
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 8, 2020

An Adaptive Quality Switch-aware Framework for
Optimal Bitrate Video Streaming Delivery

Wafa A. Alqhtani1, Maazen S. Alsabaan3

Department of Computer Engineering
King Saud University

Riyadh, CO 11543 Saudi Arabia

Ashraf A. Taha2

Department of Computer Networks
City of Scientific Research and Technological Applications

SRTA-CITY, Alexandria CO 21934 Egypt

Abstract—Given a large number of online video viewers,
video streaming, over various networks, is important
communication technology. The multitude of viewers makes it
challenging for service providers to provide a good viewing
experience for subscribers. Video streaming capabilities are
designed based on concepts including quality, viewing flexibility,
changing network conditions, and specifications for different
customer devices. Adjusting the quality levels, and controlling
various relevant parameters to stream the video content with
good quality and without interruption is vital. This paper
proposes an adaptive framework to balance the average video
bitrates with respect to appropriate quality switches, making the
transition to higher switches more seamless. The quality
adaptation scheme increases the bitrates to the maximum value
at their current quality switch before shifting to a higher level.
This reduced switching times between levels and guarantees the
stability of viewing and avoids interruptions. The use of a
dynamic system ensures optimal performance, by controlling
system parameters and making the algorithm more tunable. We
built the system using an open-source DASH library (Libdash)
with QuickTime player, studied the video load changes on two
performance parameters, Central Processing Unit and Memory
usages that have a high impact on multimedia quality.
Consequently, the values of parameters that affected the
performance of video streaming could be decreased, permitting
users to regulate the parameters according to their preferences.
Further, reducing the switching levels will reduce the overloads
that occur while transferring from one level to another.

Keywords—Adaptive video streaming; average bit rate; mobile
devices; modeling; quality of experience; quality switches; wireless
networks

I. INTRODUCTION
With the rapid growth of technology and wireless devices,

the necessity for supporting various applications in the future
has increased with the quality of service (QoS) requirements. A
vital aspect of communication over various networks is video
streaming, given the increase in the number of viewers of
videos over the internet. There are several challenges that must
be addressed to achieve seamless video streaming, such as
avoiding interruption of playback, increasing video quality,
reducing the initialization time, and reducing the number of
video level switches. These can be addressed by adaptive video
streaming, with control algorithms to deliver video with
appropriate quality and with changes in network parameters.
Applications of video streaming include live streaming, video
on demand (VoD) services, and mobile applications. VoD

delivers video over the internet by dividing the video into parts
called fragments, transmitting these parts, and enabling the
receiver to decode and playback the video. This service allows
for smooth streaming without having to wait for the entire
video to be delivered, and allows the user to view the video at
any time. Live streaming (real-time) transmits the contents to
all users simultaneously, so that the fragments are transmitted
at the same time as they are viewed by the users. With mobile
applications, users operate mobile devices to download videos
from online sources, such as YouTube, Vimeo, LiveTV, and
PPStream. Several mobile applications have been available to
enable users to stream videos online. There are three
techniques for streaming video data. Using the first technique,
referred to as progressive download, the server sends the video
through the hypertext transfer protocol (HTTP) and at the
receiver, the device downloads the file and can run the file after
the buffering. This method of the basic version uses HTTP
over the Transmission Control Protocol (TCP) so that the file is
downloaded sequentially, where the user can watch after
downloading part of the whole file. The second technique uses
specialized protocols for streaming, real-time messaging
protocol (RTMP) and real-time streaming protocol (RTSP), by
sending chunks of data continuously to the media, which is
displayed without a buffering or local caching. This technique
is known as RTMP/RTSP streaming. The most popular
technique, adaptive video streaming, collects the segments,
encodes then indexes them, and subsequently determines their
location (references) by using a profile file from the HTTP
server. Table I provides a comparison of these three streaming
technologies.

The adaptive streaming technique allows for the optimal
video streaming experience for a range of dissimilar devices
over a wide range of connection speeds. Generally, in an
adaptive video streaming system (Fig. 1), a client plays a video
that is received from a server. The client uses control
algorithms to dynamically select the optimal video switch level
for each downloaded segment and the period of idle times
introduced to shape the received rate. In addition, the client
uses a buffer to perform the synchronization inside the contents
of the video, because the bit rate and the bandwidth available to
the network cannot be predicted. Adaptive video streaming
technologies face a variety of issues that affect performance
including bandwidth, error rate, delay and jitter,
synchronization, heterogeneity, and the user interface [2].

570 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 8, 2020

TABLE I. COMPARISON OF STREAMING TECHNOLOGIES [1]

 Progressive
Download Streaming Adaptive Streaming

Basic Principle

Client
requests for
file using
HTTP GET
method and
server sends
the entire file
over HTTP.

Server sends
fragments of
data based on
client request.
Just in time
transfer of data.

Content is encoded at
multiple bit rates. A
manifest file maintains
the details of the
fragments and their
location. Client requests
best suited fragments
from the list.

Transport
Protocol

HTTP over
TCP

RTMP/RTSP
over TCP/UDP

Simple HTTP server
over TCP

Bandwidth
usage

Less efficient
and wastage
of bandwidth
as the entire
file may not
be played.

More efficient
as only part of
the file is
downloaded
being played.

Fragments can be
cached and reused, thus
saving bandwidth.

Content
Security

Stored
locally. Less
secure.

No temporary
storage. More
secure.

Digital rights
management (DRM)
integration possible for
specific adaptive
streaming technology.

Advantages

Easy to setup.
No special
licenses
required.

Can access any
part of the
video without
waiting for an
entire
download.

High flexibility to
change video quality.

Disadvantages

Bandwidth is
wasted on
data which is
downloaded
but not
watched.

Adds
significant cost
and complexity
to the setup and
operations
require special
network
configuration
for port
enabling.

Requirement to have
multiple encoded
version requiring
additional content
processing and storage.

Example of
online video
platforms

YouTube,
Vimeo Hulu Network Television

BBC, Netflix

Fig. 1. Adaptive Video Streaming System [2].

Dynamic adaptive streaming over HTTP (DASH), also
known as MPEG-DASH, provides high quality video
streaming over the internet from an HTTP server. Fig. 2
illustrates a model of the MPEG-DASH setup. First, the
multimedia content is captured and stored on an HTTP server
and sent by HTTP. There are two types of content on the
server. The Media Presentation Description (MPD) describes a
manifest of the available content, its various alternatives, URL
addresses, and other characteristics. Segments contain the real
multimedia bitstreams in the form of fragments, in single or

multiple files. The DASH client plays the content by parsing
the MPD; therefore, the DASH client has information about the
program timing, media content availability, media types,
resolutions, minimum and maximum bandwidths, and the
existence of various encoded alternatives of multimedia
components, accessibility features and required digital rights
management (DRM), media-component locations on the
network, and other content characteristics. The DASH client
uses this information to select the appropriate encoded
alternative and to start streaming the content by fetching
segments, using HTTP GET requests. After appropriate
buffering to allow for network throughput variations, the client
continues fetching the subsequent segments and monitors the
network bandwidth fluctuations. Subsequently, the client
decides how to adapt to the available bandwidth by fetching
segments of different alternatives (with lower or higher
bitrates) to maintain an adequate buffer, depending on its
measurements. The MPEG-DASH specification only defines
the MPD and segment formats [3].

Media content has several components (audio, video, and
text), with each component having multiple characteristics. In
MPEG-DASH, these characteristics are described in the MPD,
in an XML format. Fig. 3 illustrates the MPD hierarchical data
model. The MPD consists of one or multiple periods; each
period has a starting time and duration, and consists of one or
multiple adaptation sets. An adaptation set provides
information about one or multiple media components and its
various encoded alternatives. Each adaptation set usually
includes multiple representations. A representation is an
encoded alternative of the same media component, varying
from other representations by bitrate, resolution, number of
channels, or other characteristics. Each representation consists
of one or multiple segments; media stream fragments in
temporal sequence. Each segment has a URL that is an
addressable location on a server that can be downloaded using
HTTP GET or HTTP GET with byte ranges. DASH client first
parses the MPD XML document. The client selects the set of
representations it will use based on descriptive elements in the
MPD, the client’s capabilities, and the user’s choices. The
client then builds a timeline and starts playing the multimedia
content by requesting appropriate media segments. Each
representation’s description includes information on its
segments, which enables requests for each segment to be
formulated in terms of the HTTP URL and byte-range [3].

The main contributions of this paper are as follows:

• Demonstrating some of the challenges that video
streaming faces and how it affects video quality and
investigating video streaming with a control algorithm
to deliver video inappropriate quality with respect to
network parameters changes.

• Designing an adaptive framework to balance the
average video bitrate with respect to the appropriate
quality switches and making the transition to higher
switches more seamless.

• Proposing a method to decrease the impact of the
parameter values on the performance of video
streaming.

571 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 8, 2020

Fig. 2. MPEG-DASH System Model [3].

Fig. 3. MPD Hierarchical Data Model [3].

Our research can avoid missing live moments and adjust
the video quality switch to the optimal bitrate level. In our
proposal, we used two performance parameters: central
processing unit (CPU) usage and memory usage. CPU usage
limitation is about 25%, whereas memory usage limitation
depends on the memory size and the registration of memory
space during the streaming video, or when it exceeds the limit,
which appears in red line. Imposing these conditions reduces
switching between quality levels, and causes bitrates to balance
with quality switching.

The remainder of this paper is organized as follows.
Section II describes Literature Review. In Section III, the
proposed quality adaptation framework is introduced and its
functionality is explained. Section IV describes the datasets
used and details of the results and discussion. Section V
concludes the paper with a final review and presents future
work.

II. LITERATURE REVIEW
The major challenge associated with video streaming is

delivering seamless video with maximum quality of experience
(QoE). To this end, changes are made adaptively by the design
control algorithm. Stream switching is a common control
algorithm. The server encodes video content in different
bitrates, while the control algorithm at the client side selects
the appropriate video level. This approach is used by two main
standards: MPEG-DASH and HTTP live streaming (HLS).
Riad et al. [4] proposed a quality scheme to obtain a balance
between the number of quality switches and the average
bitrates at certain cutoff points. They achieved this by
measuring the variation of bandwidth values, calculating the
throughput change between pairs of consecutive results, and
then making quality selection decisions by matching the
channel alteration to the threshold. They evaluated their
proposal by testing on actual datasets, comparing them with
Liu’s and Adobe algorithms [4]. These results showed their

scheme was successful in minimizing the number of qualities
switching decisions, whilst keeping high average bitrates. In
general, the proposed algorithm attains a good trade-off point
between the number of quality switches and the average
bitrates. Fig. 4 illustrates the influence of the cutoff on the
average bitrate and over switches quality on a certain stream.

Fig. 4. Effect of a Cutoff on Average Bitrate and Quality Switches for

Specific Stream [5].

In [5], Xiang et al. designed a rate adaptation algorithm to
find an ideal streaming strategy in a user- aware QoS, playback
breaks, average playback quality, and playback smoothness.
They formulated the rate adaptation problem as a finite Markov
Decision Process (MDP) using dynamic programming. The
optimal strategy requires the offered bandwidth statistics and a
large number of states; therefore, it is hard to obtain the
optimal solution in real-time, making it difficult to create an
optimum streaming policy. To counter this, they produced an
online algorithm that accumulates bandwidth statistics. The
online algorithm also makes streaming decisions in real-time,
using a reward parameter to ensure a good balance between
average playback quality and playback smoothness. The
experimental results presented showed the proposed algorithm
is possible; however, several issues were encountered, which
required further investigation. Improving quality control and
adaptation algorithms has a noticeable effect on video
streaming, there are recent studies that improve these
algorithms based on the video quality scale. In [6], authors
depend their studies on the P.1203 series of standards proposed
by ITU-T is one such example for bit stream-based models.
This series consists of three main parts: Pv: short term video
quality prediction,

Pa: audio short term quality, Pq: overall integration of
quality. This paper focus on extending the existing mode 0
model to support the aforementioned newer codecs and higher
resolutions and frame rate. They propose correction mapping
for new codecs, resolutions and frame rates and not retrain the
existing model. As a result, we use the unmodified mode 0
predictions from the existing model and then do a correction on
this prediction for the newer use cases. This approach of just
using a correction mapping and not re-training ensures that we
can rely on the well-developed P.1203 models. To ensure that
the proposed correction reflects quality ratings by humans, two
subjective tests were conducted. They first test considered,
H.264, H.265 and VP9 with resolutions up to 4K, 60 fps as
frame rate and realistic bitrate settings , a second test, included
H.265 and AV1 as codec . These tests give a good example of
using a simple correction chart. In thesis [7], Huang et al.
designed a buffer-based algorithm to adaptation video rate by
using the buffer to select a video bitrate, then request when

572 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 8, 2020

capacity estimation is required. This approach has two phases
of the process. In the steady-state phase, when the buffer
encodes appropriate information, the algorithm selects the
video rate depending on the playback buffer. In the startup
phase, when the buffer holds few information, we expand the
buffer-based design with capacity estimation. Huang et al.
revealed that this approach led to a reduction in the re-buffered
rate by 10–20% compared to Netflix’s default available bit rate
(ABR) algorithm, while refining the steady-state video bitrate.
The main reason is that DASH is solely a client-side standard.
A DASH client is the only agent that manage the video
streaming process despite (i) its limited information about the
network and (ii) being unaware of actions taken by the other
clients. in [8] the authors propose to maximize fairness and
efficiency of end-users’ QoE by achieving a level of
cooperation between clients and servers without requiring any
modification on the client-side, by using Dec-POMDP model
and use RL to train two neural networks to find an optimal
solution to the fairness problem. This optimal solution is then
enforced, through client and server cooperation, to make their
system fully compatible with the DASH standard. The
experimental results proved that algorithm outperformed the
state-of-the-art algorithm. In [9], they propose a novel
algorithm for video rate adaptation in HTTP Adaptive
Streaming (HAS), based on online learning, named
Learn2Adapt (L2A), is to provide a robust rate adaptation
strategy which, unlike most of the state-of-the-art techniques,
does not require parameter tuning, channel model assumptions
or application-specific adjustments. Simulations show that L2A
improves on the overall Quality of Experience (QoE) and in
particular the average streaming rate. The robustness property
of L2A allows it to be classified in the small set of rate
adaptation algorithms for video streaming, that mitigate the
main limitation of existing mobile HAS approaches. Learning-
based Adaptive Bit Rate (ABR) is approaches to learn
outstanding strategies without any presumptions, has become
one of the research hotspots for adaptive streaming. However,
it typically suffers from several issues, i.e., low sample
efficiency and lack of awareness of the video quality
information. In [10], they propose Comyco, a learning-based
ABR system which aim to thoroughly improve the
performance of learning-based algorithm. To overcome the
sample inefficiency problem, they leverage imitation learning
method to guide the algorithm to explore and exploit the better
policy rather than stochastic sampling, also including its NN
architectures, datasets and QoE metrics. With trace-driven
emulation and real-world deployment, the results of Comyco
significantly improves the performance and effectively
accelerates the training process. Joseph and De Veciana [11],
established the online algorithm NOVA to optimize video
delivery that supports DASH-based clients. NOVA is
asynchronous, distributing the tasks of resource allocation to
the network controller, and quality adaptation to respective
video clients using minimal communication. In [12], Mao et al.
proposed the Pensieve system. This system automatically
learns algorithms without any predefined control guidelines or
assumptions about the operating environment. This is achieved
by using modern strengthening learning systems to learn the
strategy of controlling adaptive bitrate through reinforcement.
This enhancement is in the form of reflective traffics QoE for

previous video resolutions. This system takes special
information about the real performance of the previous
decisions to improve the control policy in the form of a neural
network, so that the observations are used to decide the bitrate
of the next fragment. The authors proposed learning-based
approaches to producing ABR algorithms that rely on an effort
to learn ABR policy from observations, especially as this
method depends on learning enhancement. The aim of
reinforcement learning (RL) is to increase the predictable
cumulative discounted reward. Fig. 5 shows how RL is able to
achieve bitrate adaptation. The ABR agent collects the metric
information (bandwidth, bitrate of previous fragment, buffer
occupancy) and applies it in a neural network model in the
form of actions. The result is a bitrate decision; this QoE result
is returned to the ABR agent as a reward. The ABR agent uses
the reward for the training and development of the neural
network model to improve performance. After applying the
Pensieve system, experiments revealed that the proposed
system deviated from ABR algorithms by 12% to 25%.

Cofano and De Cicco [13] proposed rules to guide the
controller design, by designing a model to control the level
based on a hybrid dynamic system. Based on this model, they
derived a relationship between minimum switching frequency
and control system parameters. They also proposed a
methodology to adjust the lowest playout buffer that must be
guaranteed to prevent rebuffing events as shown in Fig. 6. The
general goal of the proposed control algorithm ([13]) is
maximizing QoE for users in available bandwidth. To achieve
this goal, they designed an official model of the closed-loop
system by using a level-based hysteresis controller. Fig. 7
presents a comparison between the numerical simulations and
the experimental results. The model in [13] fits the
performance of the real system with good precision, and is able
to expect system performance in terms of video level switching
frequency and no rebuffing probability.

Fig. 5. Applying Reinforcement Learning to Bitrate Adaptation [10].

Fig. 6. No Rebuffering Probability PNR Function of qL, the Lower Playout

Buffering Threshold [13].

573 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 8, 2020

Fig. 7. Comparison between the Video Level Switching Period Obtained
with Simulation Model and Experimental Result [13], between Two Sets of
Data; the Optimal Level Set (Blue) and the Equally Spaced Level Set (Red).

Adaptive streaming is a technology that has to adapt video
playback according to the network conditions. It is achieved by
switching between representations of different bitrates and
resolutions. These resolution changes affect the users’
perceived quality. In [14], Asan et al. proposed a method to
analyze resolution changes and their impact on QoE, as well as
investigate adaptive patterns with respect to their mean opinion
score (MOS). The results of this study are still inconclusive
concerning single impairment factors that are typical for HTTP
adaptive streaming (HAS) services. Their method attempted to
predict the effect of a specific switch in terms of MOS
degradation. This experiment is just one of the series of tests
that they will conduct. In [15], Rodríguez et al. determined that
changes in video quality level (VQL) had an effect on the user
QoE. They proposed a DASH algorithm, including a decision
parameter named the switching degradation factor (SDF) that
captured a correlation between the QoE and VQL switching
types, the frequency of VQL switching events and their
temporal locations. The DASH algorithm was improved by
performing VQL switching depending on SDF values.
Parameter testing was done on the SDF model, alongside
testing to assess the performance of the quality prediction in
the MOS model. After analyzing and verifying the results, it
was revealed that the MOS provided by the monitors had
improved, through the incorporation of the SDF with the
DASH algorithm.

In previous studies, researchers relied on various proposed
methods and analyzed the results based on some of the
parameters and algorithms, like measuring the variation of
bandwidth pairs in consecutive results or using the MDP. Other
studies depending on measuring buffer occupancy, throughput,
average playback quality, and decision parameter to analyze
their results. Another study testing their proposed algorithm
with other algorithms by using H.264 codec. Our proposed
method depends on some of the above previous studies by
using H.264 codec, makes decision parameters based on
preferences to improve the quality, and views stability and
reduces switching levels, using average playback quality with
evaluating network parameter values.

III. PROPOSED FRAMEWORK
The proposed method is to design an adaptive framework

to balance the average video bit rates with respect to
appropriate quality switches and make the transition to higher

switches seamless. The quality adaptation scheme increases the
bitrates to their maximum value corresponding to the current
quality switch, before shifting to the higher switch. This will
help in reducing the number of switching levels and reducing
switching times between levels to guarantee viewing stability
and avoiding interruptions. A dynamic system is required to
achieve optimal performance by controlling system parameters
and making the algorithm more tunable, allowing each user to
regulate the parameters with respect to their own preferences.
Further, reducing the switching levels will reduce the overloads
that occur because of transferring from one level to another.
Our research can avoid missing live moments and reduce the
video interruptions by adjusting the video quality switch to the
optimal bitrate level. The system model is designed as
proposed in Fig. 8. The green parts (server) are standardized
and contain the MPD and segment formats. The delivery of the
MPD, DASH streaming control, media player, and segment
parser, are depicted in blue. These parts are not standardized,
allowing developers to modify or add features to improve their
performance. The open-source (Libdash) is depicted at the
client, containing the MPD parsing and HTTP module that is
responsible for HTTP download. Therefore, the library
provides interfaces for these modules to access the MPD and
the downloadable media segments. The DASH streaming
control is responsible for downloading the order of media
segments. The DASH server provides segments in several
bitrates and resolutions (MPD files). The client initially
receives the MPD through Libdash; the MPD contains the
temporal relationships for the various qualities and segments.
Based on that information, the client can download individual
media segments through Libdash at any point in time.
Therefore, varying bandwidth conditions can be handled by
switching to the corresponding quality level at segment
boundaries, in order to provide a smooth streaming experience.
This adaptation is not part of the Libdash and MPEG-DASH
standard and we will implement it in our system to obtain our
goals.

Fig. 8. System Model.

A. MPEG-DASH
Providing video content over the internet faces many

challenges. Initially, the Real-Time Transport Protocol (RTP)
was designed to define packet formats for audio and video
content. However, the protocol performance is poor because it
is used in internet protocol (IP) networks rather than content
delivery networks (CDNs), and in the firewall most RTP
packages are not supported. Therefore, the HTTP appeared to
deliver the media content through it which is good with the
firewall and uses streaming and smooth and dynamic
streaming. But each of the streaming protocol has to deliver its
own manifest and segment formats, so the content received

574 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 8, 2020

from the device must support the client protocol. MPEG-
DASH is a technology that can provide interoperability
between various servers and clients’ devices. MPEG-DASH
delivers a multimedia file to the client by using HTTP protocol
and an MPEG coder. MPEG is the standard digital content
format for transmission and storage of audio and video. The
segment information called (MPD) Media Presentation
Description.

After describing the details of the MPEG-DASH system, a
description of the building of a system including client-side
and server-side is provided. The server-side obtains MPD files
and the client-side uses the Libdash open-source tool and
DASH control. We installed the Libdash Library and opened it
in visual studio 2015, with MPEG coder and QuickTime (QT)
5.11.2 tool to support the QT sample player. Libdash is the
official reference software of the ISO/IEC MPEG-DASH
standard, and is an open-source library that provides an object-
oriented (OO) interface to the MPEG-DASH standard,
developed by Bitmovin [16].

B. Performance Parameters
The dynamic systems have multiple parameters to measure

the performance; in our system, we have used the common
performance parameters, namely its CPU usage and memory
usage. The CPU time is the amount of time for which the CPU
was used for processing the instructions of a computer program
or operating system. The CPU time is measured in clock ticks
or seconds; it is useful to measure CPU time as a percentage of
the CPU's capacity, called CPU usage. Now will explain how
using Libdash Player and the details adaptation sets to balance
between selecting the best level of quality and CPU usage.
Starting performance profiling and selecting CPU usage, using
first representation 320 x 240 (47 kbps), showed the CPU
usage at less than 20%. By selecting another representation
1280 x 720, better quality and an increase in CPU usage to
39% were attained. Therefore, a high-resolution selection
increases the amount of work for the processor. Referring back
to the many studies of the maximum limitation of CPU usage
in DASH streaming, it is expected than the upper limit of CPU
usage on DASH streaming did not exceed 25% [17]. The
diagnostic report is shown in Fig. 9, sorted by total CPU from
highest to lowest in the selected time range. For the total CPU,
the milliseconds and CPU percentage used by calls to the
function in the selected time range include functions called by
the function. This is different from the CPU utilization timeline
graph, which compares the total CPU activity in a time range
to the total available CPU [18].

100% ×=
tyAppaActivi

dActivityTotalMethoTotalCPU
 (1)

Self CPU unit refers to the time (in milliseconds) and CPU
percentage used by calls to the function in the selected time
range exclude functions called by the function [18].

100% ×=
yAppActivit

ActivitySelfMethodSelfCPU
 (2)

Fig. 9. CPU usage Report.

Here, (1) and (2) demonstrate the calculations of the CPU
usage during the video flow and the average results.

Memory usage is the amount of memory currently in use by
all applications. In the memory usage result, we obtained some
snapshots from the memory by using a diagnostic tool to read
the quantity of the data on the memory, including one or more
snapshots of the managed and native memory heaps. A single
snapshot can be analyzed to understand the relative impact of
the object types on memory use, and to determine the code in
the app that uses memory inefficiently. Two snapshots of an
app can be compared to determine the areas in the code that
cause the memory used to increase over time. A live graph of
memory application is shown Fig. 10. The byte counter
increases with time. The red dotted bar displayed over the
graph is the memory threshold (Memory Limitation) [18]; the
maximum limit does not exceed 1400 MB. To analyze memory
usage, detailed report of memory usages can be obtained. The
details of the difference between the current snapshot and the
previous snapshot, such as the increase or decrease in memory
usage, can also be obtained. The numbers in the snapshot panes
indicate the bytes and objects in memory when each snapshot
was taken, as well as the difference between the current
snapshot and the previous one. We analyzed the numbers of
Fig. 10 in depth as.

1) The total number of bytes in memory when the snapshot
was acquired; a snapshot details report sorted by the total size
of the type instances is displayed.

2) The total number of objects in memory when the
snapshot was acquired; a snapshot details report sorted by the
count of instances of the types is displayed.

3) The difference between the total size of memory objects
in this snapshot and the previous snapshot (a positive number
means the memory size of this snapshot is larger than the
previous one, a negative number means the size is smaller); a
snapshot difference report sorted by the difference in the total
size of instances of the types is displayed.

4) The difference between the total number of memory
objects in this snapshot and the previous snapshot; a snapshot
difference report sorted by the difference in the total count of
instances of the types is displayed.

575 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 8, 2020

Fig. 10. Memory usage.

IV. RESULTS AND DISCUSSION
After the text edit has been completed, the paper is ready

for the template. Duplicate the template file by using the Save
As command, and use the naming convention prescribed by
your conference for the name of your paper. In this newly
created file, highlight all of the contents and import your
prepared text file. You are now ready to style your paper; use
the scroll down window on the left of the MS Word Formatting
toolbar.

A. Simulation and Test Scenarios
Our objectives were to balance the average video bit rates

with the appropriate quality switches and make the transition to
higher switches more seamless, by reducing the number of
switching levels to reduce the overloads on the network while
transferring from one level to another. The goal were achieved
by studying the video load changes on the parameters of
performance, such as CPU and memory usages, that have a
high impact on multimedia quality. Maximizing the average bit
rates for the current quality switch before shifting the switching
level to the higher one enabled control over system parameters,
thereby making the algorithm more tunable. We have divided
the adaptation set into three groups of levels; every level has a
set of converged qualities and data rates of CPU and memory
usages. The transmission among levels is based on high or low
quality and its effect on CPU and memory usages.

Table II shows the results of CPU and memory usage
averages of all adaptation sets (according to the bitrates in the
MPD file) excluding the parameters that have the biggest result
from the limitation of CPU and memory usages. The average
results were recorded because the results changed over time;
memory usage value increases with time. The resolution value
has multiple data rates; every data rate has value that effects
CPU and memory usage. 320 x 240 resolution takes up
approximately 9% of CPU usage and consumes between 100 to
120 MB of memory; however, at a higher resolution of 480 x
360, we observed that less than 10% of CPU usage and up to
137 MB of memory were consumed. Therefore, a switch to
higher resolution consumes a larger amount of CPU and
memory use, thus affecting the performance of video
streaming. Further, as shown in Table II, we can observe that
an 854 x 480 resolution has a CPU limitation and memory
limitation, which means that other higher resolutions such as
1280 x 720 and 1920 x 1080 violate the conditions of CPU and
memory limits. Therefore, we applied the reduction of
switching quality levels only on resolutions from 320 x 240 to
854 x 480. Fig. 11 to 17 illustrate the results with curves of
CPU usage and memory usage associated with the streaming

data, and the effect of multiple instances of switching quality
on these performance parameters.

TABLE II. ADAPTATION SET

Resolutions Data rates CPU Usage Memory Usage

320 x 240
47 kbps
92 kbps
135 kbps

8 %
8 %
9 %

120 MB
126 MB
1126 MB

480 x 360

182 kbps
226 kbps
270 kbps
353 kbps
425 kbps

12%
12%
13%
13%
13%

117 MB
117 MB
125 MB
127 MB
127 MB

854 x 480 538 kbps
621 kbps

19%
20%

132 MB
143 MB

1280 x 720 808 kbps
101, 103, 17 Mbps

39%
up 42%

161 MB
Up 210 MB

1920 x 1080 202, 206, 303, 308,
402, 407 Mbps Up 60% Up 230 MB

(a) CPU usage 320 x 240, 47kbps Bitrate.

(b) CPU usage 320 x 240, 92kbps Bitrate.

(c) CPU usage 320 x 240, 135kbps Bitrate.

Fig. 11. CPU usage of 320 x 240 for Bitrates 47, 92, 135kbps.

(a) Memory usage 320 x 240, 47kbps bitrate.

576 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 8, 2020

(b) Memory usage 320 x 240, 92kbps bitrate.

(c) Memory usage 320 x 240, 135kbps bitrate.

Fig. 12. Memory usage of 320 x 240 for bitrates 47, 92, 135kbps.

(a) CPU usage 480 x 360, 182kbps bitrate.

(b) CPU usage 480 x 360, 226kbps bitrate.

(c) CPU usage 480 x 360, 270kbps bitrate.

(d) CPU usage 480 x 360, 353kbps bitrate.

(e) CPU usage 480 x 360, 425kbps bitrate.

Fig. 13. CPU usage 480 x 360 for Bitrates 182, 226, 353, 425kbps.

(a) Memory usage 480 x 360, 182kbps bitrate.

(b) Memory usage 480 x 360, 226kbps bitrate.

(c) Memory usage 480 x 360, 270kbps bitrate.

(d) Memory usage 480 x 360, 353kbps bitrate.

(e) Memory usage 480 x 360, 425kbps bitrate.

Fig. 14. Memory usage of 480 x 360 for bitrates 182, 226, 270, 353, 425kbps.

577 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 8, 2020

(a) CPU usage 854 x 480, 538kbps bitrate.

(b) CPU usage 854 x 480, 621kbps bitrate.

Fig. 15. CPU usage of 854 x 480 for bitrates 538, 621 kbps.

(a) Memory usage of 854 x 480, 538kbps bitrate

(b) Memory usage 854 x 480, 621kbps bitrate.

Fig. 16. Memory usage of 854 x 480 for bitrates 538, 621 kbps.

(a) CPU usage 1280 x 720, 808kbps bitrate.

(b): CPU usage 1280 x 720, 1.7Mbps bitrate.

(c): Memory usage 1280 x 720, 808kbps bitrate.

Fig. 17. CPU usages of 1280 x 720 for Bitrates 808kbps and 1.7Mbps and
Memory usages for Bitrates 808kbps.

B. Results and Discussion
Our contribution herein is the design of an adaptive

framework to balance the average video bit rates with respect
to appropriate quality switches and make the transition to
higher switches more seamless. The quality adaptation scheme
increased the bitrates to the maximum value corresponding to
the current quality switch, before shifting to the higher level.
This helped reduce the number of switching levels, and hence
reduce switching times between levels to guarantee stable
viewing and avoid interruptions. A dynamic system was
required to achieve optimal performance by controlling system
parameters (CPU and memory). This dynamic system was also
required to make the algorithm more tunable, permitting each
user to regulate the parameters with respect to their own
personal preferences. Further, reducing the switching levels
reduced the overloads that occurred because of transferring
from one level to another. In this study, we analyzed the results
of highest and lowest value of each data rate in one level of
resolution, and reduced these levels by combining the closest
results to closest level. Trading off between data rates and
quality to make the stream video more seamless, see Fig. 18.
which illustrates the processes of adaptive framework
flowchart. Table III illustrates the difference between bitrates
before and after the study of minimizing levels of quality to
reduce switching between levels. We divided the adaptation set
onto three levels only; every group of quality and data rates has
close results on parameters of performance such as (CPU and
memory usages). After searching and studying the results of
CPU usage and memory usage, Fig. 11 to 17, it is revealed we
can have only three levels on the adaptation set, namely high
level (HL), middle level (ML), and low level (LL), as
organized in Table IV.

TABLE III. ADAPTATION SET BEFORE PROPOSED METHOD

Resolution Bit Rates (Before) Bit Rates (After)

320 x 240
47 kbps

47 to 135 kbps
480x360, 182 kbps 92 kbps

135 kbps

480 x 360

182 kbps

480x360, 226 to 425
kbps

226 kbps
270 kbps
353 kbps
425 kbps

854 x 480
538 kbps 854x480, 538 to 621

kbps 621 kbps

578 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 8, 2020

Fig. 18. Adaptive Framework Flowchart.

TABLE IV. ADAPTATION SET AFTER PROPOSED METHOD

Levels Adaptation Set

High Level (HL) 320 x 240, 47 to 135 kbps
480 x 360, 182 kbps

Middle Level (ML) 480 x 360, 226 to 425 kbps

Low Level (LL) 854 x 480, 538 to 621 kbps

V. CONCLUSION
In this study, we have investigated video streaming with a

control algorithm to deliver video in appropriate quality with
respect to network parameters changes. We designed an
adaptive framework to balance the average video bitrate with
respect to the appropriate quality switches and made the
transition to higher switches more seamless. We used a
dynamic system (Libdash) to achieve optimal performance by
controlling system parameters (CPU usage and memory usage)
to make the algorithm more tunable. After analyzing the
results, we minimized the level of quality switches to have only
three levels in the adaptation set. So, this study was able to
decrease the values of parameters that affected the performance
of video streaming.

In future research, we will expand this study to include
other influences that affect video streaming performance and
quality.

ACKNOWLEDGMENT
The authors collectively thank all of those who supported

the completion of this research, especially the Deanship of

Scientific Research at King Saud University for supporting this
research through the initiative of DSR Graduate Students
Research Support (GSR). We thank Researchers Support and
Services Unit (RSSU) at the Deanship for their technical
support.

REFERENCES
[1] Suzen Saju Kallungal., “A Survey on Adaptive Video Streaming

Technologies,” IJARCET, Advanced Research in Computer Engineering
& Technology, vol. 6, issue 3, pp. 350–352, March 2017.

[2] G. Cofano, L. De Cicco and S. Mascolo, “A Hybrid Model of Adaptive
Video Streaming Control Systems,” in Proc. 55th IEEE CDC, Las
Vegas, NV, USA, Dec. 12–14, 2016.

[3] R. G. Asir, K. Kumar, and P. K. Reddy, “MPEG-DASH Enhanced
Multimedia Streaming,” IJARCSSE, vol. 4, issue 3, pp 848–851, March
2014.

[4] M. Riad, H. Abu-Zeid, H. S. Hassanein, M. Tayel, and A. A. Taha, “A
Channel Variation-aware Algorithm for Enhanced Video Streaming
Quality,” in Proc. 4th IEEE LCN Workshops, Clearwater Beach, FL,
USA, Oct. 26-29, 2015, pp. 893–898.

[5] S. Xiang, M. Xing, L. Cai, J. Pan, “Dynamic rate adaptation for adaptive
video streaming in wireless networks,” Signal Process. Image Commun.,
vol. 39, pp. 305–315, November 2015.

[6] R.R.Rao, S. Goring, P. Vogel, N. Pachatz, J. J Villamar, W. Robitza, P.
List, B. Feitin, A. Raake, " Adaptive video streaming with current
codecs and formats: Extensions to parametric video quality model ITU-
T P.1203" in Proc. of Conference: Electronic Imaging, At Burlingame,
California , January 2019.

[7] T-Y. Huang, R. Johari, N. McKeown, M. Trunnell, and M. Watson, "A
Buffer-Based Approach to Video Rate Adaptation," Stanford University,
2014.

[8] S. Altamimi, S. Shirmohammadi, " Client-Server Cooperative and Fair
DASH Video Streaming" In Proc. Of Conference: the 29th ACM
Workshop, June 21, 2019, Amherst, MA, USA.

[9] T. Karagkioules, G. S. Paschos, N. Liakopoulos, A. Fiandrotti, D.
Tsilimantos, M. Cagnazzo, " Optmizing Adaptive Video Streaming in
Mobile Networks via Online Learning " IEEE Transactions on
Multimedia, 28 May 2019.

[10] T. Huang, C. Zhou, R. Zhang, C. Wu, X. Yao, L. Sun, " Comyco:
Quality-Aware Adaptive Video Streaming via Imitation Learning"
Proceedings of the 27th ACM International Conference on Multimedia,
October 21–25, 2019, Nice, France.

[11] V. Joseph and G. de Veciana, “NOVA: QoE-driven optimization of
DASH-based video delivery in networks”, in Proc. IEEE INFOCOM’14
Conference of Computer Communication, April 2014, pp. 82–90.

[12] H. Mao, R. Netravali and M. Alizadeh, "Neural Adaptive Video
Streaming with Pensieve,” in Proc. Conference of the ACM Special
Interest Group, Los Angeles, CA, USA, August 2017, pp. 4503–4653.

[13] G. Cofano and L. De Cicco, "Modeling and Design of Adaptive Video
Streaming Control Systems,” IEEE Transactions on Control of Network
Systems, vol. 99, pp. 1-1, 22 November 2016.

[14] A. Asan et al., "Impact of Video Resolution Changes on QoE For
Adaptive Video Streaming,” in Proc. 18th IEEE International
Conference on Multimedia and Expo., July 2017.

[15] D. Z. Rodríguez, Z. Wang, R. L. Rosa, G. Bressan, "The impact of
video-quality-level switching on user quality of experience in dynamic
adaptive streaming over HTTP," EURASIP Journal on Wireless
Communications and Networking, vol. 216, Dec. 2014.

[16] Bitmovin, July 2013. [Online]. Available:
https://github.com/bitmovin/libdash.

[17] A. Wiersma, "Determining meaningful metrics for Adaptive Bit-rate
Streaming HTTP video delivery,” UVA University van Amsterdam,
15th June 2016.

[18] Visual studio 2019. [Online]. Available: https://docs.microsoft.com/en-
us/visualstudio/profiling/cpu-usage?view=vs-2019. Microsoft.

579 | P a g e
www.ijacsa.thesai.org

	I. Introduction
	II. Literature Review
	III. Proposed Framework
	A. MPEG-DASH
	B. Performance Parameters
	1) The total number of bytes in memory when the snapshot was acquired; a snapshot details report sorted by the total size of the type instances is displayed.
	2) The total number of objects in memory when the snapshot was acquired; a snapshot details report sorted by the count of instances of the types is displayed.
	3) The difference between the total size of memory objects in this snapshot and the previous snapshot (a positive number means the memory size of this snapshot is larger than the previous one, a negative number means the size is smaller); a snapshot differ�
	4) The difference between the total number of memory objects in this snapshot and the previous snapshot; a snapshot difference report sorted by the difference in the total count of instances of the types is displayed.

	IV. Results and Discussion
	A. Simulation and Test Scenarios
	B. Results and Discussion

	V. Conclusion

