
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 8, 2020

A Hybrid Model based on Radial basis Function
Neural Network for Intrusion Detection

Marwan Albahar1,Ayman Alharbi2, Manal Alsuwat3, Hind Aljuaid4
Umm Al Qura University1,2, Taif University3,4

Abstract—An Intrusion Detection System (IDS) is a system
that monitors the network for identifying malicious activities.
Upon identifying the unusual activities, IDS sends a notification
to the network administrators to warn about the hackers’ hostile
activities. To detect intrusion, signature-based systems are consid-
ered to be one of the most effective methods. However, they cannot
detect new attacks. Additionally, it is costly and challenging to
keep the attack signatures database up to date with known
signatures, which constructed a significant drawback. Neural
networks are capable of learning through input patterns and
have the potential to generalize data. In this paper, we propose a
hybrid model based on Directed Batch Growing Self-Organizing
Map (DBGSOM) combined with a Radial Basis Function Neural
Network (RBFNN) detecting abnormalities in the network. Based
on our experiment, the proposed model performed well and has
resulted in satisfactory performance measures compared to Self-
Organizing Maps and Radial Basis Function Neural Network
(SOM&RBFNN) model.

Keywords—Intrusion detection; neural network; radial basis
function; directed batch growing self-organizing map

I. INTRODUCTION

The immense flow of network traffic has created opportu-
nities for attackers to breach privacy and harm the integrity
of the network and its users. In such circumstances, intrusion
detection has become a crucial part of computer security to
ensure that attacks and intrusion activities can be detected
[1]. Intrusions are threats to network systems that may come
in different forms, such as damaging the systems and mak-
ing it unavailable, information examination, and information
manipulation [2]. There are two kinds of intrusions passive
and active, where passive intrusions are surreptitiously and
without detection, whereas active intrusions lead to change and
effect to network resources. Intrusion Detection System (IDS),
an influential approach, is designated to detect normal and
malicious activities in computers. It is a system that defends
the network by identifying suspicious activities while analyz-
ing the network traffic to detect and counter intrusions [2]
timely. An IDS has two main methods of detecting intrusions:
signature-based IDS and anomaly-based IDS. Signature-based
detection is utilized to searching for a ”signature” pattern or
known attacks. This type of IDS, it requires regular updates to
currently common signatures or identities to ensure that the in-
truders’ database is current. Nevertheless, attackers can change
small things in signatures, so the databases cannot recognize it.
Consequently, a new attack type may not be picked up because
the signature doesn’t exist in the database. Moreover, the larger
the databases, the more processing to analyze each connection
and verify it. In contrast to signature-based IDS, anomaly-
based detection is employed to detect known and unknown
attacks depending on learning their behavior by specifying

observations that deviate from a basic model in a computer
network and inform the network’s administrator to take neces-
sary actions. The main advantage of anomaly-based detection
is the ability to detect unknown attacks [1,3]. As a result of
their importance, different systems have been proposed for
intrusion detection by many researchers. Among these systems,
machine learning models and specifically neural networks can
effectively detect malicious activities on a network by getting
trained using enough intrusion detection recorded data [4-7].
Non-neural network machine learning models such as SVM
have specific limitations such as low repetition attack detection
rates, detection instability, and training process complexity [7].
Neural network models have been used for anomaly detection,
such as autoencoders and variational autoencoders (VAEs). Au-
toencoders are composed of encoder and decoder networks that
are sequentially connected. An encoder can compress the input
data and a decoder to reconstruct the input data. Autoencoders
attempt to reduce the error in reconstruction (i.e., the difference
between the decoder output and the original input). This error
is used as an anomaly score to detect anomalies [8-9]. Small re-
construction errors correspond to normal data, while larger re-
construction errors correspond to anomalous data [8]. A VAE,
which is a directed probabilistic graphical model (DPGM),
combines Bayesian inference with the autoencoder framework.
It provides a probability measure rather than an error of
reconstruction as an anomaly score. As probabilities are more
principled and objective than reconstruction errors and do not
require model specific thresholds for anomalies to judge, VAEs
outperform autoencoders in intrusion detection. However, for
natural inference and learning, VAE assumes complicated data
distributions can be modeled with a smaller group of latent
variables whose probability density distributions are Gaussian.
At the same time, studies show the data distribution is usually
multi-modal, and a single Gaussian distribution cannot be
considered before the latent space [8]. As a result, some
other methods, such as the GGM-VAE method are proposed
to compensate for this shortcoming. In GGM-VAE, gated
recurrent unit (GRU) cells are used to find the correlations
between data. Then, the GGM-VAE method uses Gaussian
Mixture prior in the latent space to characterize the multi-
modal data using a series of Gaussian distributions and applies
VAE. While GGM-VAE yields a better detection rate over
VAE, similar to previously discussed deep networks, it needs
extensive data for training. On the other hand, Radial basis
function neural networks (RBFNNs), which are capable of
classifying patterns in nonlinear space and linear encoding, can
estimate non-parametric multi-dimensional functions through a
limited set of educational information [7]. Also, RBFNNs are
rapid, comprehensive, and yields highly accurate in training
[7]. New research by Mohammadi and Amiri also verifies their

www.ijacsa.thesai.org 781 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 8, 2020

effectiveness in detecting intrusion in the networks [7]. This
research first uses self-organizing maps (SOMs) to cluster the
data. It then uses the cluster centers to determine the number of
radial basis functions and set the parameters of these functions
in RBFNN. SOMs can profoundly reduce the dimensionality
of the data and therefore reduce the computational runtime
of the process. However, one issue with SOMs is that they
need a predefined structure, including determining the number
of clusters/neurons. To handle this limitation growing SOMs
(GSOMs) and researchers present its variations. One of the
recent variations of GSOMs is directed batch GSOMs (DBG-
SOMs) which not only resolve the limitation of SOMs but also
introduces a suitable mechanism to discover an appropriate
growth position and assigning new neurons initial weight vec-
tors [7]. A batch learning strategy for growing self-organizing
maps was employed in DBGSOM to resolve SOM and GSOM
models’ issues. Consequentially, DBGSOM has a better ability
to conservation the topology and reduce exposure for twisting
and tangling in the network [10]. Furthermore, RBFNNs
are rapid and comprehensive in training and produce high
precision in detecting intrusion [7]. In this study, we measure
the effectiveness of combining DBGSOM and RBFNN to build
an effective anomaly-based intrusion detection system. Then,
we compare its efficacy to SOM with RBFNN. We first explain
SOMs and its limitations and then discuss DBGSOM before
representing the RBFNN process. Then, we apply our proposed
method on three publicly available datasets. Finally, based
on our experimental results, we show that our hybrid model
outperforms the SOM&RBFNN model.

The paper proceeds as follows: In Section II, we provide
related works. In Section III, we describe DBGSOMs and
RBFNN used in this work. In Section IV, we introduce our
proposed model. Next , we introduce the dataset utilized in
Section V. In Section VI, we shows our experimental results,
and Section VII concludes and gives our future works.

II. RELATED WORK

There is a large number of published researches that prove
the effectiveness and ability of machine learning especially
neural networks in intrusion detection techniques, some of
them will be summarized in the following: A recent study by
Vinayakumar et al. [11], shows convolutional neural networks
(CNNs) and its various architectures styles generally perform
good efficiency compared to classical machine learning classi-
fiers [12]. They modeled network traffic with various learning
methods including multi-layer perceptron (MLP), CNN, CNN-
recurrent neural network (CNN-RNN), CNN-long short-term
memory (CNNLSTM) and CNN-gated recurrent unit (GRU)
and reported their results for the NSL-KDD dataset. Their
reported detection rate seems promising. However, since these
methods need millions of known good and bad network con-
nections for training, and obtaining a right deep model usually
needs trying complex architecture, which they consequently
require more computational cost, they cannot be yet the best
option to be employed for the job. In another study, Li et at.
used a representation learning method of graphic conversion
to transform intrusion data into image shape and then apply
CNN on the transformed features to detect anomalies [12]. In
this study, they, also, only applied their method on the NSL-
KDD dataset and achieved Impressive results. However, clearly

the converting the data to the image form proposed is time-
consuming and the method also needs huge data for training
to perform well.

Researchers in [1] applied a long short-term mem-
ory (LSTM) model to discover intrusion and utilized the
CIDDS001 dataset for assessing the LSTM model’s perfor-
mance and they discovered that it outperforms on SVM, MLP,
and Naı̈ve Bayes techniques concerning to multiclassification
problem. Regarding the self-organization map (SOM), Sadeq
and Ahmad studied the effectiveness of combining the SOM
with a backpropagation neural network (BPNN) to reveal
intrusion systems [2]. The proposed approach is divided into
two-stage. In the first classification stage, SOM was utilized for
categorizing normal traffic from attacks. Then, in the second
classification stage, BPNN is utilized for categorizing the
attacks into DoS, R2L, Probe, and U2R. They applied this
proposed approach for dataset NSL KDD and the outcomes
showed that the performance and precision of the intrusion
detection system had improved.

In 2019, JIN et al. [13], proposed a new model based on the
simple recurrent unit (SRU) and deep convolutional generative
adversarial networks (DCGANs) to detection intrusion in the
network. DCGAN was utilized to extract features from the
raw-data directly and then create sufficient and balanced data
samples from current attack samples. In addition to retaining
the information that appeared in raw sample data. Because of
the dependency that exists in LSTM, it has been replaced by
SRU to allow the parallelization. Which led to improved speed
of training 10 times than LSTM. Extensive experiments have
been done on the dataset NSL-KDD to verify the efficiency of
this model and it achieved satisfactory results in classification
performance and accuracy in intrusion detection.

In addition, a previous study by Alia et al. [14], a radial
basis function (RBF)-based intelligent intrusion detection sys-
tem within the framework of approximation theory was applied
to the dataset NSL-KDD through the k-means algorithm to
detect the attack and classify its type under one category: DoS,
Probe, R2L, and U2R. The results of attack classification were
high for rare attacks (R2L and U2R) whereas low for frequent
attacks (DoS and Probe).

In [7], a hybrid self-learner intrusion detection model was
proposed using self-organized neural network algorithms and
perceptron networks. The authors highlighted the advantages
of the hybrid model, such as the self-learner ability of intrusion
detection and memory storage. The authors also pointed out
that RBF neural networks can learn quicker and more com-
fortable than MLP networks. Moreover, the authors showed
the error rate of the proposed algorithm with the back error
propagation method has a lower error rate, which reveals its
higher accuracy than back error propagation method.

III. BACKGROUND

A. Directed Batch Growing Self-organizing Maps (DBG-
SOMs)

SOMs are the foundation of some machine learning models
in anomaly-based intrusion detection systems [6, 7]. This is
because SOMs are unsupervised and do not need any user
feedback, while their output maps can be visualized and help

www.ijacsa.thesai.org 782 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 8, 2020

understand how data are clustered [6]. SOM is also an excellent
tool for dimension reduction as the SOMs’ weights can be
considered as cluster centers and be good representatives of
data. There are two necessary steps to implement the SOM
algorithm: initially, finding the winner by competition between
neurons. After that, the weight vector is adapted to the winning
neurons and their topological neighbors. One of the main limi-
tations for SOM is needing a pre-defined structure and learning
parameter before initializing the training process. To resolve
this issue, growing SOMs (GSOMs) were introduced, which
require fewer epochs, offer a flexible structure, and allow the
capability to learn the nonlinear manifolds at high dimensional
feature space [10, 15]. Three main aspects in which the GSOM
models are different are determining when and where to add
new neurons and assigning proper weight vectors. Fig. 1
shows the initialization of the GSOM network that begins with
four neurons at a rectangular network, guaranteeing that all
neurons have a similar lattice state in the initialization stage.
GSOM models fill all available positions around the candidate

Fig. 1. Initial Structure of GSOM with Four Neurons A, B, C and D on a
Square Grid [15].

neuron. Consequently, because of misconfiguration and map
twisting that can result from unexpected network growth and
incorrect neuron addition and the initialization of weight, they
reduce the topology preservation quality of the map despite
their dynamic nature. A new variation of the GSOM model
called directed batch GSOMs (DBGSOMs) [15] is recently
proposed to resolve the issues of GSOM models by introducing
a batch learning strategy for GSOMs. DBGSOMs have a
better ability to conservation the topology and reduce exposure
for twisting and tangling. This model directs the network
growth appropriately within the feature space by looking at
the cumulative error around candidate boundary neurons. As
a result, DBGSOM offers appropriate mechanisms for finding
a suitable growth position and assign primary weight vectors
to new neurons; moreover, it has been verified that it has a
better clustering capability than GSOM and SOM. It requires
less time for learning data points manifold compared to GSOM
because it generates fewer neurons [15].

B. Radial Basis Function Neural Network (RBFNN)

RBFNN is a forward network type based on function
approximation theory. RBFNN has consisted of input, hid-
den, and output layers (Fig. 2). The hidden layer RBF of

RBFNN mostly utilizes one of the following nonlinear func-
tions [16]: Gaussian function, poly-quadratic function, inverse
poly-quadratic function, and thin plate spline function.

Fig. 2. The Framework of a Radial basis Function Neural Network (RBFNN)

Among these functions, Gaussian functions are the more
popular ones. The RBF form used in the RBFNN is not essen-
tial to network performance while choosing c i and σ i (i.e.,
mean and standard deviation in the Gaussian function) is key to
the whole network ’s performance [16]. Clustering algorithms
like K-means clustering and self-organizing maps can be used
to cluster the data, and then use the clustering/SOM outputs
for the Gaussian function in RBFNN. When using K-means
clustering, the cluster centers c i determine the mean values in
the Gaussian function. The standard deviation of data in each
cluster can be considered as σ i in the Gaussian radial basis
function. When self-organizing maps are used, the number
of SOM neurons is the number of the clusters, and the final
weights of the SOM networks can be used as the c i for the
Gaussian radial basis functions. Then, for standard deviations,
for the cluster center i, we can compute the distance of the
cluster i to the other cluster centers and then use 1

2x minimum
distance as the corresponding standard deviation. This lets
RBFNN knows where to place the Gaussian functions.

IV. PROPOSED METHOD

We discussed the advantages of DBGSOM over SOM and
explained the RBFNN method. As mentioned earlier, RBFNNs
are fast and comprehensive in training and yield high precision.
As Mohammadi and Amiri showed in [7], a combination
of SOM with RBFNN is useful in detecting intrusion in a
network. Therefore, in this paper, we use DBGSOM in con-
junction with RBFNN for anomaly-based intrusion detection.
The diagram for our hybrid model process is shown in Fig. 3.

V. DATASET

In the following, we explain the datasets which were used
in our experiments. The three datasets are NSL-KDD, UNSW-
NB15, and CICIDS2017 datasets, publicly available, and can
be downloaded from their designated websites.

A. NSL-KDD

NSL-KDD is an intrusion detection benchmark data set
suggested for resolving several inherent issues in the KDD’99

www.ijacsa.thesai.org 783 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 8, 2020

Fig. 3. The Proposed Model Process. Data are First Mapped to K
Neurons/Clusters using SOM, and then Obtained Weights for each Neuron is
used as the Mean Value to Calculate the Gaussian Function in RBFNN. The

Standard Deviation for each Gaussian Function is also Considered as 1
2

x
Minimum Distance of the Distances from the Corresponding Neurons in

SOM to other Neurons. The Number of Neurons/Clusters in SOM/DBGSOM
is equal to the Number of Radial basis Functions in RBFNN.

data set. The number of records in the NSL-KDD train and
test sets is sensible. This benefit makes it possible to run
experiments on the full set without randomly selecting a
small portion. Consequently, the assessment findings will be
consistent and comparable to various research work. Compared
with KDD, the NSl-KDD dataset does not contain duplicated
records in the train set, so classifiers are not biased to more
frequent records. Duplicate records were also removed in
NSL-KDD, and therefore, the learners’ performance is not
biased towards the methods with better detection rates on
the repeated records. In our experiment, we use the “KD-
DTrain+ 20Percent” version of this dataset for training, and
the ”KDDTest+” data are utilized for testing. The set of
training includes 25192x41 data, and the testing set contains
22544x41 data.

B. UNSW-NB15

The UNSW-NB 15 dataset’s raw network packets were
generated by the IXIA PerfectStorm tool at the Cyber Range
Lab of the Australian Centre for Cyber Security (ACCS)
to create a hybrid of real, modern normal activities and
contemporary synthetic attack behaviors [18]. There are nine
types of attacks in this dataset: name, Fuzzers, Analysis,
Backdoors, DoS, Exploits, Generic, Reconnaissance, Shell-
code, and Worms. The Argus, Bro-IDS tools are utilized,
and twelve algorithms are developed to generate a total of
49 features with the class label. A section of this data set
was created as a training group (i.e., UNSW NB15 training-
set.csv) and testing set (i.e., UNSW NB15 testing-set.csv).
The training set contains 82333x43 data, and the testing set
contains 175342x43 data. This partition is also used in our
experiments.

C. CICIDS2017

The dataset CICIDS2017 includes benign and most up-
to-date common attacks, which resemble real-world results
(PCAPs). The top priority in building this dataset has been
generating realistic background traffic. Data is captured in five
days from Monday to Friday. The dataset for each day based
on the day of the week, type of activity, and size of data is
summarized as follows:

• Monday, Normal Activity, 11.0G

• Tuesday, attacks + Normal Activity, 11G

• Wednesday, attacks + Normal Activity, 13G

• Thursday, attacks + Normal Activity, 7.8G

• Friday, attacks + Normal Activity, 8.3G

Because of the hardware limitation, we only used the “Friday-
WorkingHours-Afternoon-DDos.pcap ISCX.xlsx” from the
MachineLearningCSV version. This data only contains DDoS
attack and normal attack. It has 225745 activities, and each
activity has 78 features (i.e. 225745x 78). Among these data,
97718 data is normal traffic, and the rest (i.e. 128027) is
attack data. We randomly chose .2 data from normal data (i.e.
19544x78) and the same number of data from attack data for
training, and we use the rest of the data for testing. Therefore,
we have 39088x78 data for training and 186657x78 data for
testing.

VI. EXPERIMENT SETTINGS AND RESULT

A. Data Pre-processing

Intrusion datasets contain different types of values. The
information regarding each scenario (normal or attack) can be
both numerical values and categorical values. For categorical
values, datasets use text values. For example, each record in
NSL-KDD dataset looks like the following data:
“0 tcp ftp data SF 491 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2
0 0 0 0 1 0 0 150 25 0.17 0.03 0.17 0 0 0 0.05 0 normal”.

In this dataset, four columns which are related to tcp,
ftp data, SF , and normal contain categorical values. In
contrast, the other columns contain numerical values (we
should note the last column lists the label for each record
by indicating whether it is a normal condition or an attack
one). To use the categorical features of these columns in our
machine learning, we set numerical value for each category.
For example, the second column Protocol type contains three
categories including tcp, icmp, and udp which are respectively
set to 1, 2, and 3. We normalize the numerical values in each
column by subtracting the mean value of that column and
dividing it by the respective standard deviation. However, we
notice in all datasets that most of the values in each column
are similar to each other, and some values might vary much
compared to the rest. Based on this observation, we decide to
use each column’s median value, which relates to our dataset
more closely instead of the mean value.

B. Experimental Results

In this section, we evaluate our anomaly-based intrusion
detection method using the three publicly available datasets:

www.ijacsa.thesai.org 784 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 8, 2020

NSL-KDD, UNSW NB15, and a subset of CICIDS2017
datasets. We have conducted our experiments using a Windows
laptop with Core i7 CPU 2.70GHz and 16 GB RAM. We
applied the proposed model, and (SOM36&RBFNN) SOM
was implemented with 36 pre-defined clusters followed
by RBFNN. The methods are implemented in MATLAB.
We used the built-in MATLAB function for SOM (i.e., the
selforgmap function to create the map and the train func-
tion to train the SOM map), DBGSOM MATLAB codes
are provided by the authors [10], and we implemented the
RBFNN method. Table I, Table II, and Table III summarize
results for the three datasets. Our hybrid model outperforms
(SOM36&RBFNN) in all three cases. The row related to
DBGSOM Number Of Clusters in each table indicates
the number of clusters (i.e. the final number of neurons) in
each run of the proposed model. Since some neurons do not
contain any data or they might have very few data, we remove
any cluster which contains less than 0.001 of data. While this
only removes unnecessary neurons, it speeds up RBFNN as it
significantly reduces the number of radial basis functions. In
each table, the DBGSOM Final Number Of Clusters
row indicates the final number of DBGSOM clusters after
removing these neurons. Clearly, for all the three datasets,
our hybrid model surpasses its (SOM&RBFNN) peer. Also,
for each dataset, we included a confusion matrix of one run
of the method in Fig. 4, 5 and 6. Confusion matrices for the
three datasets also verify that the proposed model outperforms
the (SOM&RBFNN) model.

C. Network Traffic Data Visualization

As it was mentioned before, one advantage of SOMs
and consequently DBGSOMs is that they can visualize high
dimensional data in two dimensions. In Fig. 7, 8 and 9, we
illustrate the 2D visualization obtained by SOM and DBGSOM
for the three examined datasets. These figures, which are the
hit maps (where each data hit on the SOM map), are useful in
showing how intrusion or traffic data are different from while
connected to each others.

D. Computational Runtime

To compare the CPU time consumed by the DBG-
SOM+RBFNN method with the SOM+RBFNN, we need to
compare the CPU time by SOM with DBGSOM the RBFNN
method would have the same calculations when SOM em-
ployed with the same number of neurons that DBGSOM ends
with. For the sake of this experiment, we fixed the number of
epochs for SOM, DBGSOM, and RBFNN to 100. Table IV
summarizes the average runtime for applying DBGSOM and
SOM on the three datasets. The first column indicates the name
of the dataset, the second column shows the number of neurons
found by DBGSOM, which is also used by SOM, and the third
and fourth columns list the CPU time by DBGSOM and SOM
in seconds. From the table, we can see that SOM is faster
than DBGSOM because DBGSOM has spent more CPU time
than conventional SOM due to the step of inserting neurons,
which involves the correct growth position and the weight
initialization but has the benefit of conserving data topology
on the map [10]. We also included the average runtime of
implementing RBFNN as the next step after employing either
SOM or DBGSOM in the fifth column. Since applying both

(a) SOM36+RBFNN

(b) DBGSOM+RBFNN

Fig. 4. Confusion Matrix for the NSL-KDD Dataset obtained by running the
(SOM&RBFNN) and the Proposed Hybrid Models

our hybrid and the (SOM&RBFNN) models to train a model
is offline, we may be interested in knowing the CPU time
for testing the model on test data. Therefore, we calculate the
CPU time that our system needed to evaluate all the test data,
classify them as either normal or attack, and report the result
in the sixth column. The next column indicates the average
runtime our system needed to evaluate each data. The CPU is
taken by all test images divided by the number of test images.
The CPU time for testing one record of data for all three
datasets is very small. This indicates the proposed method
can be employed in a real-time application and would even
be speeded up by using high-config systems. The last two
columns of the table show the dimension of our training data
and testing data. The number of neurons found by DBGSOM
indicates why the CPU time for testing one record of data in
each dataset is different.

It is significant to highlight the fact that SOM’s batch learn-
ing principles can save training time dramatically. Besides, the
procedure of growing and the ultimate grid structure are inde-
pendent from the arrangement of the input vector presentation.

www.ijacsa.thesai.org 785 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 8, 2020

TABLE I. CLASSIFICATION RATE FOR THE COMPARED METHODS ON THE NSL KDD DATASET IN 5 RUNS. DATA ARE NORMALIZED; SF VALUE FOR
DBGSOM IS .01. AFTER DBGSOM COMPUTES CENTERS, CLASSES WITH LESS THAN .001 OF DATA ARE REMOVED.

Methods Run#1 Run#2 Run#3 Run#4 Run#5 Average
SOM36+RBFNN 74.31 74.94 74.96 77.72 75.74 75.53
Proposed hybrid model 75.27 76.60 75.71 75.60 76.66 75.97
DBGSOM Number Of Clusters 263 294 299 269 259 276.8
DBGSOM Final Number Of Clusters 166 191 181 175 165 175.6

TABLE II. CLASSIFICATION RATE FOR THE COMPARED METHODS ON UNSW NB15 DATA SET IN 5 RUNS. DATA ARE NORMALIZED, SF VALUE FOR
DBGSOM IS .01. AFTER DBGSOM COMPUTES CENTERS, CLASSES WITH LESS THAN .001 OF DATA ARE REMOVED.

Methods Run#1 Run#2 Run#3 Run#4 Run#5 Average
SOM36+RBFNN 75.69 74.71 82.38 81.47 76.63 78.18
Proposed hybrid model 91.57 91.47 85.72 90.50 85.85 89.02
DBGSOM Number Of Clusters 652 698 658 626 638 654.40
DBGSOM Final Number Of Clusters 339 373 354 353 366 357.00

TABLE III. CLASSIFICATION RATE FOR THE COMPARED METHODS ON THE SUBSET OF THE CICIDS 2017 DATASET (I.E.,
FRIDAY-WORKINGHOURS-AFTERNOON-DDOS.PCAP ISCX) IN 5 RUNS. DATA ARE NORMALIZED; SF VALUE FOR DBGSOM IS .01. AFTER DBGSOM

COMPUTES CENTERS, CLASSES WITH LESS THAN .001 OF DATA ARE REMOVED.

Methods Run#1 Run#2 Run#3 Run#4 Run#5 Average
SOM36+RBFNN 98.86 98.82 97.73 98.45 88.44 96.46
Proposed hybrid model 99.27 99.17 99.70 99.22 97.39 98.95
DBGSOM Number Of Clusters 277 245 277 302 293 279
DBGSOM Final Number Of Clusters 153 150 152 170 165 159

TABLE IV. THE AVERAGE RUNTIME FOR APPLYING DBGSOM AND SOM ON THE THREE DATASETS.

Dataset Neurons DBGSOM SOM RBFNN Testing on all test image set Testing per test image Training Dimension Testing Dimension
NSL-KDD 304 252.5041 173.3397 432.4043 3.992026 0.0191805 25192x41 22544x41
UNSW-NB15 833 2260.498 1635.984 3942.145 86.45262 0.0224827 82332x42 175341x42
CICIDS2017 324 761.0038 466.5995 1338.836 67.031675 0.0071727 39088x78 186657x78

With this technique, in each training cycle, the training vectors
are offered to the network once, and neurons cumulative fault
calculated immediately after the step of weight adaptation.
Thus, the neurons network has the opportunity for growth
from more than one boundary node which causes difficulty
in managing the growth process that leads to dead neurons,
which are that don’t represent any input vector at the end of the
training, and unexpected growth of the network and therefore
raises the computational cost. Our hybrid model presents many
rules for network growth and that fills just one position around
each boundary neuron. Because of the narrow neighborhood
function in GSOM, allocation weight vectors to recent neurons
have a dramatic influence on map tangling and twisting and
must be regarded for serving the quality and smoothness of
the network. In DBGSOM, the cumulative error for detecting
eligible boundary neurons is not only considered but also for
assigning appropriate weight vectors and network location to
new neurons.

VII. CONCLUSION

We propose to apply DBGSOM together with RBFNN for
detecting anomaly-based intrusion in the network. DBGSOM
employs a batch learning strategy for GSOMs to resolve the
issues of SOM and GSOM models. It has a better ability to
conservation topology. It reduces exposure for twisting and
tangling while offers suitable mechanisms to discover a proper
growing position and designating initial weight vectors for the
new neurons. RBFNNs, on the other hand, are fast and com-
prehensive in training, and yields high precision in detecting
intrusion. We implemented the DGBSOM+RBFNN method in

MATLAB and applied it on three publicly available datasets:
NSL-KDD, UNSW-NB15, and CICIDS2017. Our extensive
experiment indicates that the proposed method outperforms the
SOM+RBFNN method for anomaly-based intrusion detection.

Future works intend to integrate the proposed model with
a novel regularization technique that utilizes the standard
deviation for classifying and detecting intrusions efficiency.
We will incorporate the regularization technique to discourage
learning from complex model. As a result, we expect more
generalization from the machine learning model to accurately
perform on unseen data.

Data Availability: Data used to support the findings of this
study are included within the article (see [17] and [18]).

Fund Statement:This research received no external fund-
ing.

Conflicts of interest:The authors declare that there is no
conflict of interest.

REFERENCES

[1] S. A. Althubiti, E. M. Jones, and K. Roy, “LSTM for Anomaly-Based
Network Intrusion Detection,” in 2018 28th International Telecommu-
nication Networks and Applications Conference (ITNAC), 2018.

[2] S. AlHamouz and A. Abu-Shareha, “Hybrid Classification Approach
Using Self-Organizing Map and Back Propagation Artificial Neural
Networks for Intrusion Detection,” in 2017 10th International Confer-
ence on Developments in eSystems Engineering (DeSE), 2017.

[3] https://www.dnsstuff.com/intrusion-detection-system

www.ijacsa.thesai.org 786 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 8, 2020

(a) SOM36+RBFNN

(b) DBGSOM+RBFNN

Fig. 5. Confusion Matrix for the UNSW-NB15 Dataset obtained by running
the (SOM36&RBFNN) and the Proposed Hybrid Models.

[4] T. A. Tang, L. Mhamdi, D. McLernon, S. A. R. Zaidi, and M.
Ghogho, “Deep Recurrent Neural Network for Intrusion Detection
in SDN-based Networks,” in 2018 4th IEEE Conference on Network
Softwarization and Workshops (NetSoft), 2018.

[5] R. C. Staudemeyer, “Applying long short-term memory recurrent
neural networks to intrusion detection,” South Afr. Comput. J., vol.
56, no. 1, pp. 136–154, 2015

[6] S. Albayrak, C. Scheel, D. Milosevic, and A. Muller, “Combining
Self-Organizing Map Algorithms for Robust and Scalable Intrusion
Detection,” in International Conference on Computational Intelligence
for Modelling, Control and Automation and International Conference
on Intelligent Agents, Web Technologies and Internet Commerce
(CIMCA-IAWTIC’06).

[7] S. Mohammadi and F. Amiri, “An Efficient Hybrid Self-Learning
Intrusion Detection System Based on Neural Networks,” International
Journal of Computational Intelligence and Applications, vol. 18, no.
1, p. 1950001, Mar. 2019.

[8] Y. Guo, W. Liao, Q. Wang, L. Yu, T. Ji, and P. Li, “Multidimen-
sional time series anomaly detection: A gru-based gaussian mixture
variational autoencoder approach,” in Proceedings of the 10th Asian
Conference on Machine Learning (ACML18), Beijing, China, Nov.
14-16, 2018.

[9] J. An and S. Cho. Variational Autoencoder based Anomaly Detection
using Reconstruction Probability. Technical Report, SNU Data Mining

(a) SOM36+RBFNN

(b) DBGSOM+RBFNN

Fig. 6. Confusion Matrix for the CICIDS2017 Dataset obtained by running
the SOM36+RBFNN and Proposed Hybrid Models.

Center, 2015. http: //dm.snu.ac.kr/static/docs/TR/SNUDM-TR-2015-
03.pdf

[10] M. Vasighi and H. Amini, “A directed batch growing approach to
enhance the topology preservation of self-organizing map,” Applied
Soft Computing, vol. 55, pp. 424–435, Jun. 2017

[11] R. Vinayakumar, K. P. Soman and P. Poornachandran, ”Applying
convolutional neural network for network intrusion detection,” 2017
International Conference on Advances in Computing, Communications
and Informatics (ICACCI), Udupi, 2017, pp. 1222-1228.

[12] Z. Li, Z. Qin, K. Huang, X. Yang, and S. Ye, “Intrusion Detection
Using Convolutional Neural Networks for Representation Learning,”
in Neural Information Processing, Springer International Publishing,
2017, pp. 858–866.

[13] J. Yang, T. Li, G. Liang, W. He, and Y. Zhao, “A Simple Recurrent
Unit Model Based Intrusion Detection System With DCGAN,” IEEE
Access, vol. 7, pp. 83286–83296, 2019.

[14] A. AbuGhazleh, M. Almiani, B. Magableh, and A. Razaque, “In-
telligent Intrusion Detection Using Radial Basis Function Neural
Network,” in 2019 Sixth International Conference on Software Defined
Systems (SDS), 2019

[15] D. Alahakoon ; S.K. Halgamuge ; B. Srinivasan, “Dynamic self-
organizing maps with controlled growth for knowledge discovery”,
IEEE Transactions on Neural Networks, Volume: 11, Issue: 3, pp.

www.ijacsa.thesai.org 787 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 8, 2020

601-614, 2000
[16] Q. Zhang and F. Wilson, RBNN Application and Simulation in Big

Data Set Classification, Journal of Intelligent& Fuzzy Systems (JIFS),
pp. 1-9, 2019.

[17] M. Tavallaee, E. Bagheri, W. Lu, and A. Ghorbani, “A Detailed
Analysis of the KDD CUP 99 Data Set,” Submitted to Second IEEE
Symposium on Computational Intelligence for Security and Defense
Applications (CISDA), 2009.

[18] N. Moustafa, “Designing an online and reliable statistical anomaly
detection framework for dealing with large high-speed network traf-
fic.” Ph.D. dissertation, University of New South Wales, Canberra,
Australia, 2017.

www.ijacsa.thesai.org 788 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 8, 2020

(a) SOM36

(b) DBGSOM

Fig. 7. Hit Maps from the NSL-KDD Data Set obtained by (a) SOM with 36 Neurons, (b) DBGSOM with 310 Neurons. For SOM, each Cell Number shows
the Number of Data assigned to those Cell/Neurons and for DBGSOM, the Number of Data assigned to each Cell/Neuron is Proportional to how much that

Cell is Colored.

www.ijacsa.thesai.org 789 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 8, 2020

(a) SOM36

(b) DBGSOM

Fig. 8. Hit Maps from the UNSW-NB15 Data Set obtained by (a) SOM with 36 Neurons, (b) DBGSOM with 310 Neurons. For SOM, each Cell Number
shows the Number of Data assigned to those Cell/Neurons and for DBGSOM, the Number of Data assigned to each Cell/Neuron is Proportional to how much

that Cell is Colored.

www.ijacsa.thesai.org 790 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 8, 2020

(a) SOM36

(b) DBGSOM

Fig. 9. Hit Maps from the CICIDS2017 Data Set obtained by (a) SOM with 36 Neurons, (b) DBGSOM with 310 Neurons. For SOM, each Cell Number
shows the Number of Data assigned to those Cell/Neurons and for DBGSOM, the Number of Data assigned to each Cell/Neuron is Proportional to how much

that Cell is Colored.

www.ijacsa.thesai.org 791 | P a g e


