sensitive data. This server comes to play only at high peak 
times, but at normal times, it is just set to sleep. This can be 
accomplishes through the use of Aneka Auto-scaling 
provision. Through this mechanism load balancing has been 
achieved without much affecting the energy consumption rate. 
The comparison of LSI with the already existing researches 
and algorithms has been listed in the Table I. 

TABLE I. COMPARISON OF VARIOUS IOT ARCHITECTURES 

IoT Features DIAT [14] 

Transparent 
Computing 
Architecture 
[16] 

IoT PAAS 
[12] LSI 

Horizontal 
Scalability Yes Yes Not Known Yes 

Vertical 
Scalability No No Yes No 

Energy 
Consumption Not Known Yes Not Known Yes 

Response Delay Not Known Yes Not Known Yes 

Context Aware 
Service Support Yes Yes Not Known Yes 

Intelligence Yes Not Known Not Known Yes 

A. Self Organizing Map (SOM) 
With the purpose of data visualization which in turn 

endorse in realizing high dimensional data by short sizing the 
dimensions of the data to a map, SOM is of crucial weight and 
has grabbed the attention of many scholars and researchers. 
SOM deploys competitive learning paradigm to cluster data by 
amassing similar data altogether. Thus SOM reduces data 
dimensions and displays similarities among data. With the aid 
of SOM, clustering is accomplished through having several 
units compete or race for the current element. Once the SOM 
is provided with the data, the network of artificial neurons 
goes through competitive training. The weight vector of the 
unit that is found nearest to the current element is proclaimed 
to be the winning or active unit. While undergoing training, 
SOM preserves the neighborhood relationship that persists 
among the input data sets. As it approaches near to vicinity of 
the input object, the weights of the winning unit are put to 
adjustment as well as its neighbor’s nodes. 

In contradiction to other learning technique, SOM do not 
employ target vector. A SOM learns to classify the training 
data with no external interference. Normally, Euclidean 
distance is the most rapidly used method for determining the 
distances of the input vector from the weight vector. The input 
vector whose distance is shortest from the weight vector is 
proclaimed to be the winner. SOM algorithm can be 
summarized as follows: 

1) Initial steps involve the weights to be provided with 
arbitrary weights. 

2) Next we choose any random input vector. 

3) We examine each node by evaluating which node’s 
weights are found to be closest to the input vector. We call 
this winning node as Best matching node. 

4) Next we find out the neighbors of the winning node. 
5) The winning weight is rewarded with becoming more 

like the sample vector. The neighbors tend to be more like the 
sample vector. The closer a node is to the winner node, the 
more its weights adjusted and the farther away the neighbor is 
from the winning node, the less it learns. 

6) Go to step 2 for next samples. 

B. LSI Working 
Raw data and/or information in the form of signals are 

amassed based on whatever is sensed by the Sensors and 
actuators. The most clear-cut demonstration of a time series 
signal is based on its time-domain form, and then distances 
between time series relate to differences between the time-
ordered measurements themselves. A traditional approach to 
the classification of time series problem used in data mining 
domain, focus on classifying short time series which encode 
meaningful patterns. This is termed to as instance based 
classification. Here new time series are classified by matching 
them to similar instances of time series with a known 
classification. These incompatible data has to be preprocessed 
and normalized before being used as input for any further 
action. Collected sensed data is forwarded to the edge device, 
where it first encounters Self organizing map (SOM) where 
the learning is basically relied upon only the input data and 
such unlabelled data is independent of the desired output. We 
call such learning mechanism as unsupervised learning. Since 
SOM tend to respond to several output categories after 
performing training. Hence an additional mechanism is added, 
so that SOM can respond to which one unit will respond (this 
is termed as Competition, often called Winner take all 
strategy). The number of output unit has been limited to two, 
either cluster into delay insensitive data or to delay sensitive 
data. During training, SOM identifies which output unit best 
matches the input sensed data. The sensed data is preprocessed 
and input to the SOM situated at the edge. Kohonen feature 
map is created, which determine the winner unit (whether 
delay insensitive or delay sensitive data unit). Kohonen 
feature map can also be trained to compress the sensed input 
data, so that more number of data can be accommodated at the 
edge, hence compensating the limited size of the edge server 
to a limit. Based on the winner unit, data is forwarded to either 
Queue 1 or Queue 2. Queue 1 is maintained for delay 
insensitive data, whereas Queue 2 is maintained for delay 
sensitive data. Kohonen network will undergo two phases: 
training and testing. During the training phase, the SOM is 
trained to form the cluster of inputs based on the similarity (or 
minimum Euclidean distance). During the test phase, we 
evaluate the performance by measuring to what extent our 
network classifies delay sensitive and delay insensitive data. 

Data stored in the Queue 2 is basically stored for 
processing at the edge device. A variable counter is 
maintained on the number of the requests arriving at a time 
and being served by the edge server. If the counter exceeds 30, 
then additional edge is initialized and any further request is 
forwarded to this edge 2 provided Aneka auto-scaling. 
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Queue 2 is provided with a threshold (T) on its size. Whenever 
overflow occurs i.e. Queue 2 reaches its threshold (T), an 
alternative Queue 3 is maintained which will store the further 
data. With the instigation of Queue 3, an additional edge 
which is maintained in order to handle the traffic at the edge 
device 1, is also provoked. This edge server 2 will process the 
further data arriving after the overflow at the Queue 2. 
Initially, additional edge device is at sleep, and provoked only 
after the initialization of the Queue 3. After processing the 
data at Queue 3, the edge server 2 can be disabled by the 
Aneka and again goes to sleep. This is done to curtail the extra 
energy consumption, which would have been expended due to 
the idle state of the edge server 2 during its free time. Thus, 
this feature ensures horizontal scalability without much energy 
expenditure. 

Queue 1 is maintained for the delay insensitive data, hence 
data in the Queue 1 can either be directly forwarded to the 
cloud for processing, or additionally we provide a mechanism 
called cycle steal. Sometimes, while processing delay 
sensitive data at edge server 1 and edge server 2, the processor 
may be found in an idle state. During such time, data in 
Queue 1 or training at the SOM can be processed at these edge 
servers. This mechanism not only enhances CPU throughput, 
but also saves energy consumption due to idle state at the edge 
servers. 

C. Inputs 
This proposed research encompasses the following 

application areas: Hospital, Surveillance, Organization, 
Inventory, and Smart Home. Each of these applications is 
facilitated with the following types of Sensor: Smoke, 
Temperature, Proximity, Thumb, and Smoke. The utility of 
each sensor varies according to the application areas, for 
example the data sensed by smoke sensors is of highest 
priority and has to be processed immediately; the thumb 
sensors finds importance for the Organization but is of less 
importance if found in the Inventory; the temperature sensor is 
critical for the applications like Hospital and Inventory, etc. It 
is proposed to process the data sensed by the higher priority 
sensor (Priority vary according to the application area) in the 
edge, forwarding the rest data to the cloud. The inputs are 
basically signals which can be represented in time series. 

D. LSI Algorithm 
The LSI algorithm is explained in detail as follows: 

Here T (threshold) = 30  /*Threshold T is set to be 30 
keeping in view the processing 
capacity of the edge & IoT sensors 
are low power devices and require 
less processing power and an Edge 
can easily process at least 30 
requests at a time without causing 
Overloading. */ 

If (Sensed_Data == True) 
{ 
Initialize SOM; 
SOM Sensed_Data;  /*SOM evaluates the Euclidean 

distance of the signals with the 
already stored ones.*/ 

If Output(SOM)==1 
Queue1Sensed_Data; //Send data to the Cloud. 

If Output(SOM)==2 
Counter++; 
If (Counter<=T) /*Check whether counter value 

<=Threshold */ 
Queue2Sensed_Data; /*Send data to 

the Edge Processor 1 */ 
else 

Queue3Sensed_Data; /* Send data to 
the Edge Processor 2 */ 

If Processing(Sensed_Data)==True /*If the processing of the 
request is completed.*/ 

   Counter--;   
If (Queue3==Empty)//Check if no task at Edge processor 3 

Dissolve(Queue3); /*Disable the Edge 
processor 3 if under 
load.*/ 

 } 

This particular system and algorithm can be well 
illustrated in Fig. 1. 

E. Multi-Application use Case 
To validate architecture, a composite use case is described 

in this section. The instances consist of various IoT 
applications like smart city, smart transportation, smart home, 
smart healthcare, smart retail and supply chain system, smart 
biometric system, smart agriculture, smart logistics, smart 
fitness system etc. The proposed LSI architecture overcomes 
the barrier of separate heterogeneous IoT applications, and 
thus achieves a global IoT system. When multiple such sensed 
data is collected by the sensors and sent to the LSI, the SOM 
classifies real time data such as smart healthcare, smart 
transportation, etc. and non-real time data such as smart 
biometric, logistics, fitness, etc., and pass them either to the 
edge or to the cloud respectively for further processing. 

 
Fig. 1. LSI Flowchart. 
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IV. SIMULATION AND RESULT ANALYSIS 
This research is simulated in the Aneka platform, which is 

a software platform for developing cloud computing 
applications [18]. It is a Pure PaaS solution for cloud 
computing. It is a framework which provides both middleware 
for managing and scaling distributed applications and an 
extensible set of APIs for developing them. Aneka 5.0 can be 
installed on the Virtual machine which may be configured as 
per the user requirements and agreed SLA. Aneka is interfaced 
with Matlab 8.0 which contains the code for implementing the 
scheduling of the delay sensitive and delay sensitive data. An 
Aneka server was developed locally with a single master and 
multiple workers, which create the environment of an edge, 
and have installed Aneka on the virtual machine created on the 
AWS cloud. Hence, creating edge-cloud environment. Aneka 
5.0 has the provision of Autoscaling, which varies according 
to our algorithm. 

In order to create the edge environment, a master and two 
workers have been created. The algorithm for SOM is run on 
the Aneka master computer which installed with Matlab 8.0 in 
which algorithm for classification implemented, which 
decides whether to forward the data to its worker computers or 
to the cloud. Initially only single worker computer is in the 
processing state, while the other inactive. Whenever the 
number of requests crosses 30 (the threshold T) to be served at 
the edge, the Aneka transfers the workload to its other worker 
along with its first worker. Here in this scenario, only two 
workers have been created, but many more worker computers 
can be created for processing the unprecedentedly increasing 
incoming requests. This research has been performed at a 
small level. Alternatively a virtual machine has been created 
with the Aneka PaaS installed in it on the AWS cloud. The 
classified delay insensitive applications are forwarded to this 
particular cloud. This cloud is also provisioned with the 
Autoscaling of VMs as the number of requests gets flooded. 
But in our research, any such requests flood at the cloud was 
not witnessed, since performed at the small level. When the 
workload at the edge gets low, the edge master automatically 
disables its other worker computer. The master does not 
perform any task on its own except classification and load 
distribution. 

Initially, the research is simulated by taking number of 
incoming requests as: 5, 15, 25, 35, 45, 55, 65, and 75. Firstly 
these entire requests were forwarded to the cloud and their 
performance was evaluated. Then these requests were 
processed on the LSI system as proposed above. Then 
comparison on the following parameters were made and the 
proposed algorithm is found to prone to succeed not only in 
achieving the primary characteristics of IoT like 
heterogeneity, scalability, etc. but also attained the following 
metrics: 

1) Throughput: The amount of service requests processed 
by the device per unit time. Since LSI incorporates the feature 
of scalability by providing the facility of additional edge 
server (Aneka worker), the network throughput is prone to 
enhance tremendously as multiple requests are being 
processed simultaneously at edge worker 1, another additional 

edge worker, and the cloud. Thus number of requests 
processed per unit time improves. 

The average number of requests per second was found to 
be 63 in case of LSI, and 48 in case of Cloud. 

2) Response time/delay: The duration of time required 
taking delivery of a response to a request. It can also be seen 
as the average time the client has to wait to get its job done. 
Delay sensitive applications are to be responded immediately 
without any delay in processing. By setting the priority for the 
delay sensitive data, LSI improves the response time 
tremendously. The observations are manifested in Fig. 2. 

3) Packet loss: It is termed as the number of packet drops 
due to traffic or network congestion during a specified 
duration of time. LSI reduces the number of packet loss since 
it endorses the factor of horizontal scalability by deploying the 
provision of additional edge device whenever edge device 1 
exceeds the threshold. Thus LSI is least prone to network 
congestion and improves the packet delivery factor for the 
measured duration of time. The use of mirror server aid in 
processing the majority of the requests at the edge server 
level, and not at the cloud level, therefore the packets are least 
faced with the network congestions. Hence reducing the 
probability of packet loss as shown in Fig. 3. 

 
Fig. 2. Comparison of Response Delays wrt Cloud and LSI. 

 
Fig. 3. Comparison of Packet Loss wrt LSI and Cloud. 
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V. CONCLUSION AND FUTURE WORK 
As can be clearly manifested by the current scenario, the 

unprecedented growth of IoT devices has generated the 
urgency of deploying such edge devices which are scalable 
and can accommodate the varying and consistently increasing 
number and types of IoT devices. Whether accurate or not, we 
must prepare for it or risk becoming the victims of our own 
success. In the paper an intelligent IOT framework has been 
proposed where in Self Organizing Map is deployed, in order 
to differentiate between delay sensitive data and delay 
insensitive data. This leads to the improvement in response 
time of the critical applications such as related to healthcare 
which to be immediately addressed, promoted scalability by 
utilizing the additional edge device, in turn improving the 
throughput. It reduced the idle time of the edge server 2 by 
promoting disabling phenomenon supported by Aneka Auto-
scaling provision, which in turn reduced energy expenditure 
that may have incurred due to the idle state of the edge 
processor 2. As compared to the existing work, LSI not only 
reduces latency but also work in enhancing resource 
utilization, throughput and reduction in packet loss as 
manifested by our results. This research is done at small scale, 
but can be extended to incorporate various other applications. 
This research improves the performance to an extent as 
compared to the cloud because classification of delay sensitive 
and delay insensitive data is accomplished on the pattern of 
the data itself (time series), which may generate inaccurate 
results sometimes (i.e. may not classify data correctly) due to 
overlapping range of values of data of various sensors, but it 
shown good results specially in terms of response delay, 
because we are bifurcating the sensed data to the edge as well 
as cloud, as compared to performance when processing done 
at cloud only. Furthermore pre-processing can be deployed on 
the data to give better classification results. Also, scalability 
can be achieved at higher level by deploying several more 
additional edge servers. Further, in order to increase the 
scalability and to have better performance other algorithms 
like deep learning or machine learning can also be applied in 
future. 

REFERENCES 
[1] K. Ashton, “That Internet of Things thing,” RFiD J., vol. 22, no. 7, pp. 

97–114, 2009. 
[2] H. Sundmaeker, P. Guillemin, P. Friess, and S. Woelfflé, “Vision and 

challenges for realising the Internet of things,” vol. 20, no. 10, 2010. 

[3] J. Gubbi, R. Buyya, S. Marusic, and M. Palaniswami, “Internet of 
Things (IoT): A vision, architectural elements, and future directions,” 
Future Gener. Comput. Syst., vol. 29, no. 7, pp. 1645–1660, 2013. 

[4] E. Cuervo et al., “MAUI: Making smartphones last longer with code 
offload,” in Proc. 8th Int. Conf. Mobile Syst. Appl. Services, San 
Francisco, CA, USA, 2010, pp. 49–62. 

[5] A. Greenberg, J. Hamilton, D. A. Maltz, and P. Patel, “The cost of a 
cloud: Research problems in data center networks,” ACM SIGCOMM 
Comput. Commun. Rev., vol. 39, no. 1, pp. 68–73, 2008. 

[6] M. Satyanarayanan, P. Bahl, R. Caceres, and N. Davies, “The case for 
VM-based cloudlets in mobile computing,” IEEE Pervasive Comput., 
vol. 8, no. 4, pp. 14–23, Oct./Dec. 2009. 

[7] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, “Fog computing and its 
role in the Internet of things,” in Proc. 1st Edition MCC Workshop 
Mobile Cloud Comput., Helsinki, Finland, 2012, pp. 13–16. 

[8] Fatemeh Jalali ; Safieh Khodadustan, et.al, “Greening IoT with Fog: A 
Survey”, IEEE International Conference on Edge Computing (EDGE), 
IEEE, 11 September 2017. 

[9] https://en.wikipedia.org/wiki/Scalability. 
[10] Marjan Gusev, Schahram Dustdar, “Going Back to the Roots—the 

Evolution of Edge Computing, an IoT Perspective” IEEE Computer 
Society, March/April 2018. 

[11] Wei Yu, Fan Liang, Xiaofei He, et.al, “A Survey on the Edge 
Computing for the Internet of Things” IEEE Access, Volume 6, 9 March 
2018. 

[12] Fei Li, Michael Vogler, et.al, “Efficient and scalable IoT service 
delivery on Cloud” , 2013 IEEE Sixth International Conference on 
Cloud Computing. 

[13] Chayan Sarkar, Akshay Uttama Nambi S. N., et.al, “A Scalable 
Distributed Architecture Towards Unifying IoT Applications”, 2014 
IEEE World Forum on Internet of Things (WF-IoT), March-2014. 

[14] Chayan Sarkar, et.al, “DIAT: A Scalable Distributed Architecture for 
IoT” IEEE INTERNET OF THINGS JOURNAL, VOL. X, NO. X. 

[15] Onoriode Uviase, et.al, “IoT Architectural Framework: Connection and 
Integration Framework for IoT Systems”, EPTCS 264, 2018, arXiv 
preprint arXiv:1803.04780. 

[16] Ju Ren, Hul Guo, et.al, “ Serving at the edge: A Scalable IoT 
Architecture Based on Transparent Computing”, IEEE Networks, 
September/October 2017. 

[17] Dr. Manu Pratap Singh, Kajal Sharma, “Video Compression using Self 
Organizing Map and pattern storage using Hopfield Neural Network”, 
International Conference on Industrial and Information Systems (ICIIS), 
IEEE, 11 March 2010. 

[18] Vecchiola, Christian, Xingchen Chu, and Rajkumar Buyya. "Aneka: a 
software platform for .NET-based cloud computing." High Speed and 
Large Scale Scientific Computing 18 (2009): 267-295. 

[19] Shreshth Tuli, Nipam Basumatary, Rajkumar Buyya.  
[20] EdgeLens: Deep Learning based Object Detection in Integrated IoT, Fog 

and Cloud Computing Environments” 4th IEEE ISCON (November 21-
22, 2019). 

364 | P a g e  
www.ijacsa.thesai.org 

https://ieeexplore.ieee.org/author/37860338300
https://ieeexplore.ieee.org/author/37086127327
http://arxiv.org/abs/1803.04780

	I. Introduction
	II. Related Works
	III. Learning based Scalable IoT System (LSI)
	A. Self Organizing Map (SOM)
	1) Initial steps involve the weights to be provided with arbitrary weights.
	2) Next we choose any random input vector.
	3) We examine each node by evaluating which node’s weights are found to be closest to the input vector. We call this winning node as Best matching node.
	4) Next we find out the neighbors of the winning node.
	5) The winning weight is rewarded with becoming more like the sample vector. The neighbors tend to be more like the sample vector. The closer a node is to the winner node, the more its weights adjusted and the farther away the neighbor is from the winning �
	6) Go to step 2 for next samples.

	B. LSI Working
	C. Inputs
	D. LSI Algorithm
	E. Multi-Application use Case

	IV. Simulation and Result Analysis
	1) Throughput: The amount of service requests processed by the device per unit time. Since LSI incorporates the feature of scalability by providing the facility of additional edge server (Aneka worker), the network throughput is prone to enhance tremendous�
	2) Response time/delay: The duration of time required taking delivery of a response to a request. It can also be seen as the average time the client has to wait to get its job done. Delay sensitive applications are to be responded immediately without any d�
	3) Packet loss: It is termed as the number of packet drops due to traffic or network congestion during a specified duration of time. LSI reduces the number of packet loss since it endorses the factor of horizontal scalability by deploying the provision of �

	V. Conclusion and Future Work

