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Abstract—Fault simulation is the critical approach for many
applications such as fault detection & diagnostics, test set quality
measurement, generation of test vectors, circuit testability, and
many others along with the help of fault injection technique. The
fault simulation approach is divided into many types. The most
straightforward approach among them is a serial fault simulation.
In the simulation process, the circuit under test is faulted, and
a faulty copy is achieved by either using a simulator command
technique or instrumentation technique. A fault simulator must
examine the behaviour of specified target fault in design and
classified as detected or undetected by the applied test patterns. To
modify the original code is a very challenging and time-consuming
task. Therefore, the RASP-FIT tool is developed, which alters
the fault-free FPGA design, which is under investigation, at the
Verilog HDL code level. It produces the copies of faulty design
along with the top design file for several fault simulation methods.
Using this tool, a serial fault simulation environment can easily be
created with no much effort. In this work, a serial fault simulation
method is verified and validated using the RASP-FIT tool for an
ISCAS’85 benchmark design as an example.
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I. INTRODUCTION

Fault simulation and fault injection approaches are the most
widely used techniques for confirming the functionality of
Register Transfer Level (RTL) design and provide an approach
to check the quality of test-benches and test patterns [1]. In
the design environment, fault simulation is also practised for
validation of test quality [2], [3]. By definition, fault simulation
is the technique used to simulate a design in the presence of
faults.

In comparison with logic simulation, a fault simulation
method has an additional complexity due to the modelled
faults in the design and their behaviour during the simulation.
When performing simulation for a design, the measurement
of Central Processing Unit (CPU) computations is almost
proportional to these three things, which are the size of the
circuit, the number of test vectors applied, and the number of
modelled faults injected in design. Fault simulation methods
are separated into five main methods, namely, [4], [S], [6]:

e  Serial fault simulation
e  Parallel fault simulation
e  Deductive fault simulation

e  Concurrent fault simulation

e Differential fault simulation

The most straightforward approach among them is the
serial fault simulation in which an individual simulation is
performed at any one time. There are two primary components
of serial fault simulation, i.e. fault-free designs and faulty
designs (the design which is consisted of faults and is termed
as faulty design). Firstly, the fault-free logic simulation is
executed on the fault-free design to achieve the fault-free
output responses. After that, faulty designs are simulated with
faults and responses are also obtained. Both responses are
saved and compared to determine whether an applied test
pattern can identify a fault or not [4]], [7], [6], [8].

In serial fault simulation, one fault is simulated at a time.
To generate the faulty design, fault injection is first introduced,
which alters the original circuit, and the circuit behaviour
is evaluated in the presence of the fault. The faulty circuit
is simulated to determine the inadequate responses for the
currently activated fault for the given test patterns applied to a
fault simulation. This process repeats until all faults in the fault
list have been simulated [5], [4]], [9]. In serial fault simulation,
one fault is activated at a time, and test patterns are applied
until the fault is detected or all test patterns have been applied.
After that, another fault is selected and activated as a new fault,
the circuit should be at an initial state, and then the new faulty
design is simulated. Repeat this process until all faults are
tested [3]]. Serial fault simulation needs multiple simulations
runs on a standard gate-level simulator using built-in simulator
commands. In this method, the complex data structures are
not required. There are certain advantages and disadvantages
of serial fault simulation technique and are addressed in the
sequel.

e  Advantages:- A few advantages of serial fault simula-
tion are described below:
1)  Easy to implement.
2)  Any true value simulator can be used.
3) Less memory is required if the concepts of
fault dropping, fault collapsing etc. are intro-
duced in process.

e Disadvantages:- A few disadvantages of serial fault
simulation are described below:
1)  Much repeated computation.
2)  Large CPU time required for very large scale
integration design.
3) Not feasible for large design with the large
number of inputs.
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In previous research, Khatri et al. proposed and developed a
fault injection tool and named it RASP-FIT (RechnerArchitek-
tur und SystemProgrammierung-Fault Injection Tool) tool [10],
(LI, (121, [13], [14], [15], [16]. This tool is used to instrument
the Field Programmable Gate Array (FPGA) based designs.
FPGA-based designs are written in Hardware Description
Languages (HDL). During the last few decades, HDLs have
been involved in promoting several methods and techniques
regarding digital system testing. These methodologies reduce
the technological passage among the tools and techniques used
by design and test engineers. Using HDL, the design engineers
can verify, validate and test the design at an early step at
the code level [5]. In this work, the serial fault simulation
is performed for FPGA-based designs at the code level. Serial
fault simulation is executed at the code level of the designs.
To generate the faulty copies of the original designs, the
RASP-FIT tool is used, which modifies the design for different
fault models. The RASP-FIT is designed to perform different
functions. In this paper, serial fault simulation is carried out,
which proved that the RASP-FIT tool can be used to develop
any fault simulation schemes/applications.

The organisation of the paper is as follows: Section [II] de-
scribes the brief introduction about the RASP-FIT tool and an
environment for serial fault simulation. Section [lII| presents the
usage of the RASP-FIT tool in fault simulation applications,
and the evaluation of the result is shown. Results are discussed
in the Section In the end, Section [V] concludes the paper
and presents some future directions.

II. THE RASP-FIT TOOL AND SIMULATION
ENVIRONMENT

The RASP-FIT tool is proposed and developed by Khatri
et al. using Matlab graphical user interface development en-
vironment at the University of Kassel, Germany. The RASP-
FIT is a fault injection tool, which is developed to perform
fault injection, testing, hardness analysis for the FPGA-based
designs at the code level. At the code level, the design and
test engineers can perform testing and verification at an early
stage of the development cycle. The main advantage of fault
injection at the code level is to create the state of the art
methods and also develop the new methods with little effort.
More details about this tool can be found in [L1], [12], [[13],
[L5]], [16].

A. RASP-FIT Verilog Code Modifier

The Verilog code modifier function under the RASP-FIT
tool consists of approximately 563 lines of code in Matlab
having 20 functions. The RASP-FIT is a tabbed based tool.
Verilog code modifier is tabbed under fault injection analysis
and is shown in Fig. [T} To modify the design, the user needs
to apply three inputs for code modification and generates
compilable faulty design. These inputs are:

1) A Synthesizable Verilog design file.

2)  Type of fault model for injection in the design from
a drop-down menu.

3) A number of faulty copies the user wants to generate.

By clicking on the Generate button, faulty modules are
created along with the top file. In order to differentiate one
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Fig. 1. Verilog HDL Code Modifier Tab under RASP-FIT Tool.

file from other files, the RASP-FIT tool saves the faulty
modules under the names (moduleName_faultycopyl.v, mod-
uleName_faultycopy2.v, and so on). The RASP-FIT also gen-
erates Top.v file which consists of the comparator logic, fault
detection logic and digital logic Verilog code for storing the
responses in the memory. These modified designs are now
used for the fault simulation/emulation, digital testing and
dependability analysis, with FPGA tools, without much effort.
The development of this tool is presented in previous research
(L, (221, [0, [13], [16], (170, [18]. In this paper, serial fault
simulation is validated for ISCAS’85 benchmark designs.

Verilog HDL code describes the design at several ab-
straction levels, e.g. gate-level, data-flow, and behavioural
levels. The way of modification of the code is different for
each abstraction level, and also fault models are coded and
modified the design at that abstraction level. There are two
main components for serial fault simulations.

B. Fault-Free Design

The original FPGA design under investigation is called a
fault-free module or golden module. It is a reference design for
the comparison between the responses of faulty SUT and the
fault-free design. Fault-free design is taken from the ISCAS’85
benchmark designs written in Verilog HDL. Fig. 2] (left) shows
the original (fault-free) design code of c17.v benchmark
design as an example.

C. Faulty Design

Fault-free designs are modified using fault injection tech-
nique and are called faulty design. The proposed RASP-FIT
tool is used to create faulty designs for performing the serial
fault simulation. In this work, FPGA-based designs written
in Verilog HDL are considered. This tool injects various fault
models in the design such as bit-flip, stuck at 1/0 fault models.
Fig. 2| (right) shows the modified compilable code by the
proposed tool.

1) FISA Unit: A fault control unit is an important compo-
nent for fault simulation applications. Khatri et al. proposed a
demultiplexer based fault control unit [15] and called it the
FISA unit. The term FISA unit stands for Fault Injection,
Selection and Activation unit. It is designed for fault injection
investigation to examine the injection of faults, as shown in
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// Verilog Design
// ¢17 Benchmark Circuit ISCAS’85

module c17 (G1,G2,G3,G6,G7, G22,G23);
input G1,G2,G3,G6,G7;

output G22, G23;
wire G10,G11,G16,G19;

Q

nand G_1 (G110, Gl1, G3);
nand G_2 (Gl1, G3, G6);
nand G_3 (Gl6, G2, Gl1);
nand G_4 (G19, Gl1, G7);
nand G_5 (G22, G10, Gl16);
nand G_6 (G23, Gl6, G19);
endmodule
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module c17_1 (select ,G1,G2,G3,G6,G7,G22_f1,
G23_1f1);

input G1,G2,G3,G6,G7;

output G22_f1, G23_f1;

wire G10,Gl11,G16,G19;

input select;

wire fis=1;

reg f0;

always @ (select) begin

if (select == 1°dl) begin
fO=fis ;end

else begin

f0=0;end

end

nand G_1 (G10,f0 ~ G1, G3);
nand G_2 (Gl1, G3, G6);
nand G_3 (Gl6, G2, Gl1);
nand G_4 (G19, Gl1, G7);
nand G_5 (G22_f1, G10, Gl16);
nand G_6 (G23_f1, Gl6, GI19);
endmodule

Fig. 2. Fault-Free Design Code (Left) & Instrumented Compilable Code for Serial Fault Simulation (Right) by RASP-FIT.

Fig.[B] The FPGA design under test is written in Verilog HDL.
Therefore, a fault control unit must be described in HDL code
in the design. For that purpose, the function under RASP-
FIT is included, which generates the code for the proposed
FISA unit in each faulty copy. For large designs, as the
number of injected faults increased, fault selection lines are
also increased. De-multiplexer can be designed in Verilog HDL
in various formats, e.g. using a case or if-else statements. De-
multiplexer is a component which contains one input port (in
this case Fault Injection Signal (FIS)), selecting one of many
data-outputs, which is attached to the input port.

wire FIS ='1"; /Declaration Part
input [1:0] select;
reg {0, f1, 2, ...
always @ ( select ) begin
if ( select == 2'd0 ) begin

FIS Rt f0=FIS ; f1=0; £2=0; end

. else if ( select == 2'd1) begin
f0=0; f1=FIS ; £2=0; end
else if ( select == 2'd2 ) begin
f0=0; f1=0; f2=FIS; end
else begin
f0=0; f1=0; 2=0; end
end

Fig. 3. Fault Selection and Activation Unit Schematic (Left), and Verilog
Code (Right).

D. Experimental Set-up for Serial Fault Simulation

In serial fault simulation approach, one fault is inserted
into the circuit at a time, and the fault effect is observed.
The number of simulations is equal to the total number of
faults plus one simulation (the initial simulation of the golden
circuit) [9]]. The block cI7.v (original) is the fault-free circuit
and considered as an example from ISCAS’85 designs. These
FPGA designs are written in Verilog HDL code at the gate-
abstraction level. The other blocks CI17(fl) to CI7(fn) are

faulty copy of the c/7.v original design with faults f1 through
fn permanently instrumented as shown in Fig. @ This method
is an alternative technique for serial fault simulation to reduce
CPU computation time.

The schematic diagram for the example c/7.v is shown in
Fig. 5] Fig. [6] shows the various locations of the design where
faults can be injected to develop faulty designs to perform
serial fault simulations. The mark (x) points out the location of
the faults. Each (x) represents the fault models. Faulty copies
are modified using instrumentation technique, and faults are
injected in the design, for example, stuck-at 1/0 and bit-flip
fault models.

Test R —
Vectors » C17 (original)
|_; Comparator —>
= Cl7(fl)
Comparator —
B Cl17(R2)
B> Cl17(f3) »| Comparator —»
L]
L]
[
Ly C17 (fn) »| Comparator +—>

Fig. 4. Experimental Setup for Performing Serial Fault Simulation.

1) Fault Dictionary: When the fault simulation is per-
formed by applying test vectors, and the result is obtained
by comparing it to the responses of golden design. These
results are organised in a simple two-column table where
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Fig. 5. Example of Design from ISCAS’85 Benchmark Circuits (Original
Design).
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Fig. 6. Example of Design from ISCAS’85 Benchmark Circuits (with Faulty
Locations).

every column correspond to circuit’s faults and test vectors
that detect them. This arrangement of data is called a fault
dictionary. One fault can be detected by many test vectors
and is called a detectable fault, whereas some faults cannot be
detected by any of the test vectors, which is called undetectable
faults.

Fault simulation is performed on fault-free and faulty
designs. The responses are gathered in the presence of faults
and presented in the tabular form. When a fault is injected in
the design, then those test vectors which can detect that fault
are placed in the fault dictionary [5]. For the large design with
many input ports, this is not possible to simulate the design
with all possible combination of inputs. Therefore, serial fault
simulation is a simple approach which can be applied to the
smaller designs with few faults and few test vectors. Table
depicts the example of fault dictionary. In the table, three
faults {fl, f2, f3} are used during the fault simulation method,
and test vectors (2,5,9) detect the f1 fault, test vectors (5,12,6)
find 2 whereas 3 is not undetected with any test vector. This
information helps design and test engineers to calculate Fault
Coverage (FC).

TABLE I. EXAMPLE OF FAULT DICTIONARY

Fault No. Test Vectors
f1 2,59
2 5,12,6
3 -

Vol. 11, No. 8, 2020

III. EXPERIMENTAL EVALUATION USING THE RASP-FIT
TooL

Serial fault simulation is a straight forward technique.
It requires the fault-free circuit and the faulty circuits. The
RASP-FIT tool is a fault injection tool which modifies the
fault-free design and generates faulty modules. Along with the
fault-free design, the user also needs two more inputs. The first
one is a type of fault model used in serial fault simulation. The
RASP-FIT can inject three fault models, i.e. bit-flip, stuck-
at 0 and stuck-at 1 models separately and modifies the code
accordingly. The second input is the number of copies required
by the user. The RASP-FIT tool can evenly distribute the
number of faults in different copies of the design, as shown
in Fig. [/| (Step 1). In the second step, all these files are used
to create a project using the Xilinx ISE tools, and Modelsim
or Xilinx ISIM tools are utilised for simulation. After the
simulation, results are stored in a text file. This text file is
applied as an input to the Matlab script, which develops the
fault dictionary and calculates the fault coverage for the design
using Eq. [I] It is defined as the ratio of fault detected to the
total fault injected.

FC = = x 100% (1)

where Fp is the number of detected faults during the serial
fault simulation and Fr shows the total faults injected during
the experiment. In the last step, the test bench must be added
to the project to perform the simulation. For large designs,
serial fault simulation technique is not a feasible solution, but
the proposed RASP-FIT tool helps design and test engineers
to perform serial fault simulation.

Step 1.
Verilog Design
File (*.
Ll RASP-FIT Tool [ > 1oP file
—> Fault ies
No. of copies to I ’ aulty copies
generate I
Fault model
Step 2.

Top file ———» - .
Xilinx ISE Modelsim Fault

. Tools Simulator Dictionary
Faulty copies ——

Add test bench

Fig. 7. Experimental Set-up using the RASP-FIT and FPGA Tool.

A. Top File Structure

The top file is generated under the RASP-FIT tool, which
is used to perform serial fault simulation. The top file contains
various elements, which are used to perform serial fault
simulation, listed below:

1)  Instantiations (golden and faulty copies).
2)  Comparator logic.
3)  Memory for storing responses.
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Fig. 8. Waveform for Serial Fault Simulation of ¢/7.v Design.

IV. RESULT AND DISCUSSION

In this work, the RASP-FIT tool is used to perform and
verify serial fault simulation applications. The objective is to
validate the claim that, using RASP-FIT tool, the user can
perform various fault simulation methodologies. An example
from ISCAS’85 benchmark designs is considered to explain
the serial fault simulation operation. As explained earlier, in
serial fault simulation, one fault is injected at a time and input
is applied to see whether the fault is detected or undetected. To
save the time of simulation, authors use the experimental set-
up as shown in Fig. 4 One fault is injected into the each copy
of the design. The schematic of the c17 . v design is shown in
Fig. ] and the Verilog code is illustrated in Fig. 2] along with
the faulty copy containing one fault. The fault location is also
marked on Fig. [6]

The simulation is performed using the Xilinx ISIM or Mod-
elsim tool and waveform is shown in Fig. |8l Fault dictionary
is constructed and shown in Table[[l] This example design is a
simple design which consists of only 12 faults, and a total of
32 test vectors are applied as input to the design. Therefore,
it is not a feasible idea for large designs having thousands of
faults and many input ports to apply all possible combination
of input. As every fault is detected at least one time hence
fault coverage is 100%.

TABLE II. FAULT DICTIONARY FOR THE EXAMPLE UNDER SIMULATION

V. CONCLUSION

Fault simulation technique assists designers and test engi-
neers in several applications such as design’s verification, test
patterns generations and many other applications. The RASP-
FIT is a simple, automatic and user-friendly fault injection
tool, which works at the code level of the designs at several
abstraction levels. This tool can inject faults in the whole
design, and produce the compilable code. This tool helps the
design and test engineers to perform various fault simulation
applications. In this work, a serial fault simulation method
is verified and validated. It is shown that, with the help of
this tool, serial fault simulation can easily be performed. In
future, parallel, deductive, concurrent and differential fault
simulation approaches will be implemented and validated using
the RASP-FIT tool.
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