
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 9, 2020

100 | P a g e
www.ijacsa.thesai.org

Pynq-YOLO-Net: An Embedded Quantized

Convolutional Neural Network for Face Mask

Detection in COVID-19 Pandemic Era

Yahia Said

Electrical Engineering Department, College of Engineering

Northern Border University, Arar, Saudi Arabia1

Laboratory of Electronics and Microelectronics (LR99ES30)

Faculty of Sciences of Monastir, University of Monastir, TUNISIA2

Abstract—The recent Coronavirus COVID-19 is a very

infectious disease that is transmitted through droplets generated

when an infected person coughs, sneezes, or exhales. So, people

must wear a face mask to reduce the power of the transition of

this virus. Governments around the world have imposed the use

of face masks in public spaces and supermarkets. In this paper,

we propose to build a face mask detection system based on a

lightweight Convolutional Neural Network (CNN) and the

YOLO object detection framework to implement it on an

embedded low power device. The object detection framework

was designed using a single Convolutional Neural Network for

object detection in real-time. To make the YOLO framework

suitable for embedded implementation, we propose to build a

lightweight Convolutional Neural Network and quantize it by

using a single bit for weight and 2 bits for activations. The

proposed network called Pynq-YOLO-Net was implemented on

the Pynq Z1 platform. The computation was divided between the

software and the hardware. The features extraction part was

executed on the hardware device and the output part was

executed on the software. This configuration has allowed

reaching real-time processing with a very good detection

accuracy of 97% when tested on the combination of collected

datasets.

Keywords—Face mask detection; Coronavirus COVID-19;

YOLO; Convolutional Neural Network (CNN); embedded device;

Pynq Z1 board

I. INTRODUCTION

According to the World Health Organization (WHO) [1],
the COVID-19 is causing a world crisis because of its fast
infection and the absence of a cure. This new virus is
considered as the fastest infecting virus all over time. Based on
the latest statistics [2], more than 25 million in 190 countries
are infected, and more than 844000 deaths, until the writing of
this paper. As a protection step, the authorities oblige people to
wear face masks in public spaces to reduce the transmission
impact of the virus. Many peoples are ignoring the rules and do
not wear face masks. So, it is important to detect those peoples
that do not use facemasks and warn them about the importance
of this step to stay uninfected by the coronavirus. Thus, an
automatic face mask detector must be installed in public
streets, supermarkets, and all public service agencies. Based on
surveillance systems of all public spaces, it is possible to

process visual data and detect peoples that do not use face
masks.

Recently, the performance of computer vision applications
has been boosted to high-level thanks to the use of deep
learning [3]. The deep learning is based on a deep neural
network with tens of hidden layers. Deep learning models can
learn directly from input data without any handcrafted features.
For image processing, the Convolutional Neural Network
(CNN) is the most used. It was inspired by the biological
nervous system, and based on mathematics and informatics
representation, it mimics the vision cortex of an animal. The
CNN was successfully deployed to solve many computer
vision applications such as traffic light detection and
recognition [4], [5], medical image segmentation [6], indoor
object detection and identification [7], [8], scene identification
[9], face detection and recognition [10].

CNN models are characterized by their high performance
and intensive computation. The feature extraction part
(convolution layers, activation layers, pooling layers) uses the
most computation effort and the output part (fully connected
layers) uses the most of memory storage. Until today,
Graphical Processing Units (GPU) are considered as the best
target platform for the deployment of CNN. But GPUs need a
lot of power and expansion. At this end, CNN must be
optimized for low power platforms such as Field-
Programmable Gate Arrays (FPGA). Many techniques were
proposed to optimize CNN for low power implementation. The
quantization technique is a very useful technique which aims to
reduce the number of bits used for the representation of the
weights and the activations on CNN. Many works have been
proposed in this context with different methodologies. Doyun
et al. [11] proposed a quantization algorithm based on the
generalized gamma distribution. The proposed algorithm was
tested with different representation and the achieved result
were courageous. As reported in [11], the performance of the
algorithm can be improved by tuning the parameters of the
quantizer. A Kernel Density Estimation based Non-uniform
Quantizer was proposed in [12]. In this work, a 4-bits
representation of the weights and activations were used. The
proposed quantization algorithm was tested on the ImageNet
dataset and it was very effective in compressing the model
without a big loss in performance. In [13], a quantization

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 9, 2020

101 | P a g e
www.ijacsa.thesai.org

algorithm based on trainable scaling factors and a nested-
means clustering strategy was proposed. To quantize the
weights, the nested-means clustering strategy was deployed to
achieve high parameter compression. To quantize the
activations, a linear quantization technique was used which
take into account the statistical priorities of the batch
normalization technique. There are many variants of the
quantization technique and each of them has its impact on the
model compression.

In this work, we propose a lightweight Convolutional
Neural Network and quantize it for implementation on an edge
device. The proposed CNN is composed of a convolution layer,
3 lightweight blocks, and a regression layer for output. The
detection technique is based on You Look Only Once (YOLO)
framework [14] which is designed to achieve real-time
processing with good detection accuracy. The YOLO
framework treats the detection task as a regression problem.
For our case, it is perfect since we look for detecting if the
person is wearing a face mask or not. That is a binary
classification problem with a focus on the prediction of the
bounding box used to locate the face mask. So, to speed up the
processing, we ignored the classification and we focus on the
localization task. The proposed network was called Pynq-
YOLO-Net.

The proposed CNN was tested on the Pynq board which a
hybrid board (software/hardware) equipped with an ARM
processor and an FPGA in a single ship. This configuration
allows taking the advantage of the FPGA blocks alongside the
CPU. The Pynq board can be programmed using a high-level
programming language (Python) or hardware description
language (VHDL/Verilog).

The motivation behind optimizing the CNN for embedded
implementation is to make it available for all surveillance
systems without the need for high-performance computers and
to reduce the power consumption of those systems. Also, it can
be implemented in mobile devices such as smartphones and
smart cameras.

The main contributions of this work are the following: (1)
design a lightweight Convolutional Neural Network targeting
embedded device; (2) the proposed CNN was quantized to fit
in the Pynq board; (3) implementation of the proposed CNN
inference for face mask detection on the Pynq board.

The rest of the paper is organized as follows. Section 2 was
reserved to discuss related works about face mask detection
methods. The proposed approach was described and discussed
in Section 3. In Section 4, the experiment and results were
presented and discussed. The paper was concluded in
Section 5.

II. RELATED WORKS

Recently, the detection of the face mask was an important
application for reducing the transmission of the COVID-19.
Building an automatic face mask detector is a challenging task
and many works were proposed to achieve high results.

Loey et al. [15] proposed a hybrid system for face mask
detection. The proposed system is composed of a CNN for
feature extraction and decision trees, Support Vector Machine

(SVM), and an ensemble algorithm for the detection. The
transfer learning technique was applied to the ResNet 50 model
[16] to finetune it for face mask detection. The proposed
system was trained and evaluated on 3 datasets, the Real-
World Masked Face Dataset (RMFD) [25], the Simulated
Masked Face Dataset (SMFD) [25], and the Labeled Faces in
the Wild (LFW) [26]. The proposed system has achieved a
high accuracy of more than 99% but it was very complex and
hard to train. In addition, the proposed system is
computationally intensive and cannot be used for real-time
processing.

The Single Shot Multi-box Detector (SSD) [17] was
proposed for face mask detection in public spaces [18]. The
SSD model was pre-trained on the MSCOCO dataset for object
detection and finetuned on a custom-made dataset for face
mask detection. The MobileNet V2 model [19] was used as a
backbone for the SSD to limit the computation complexity.
The proposed model was implemented on a Raspberry PI 4
equipped with a quad-core ARM processor and 4GB of RAM.
An accuracy of 85% was achieved when testing the model on
the custom-made dataset. This work was a good step for
implementing facemasks on embedded devices. But the
Raspberry PI 4 is considered as a software device and its power
consumption is too high compared to low power devices.

Jiang et al. [19] proposed the use of the RetinaNet model
[20] for face mask detection. The RetinaNet was finetuned for
face mask detection trough the transfer learning technique.
Two backbones were tested, the Resnet and the MobileNet. In
addition, a new technique was added to the RetinaNet to reject
predictions with low confidences and the high intersection of a
union. The RetinaNet was pre-trained on the ImageNet [21]
dataset and then fine-tuned on the face mask dataset. The
proposed RetinaFaceMask has achieved good results with both
backbones while the best results were achieved using the
ResNet model. The achieved result was good but the
RetinaFaceMask was not suitable for implementation on low
power devices because of its computation intensively and the
need for large storage memory.

IN [22], a CNN model was proposed to detect if a person
wears a face mask or not. Also, the proposed network was used
to detect if the mask is correctly worn or not. The proposed
CNN has a simple architecture with a convolution layer, an
activation layer, a pooling layer, a fully connected layer, and a
softmax layer. The proposed approach was designed to detect
faces and face masks separately. The proposed CNN model
was trained using publicly available datasets, Masked Face
Detection Dataset (MFDD) [25], Real-world Masked Face
Recognition Dataset (RMFRD) [25], and Simulated Masked
Face Recognition Dataset (SMFRD) [25]. The reported results
are good in terms of accuracy and speed. The main
disadvantage of the proposed model is the need for high-
performance computers and large memory usage.

All the mentioned methods are designed to be implemented
on a high-performance computer with a very high-power
consumption. In this work, we propose to quantize a
lightweight CNN for implementation on low power devices
with a focus on high performance. In the next section, we will

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 9, 2020

102 | P a g e
www.ijacsa.thesai.org

present the proposed approach and detailing the different
optimization applied to achieve an embedded implementation.

III. PROPOSED APPROACH

In this section, we will describe the proposed lightweight
CNN model and the compression techniques applied to make
this model fit in the resource constraint of a low power device
while maintaining high performance and real-time processing.

Recently, many techniques are proposed to build
lightweight CNN models. The most important technique in the
use of Bottlenecks instead of normal convolution layers. In this
work, we adopt the Bottlenecks concept proposed by the
MobileNet v2 model [19]. The main contribution of the
Inverted Residuals and Linear Bottlenecks is the use of
depthwise convolution and point convolutions instead of
simple convolution layers with adding a residual connection.
The depthwise convolution is similar to the normal convolution
layer but the main difference that depthwise convolution
reserves the number of channels and does not compress them.
For normal convolution it the number of input channels is n
then the number of output channels is 1 but for depthwise
convolution, if the number of the input channels is n then the
number of output channels is n. The pointwise convolution is a
normal convolution layer with a kernel size of 1x1. The
combination of a depthwise convolution with a pointwise
convolution makes the same functionality of a normal
convolution layer but 9 times faster as they claim [19]. Also,
the separation of the filtering and combining functionalities
allow the implementation of more than one activation layer and
batch normalization layer which results in enhancing the
performance of the model and reducing the computation
complexity. The proposed Inverted Residuals and Linear
Bottlenecks are presented in Fig. 1. Another technique was
deployed by the MobileNet model was the use of strided
convolution layers and eliminate the use of pooling layers. As
proves in [23], the use of strided convolution layers instead of
max-pooling layers is more efficient to build CNN models for
embedded implementation and helps to enhance the accuracy
of those models.

In this work, we propose to use a convolution layer with a
kernel size of 3x3 and a stride of 2, three inverted residual
bottlenecks, and three linear bottlenecks as a backbone for the
YOLO framework. The YOLO framework takes an input
image, applies a feature extraction through a backbone based
on a CNN model to generate an output grid of NxN dimension.
For each cell of the obtained grid, it predicts only one object
with the parameters of the bounding box (the x, y coordinates,
the height, the width, and the confidence score) and the class

probability. For the Pascal VOC dataset [24] the YOLO
framework generated 7x7 grid and used 2 bounding boxes (B)
for 20 classes (C). The architecture of the YOLO framework is
presented in Fig. 2.

In this work, we propose to eliminate the calculation of the
class probability because we are solving a binary classification
problem. The YOLO framework computes the score
confidence for each predicted bounding box. Since there is one
object to detect, we consider the confidence score the class
probability. This step allows reducing the calculation at the
output layer and speeds up the processing speed.

Besides, more optimizations were applied to the YOLO
framework to reduce the computation complexity and to
enhance the performance. First, the input image was resized to
a power of 2 sizes. Thus, we propose to use 128x128 size.
After applying the features extraction module, the YOLO
framework generates 8x8 grid. Using an input image with a
size power of 2 facilitates the implementation of the
convolutional layers on the hardware device because it is easier
to perform multiplications by using only shifting registers.
Second, the use of an all convolution backbone allows enabling
the data reuse technique to reduce the communication between
the external memory and use only the on-chip memory to
compute the convolutions. Third, the pruning technique was
applied to eliminate weak connections and to avoid the
overfitting problem in the finetuning step. Finally, the model
was quantized by replacing 32 bits floating-point
representation by a 2-bits fixed-point representation for the
activations (A) and 1-bit fixed-point representation for the
weights (W). For the input image and the output layer (grid),
we used an 8-bits fixed-point representation. The backbone
architecture and configuration were presented in Fig. 3.

Fig. 1. Inverted Residuals and Linear Bottlenecks.

Fig. 2. YOLO Architecture.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 9, 2020

103 | P a g e
www.ijacsa.thesai.org

Fig. 3. Backbone Architecture for Embedded Implementation.

In this work, we propose to use the post-training
quantization technique which is based on training and fine-
tuning after reducing the presentation of the weights and
activations. The YOLO was trained using 32 bits floating-point
representation then it was reduced to the proposed
representations and retrained again to recover the accuracy. In
the experiments, we will report the accuracies obtained with
different representations. The retraining process is very
important to recover the degradation of the accuracy caused by
the quantization technique.

The workflow of the proposed approach is divided into 5
steps. The first step is to develop the proposed model based on
the YOLO framework. The second step is to train the proposed
model using a specific dataset. The third step is to optimize the
model for embedded implementation by applying the pruning
technique and the quantization technique. The fourth step is the
retraining of the model on the same dataset used in step 2 to
recover the accuracy degraded by the optimization techniques.
The final step is to implement the model on the Pynq Z1 board.
The workflow of the proposed approach is illustrated in Fig. 4.

IV. EXPERIMENTS AND RESULTS

A. Training Data

To train the proposed model, we proposed to combine
publicly available datasets to increase the amount of training
data. The performance of CNN models increases with the
amount of training data. The used datasets are presented in the
following:

 Real-World Masked Face Dataset (RMFD) [25]: The
images of the dataset were collected automatically from
the internet for public famous figures with and without
a mask. The dataset contains 5,000 images of 525
persons wearing masks, and 90,000 images of the same
525 persons without masks. The dataset was manually
filtered and annotated using semi-automatic labeling
tools.

 Masked Face Detection Dataset (MFDD) [25]: The
dataset was designed for the detection of masked faces
during the era of the coronavirus. This dataset combines
existing face detection datasets with images collected
from the internet. The collected images were manually
annotated where the coordinate of the face with the
mask was defined in addition to the condition of
wearing a mask or not. It contains 24771 images for
masked faces.

 Simulated Masked Face Recognition Dataset (SMFRD)
[25]: to increase the amount of training data for face
mask detection, an automatic wearing tool was designed
to add masks to faces of existing face detection and
recognition datasets such as LFW [26] and Webface
[27] then the collected data was added to the MFDD.
This dataset allows adding 500000 annotated faces of
10000 persons to the MFDD.

 MAsked FAces (MAFA) dataset [28]: it is a dataset that
contains 30,811 images and 34,806 labeled masked
faces. The dataset contains faces masked by the medical
mask and others masked hand or other objects. This
allows enhancing the generalization power by
distinguishing between the mask that it must be
detected and other masks.

The mentioned datasets were combined to build a very
large dataset to increase the training data. Thus, it will enhance
the performance of the trained model. Fig. 5 present examples
of images from the collected datasets used for the training of
the model.

Fig. 4. Workflow of the Proposed Approach.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 9, 2020

104 | P a g e
www.ijacsa.thesai.org

Fig. 5. Examples of Images from the Collected Datasets.

B. Training and Evaluation

The proposed model was trained on the combination of the
collated datasets using the gradient descent algorithm. The
Adam optimizer was used as a learning algorithm which is a
variant of the gradient descent algorithm with many
advantages. The Adam Optimizer optimizes the weights and
the learning rate accordingly to achieve a better minimum of
the loss function.

To evaluate the proposed Pynq-YOLO-Net, we propose to
use the precision and the recall as evaluation metrics. The
precision presents the percentage of relevant results and the
recall presents the percentage of relevant results correctly
identified. The precision and the recall are computed as (1).

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑅𝑎𝑐𝑎𝑙𝑙 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
 (1)

The performance of the Pynq-YOLO-Net was evaluated on
the testing set which is 30% of the collected data. The Pynq-
YOLO-Net achieved a Precision of 94.6% and a Recall of
95.8% for the first training process using the 32-bits floating-
point representation. After compressing the model and
retrained it on the same data, it achieves an accuracy of 90.7%
of Accuracy and 92.3 of Recall. To find our model in the state-
of-the-art, we compared against existing works. Table I present
a comparison against state-of-the-art works. As shown in
Table I, the proposed Pynq-YOLO-Net achieved better results
than state-of-the-art works in its normal version. The
compressed model achieves lower results but with the
advantage of implementation on low power devices. The
achieved results still good enough to generate trusted
predictions.

C. Inference

The inference of the Pynq-YOLO-Net was implemented on
the Pynq Z1 board. The board was connected to the internet
and it was connected via an ssh node to visualize the results on
the computer screen. The Pynq Z1 board is presented in Fig. 6.
An operating system based on Linux kernel was loaded to the

board via a pre-booted SSD card. The implementation of the
Pynq-YOLO-Net on the Pynq Z1 board achieves a processing
speed of 16 FPS. The achieved result can be considered as real-
time processing speed. The energy consumption of the board
does not exceed 5 watts.

The implementation of the proposed model on the Pynq Z1
board was divided into parts. The first part composed of the
feature extraction, which is composed of the convolution layer
and the bottlenecks, was implemented on the hardware to take
advantage of the parallel processing of the programmable units.

The second part which is composed of the fully connected
layers and the output layer, was implemented on the software
because it needs more memory and less computation. The
performance of the board is presented in Fig. 7.

The Pynq-YOLO-Net was tested using images that does not
belong to the collected datasets to evaluate the generalization
power of the model. Fig. 8 present an illustration of the
obtained results. The model was very effective when tested on
new images which prove that it have a good generalization
power.

TABLE I. COMPARISON AGAINST STATE-OF-THE-ART WORKS

Model Precision (%) Recall (%)

RetinaFaceMask [19] 93.4 94.5

SSD [18] 91 91

Pynq-YOLO-Net (ours) 94.6 95.8

Pynq-YOLO-Net compressed (ours) 90.7 92.3

Fig. 6. Pynq Z1 Board.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 9, 2020

105 | P a g e
www.ijacsa.thesai.org

Fig. 7. Performance of the Pynq Z1 Board.

Fig. 8. Visualization of the Obtained Results of the Pynq-YOLO-Net.

D. Discussion

The reported results prove the efficiency of the proposed
Pynq-YOLO-Net for implementation in low power devices.
Starting by building a lightweight CNN is a very important
step to reach embedded implementations. Also, the YOLO
framework was a good choice since it was designed with a
focus on speed. The model compression techniques used in this
work allow to reduce the size of the model and speed up the
processing speed without damaging the accuracy. The choice
of the size of the input images was very effective for building
the convolution layers on the hardware part of the board. All
those factors were correlated together to achieve an embedded
implementation of the proposed model.

V. CONCLUSIONS

The coronavirus COVID-19 is a very fast-spreading
disease. It is important to protect ourselves from being infected
by wearing masks and respecting social distances in public
environments. In this paper, we propose to build a face mask
detector in public spaces to detect if people are wearing masks
or not. The proposed detector was based on the YOLO
framework with a lightweight backbone. The proposed model,
called Pynq-YOLO-Net, was designed to be implemented on
the Pynq Z1 board. To achieve this implementation, some
model compression techniques was applied such as pruning
and quantization. Those techniques were very effective to
reduce the model size and the computation complexity. The
model was implemented on both hardware and software to
accelerate the inference. The achieved performance has proved
the efficiency of the proposed approach for mask detection in
public spaces. As future work, the model will be implemented
on video surveillance systems to be tested on real conditions.

ACKNOWLEDGMENT

The author wishes to acknowledge the help of Mr. Ayachi
Riadh from Laboratory of Electronics and Microelectronics at
University of Monastir for assistance with implementing the
proposed model.

REFERENCES

[1] Coronavirus disease (COVID-19) pandemic, Available at:
https://www.who.int/emergencies/diseases/novel-coronavirus-2019 ,

accessed on 29/08/2020.

[2] COVID-19 CORONAVIRUS PANDEMIC, Available at:

https://www.worldometers.info/coronavirus/? , accessed on 29/08/2020.

[3] Goodfellow, Ian, Aaron Courville, and Yoshua Bengio. Deep learning.
Vol. 1. Cambridge: MIT press, 2016.

[4] Ayachi, Riadh, Mouna Afif, Yahia Said, and Mohamed Atri. "Traffic

signs detection for real-world application of an advanced driving
assisting system using deep learning." Neural Processing Letters 51, no.

1 (2020): 837-851.

[5] Ayachi, R., Y. E. Said, and M. Atri. "To perform road signs recognition
for autonomous vehicles using cascaded deep learning pipeline."

Artificial Intelligence Advances 1, no. 1 (2019): 1-58.

[6] Wang, Guotai, Wenqi Li, Maria A. Zuluaga, Rosalind Pratt, Premal A.
Patel, Michael Aertsen, Tom Doel et al. "Interactive medical image

segmentation using deep learning with image-specific fine tuning."
IEEE transactions on medical imaging 37, no. 7 (2018): 1562-1573.

[7] Afif, Mouna, Riadh Ayachi, Yahia Said, Edwige Pissaloux, and

Mohamed Atri. "An evaluation of retinanet on indoor object detection
for blind and visually impaired persons assistance navigation." Neural

Processing Letters (2020): 1-15.

[8] Afif, Mouna, Riadh Ayachi, Edwige Pissaloux, Yahia Said, and

Mohamed Atri. "Indoor objects detection and recognition for an ICT
mobility assistance of visually impaired people." Multimedia Tools and

Applications (2020): 1-18.

[9] Afif, Mouna, Riadh Ayachi, Yahia Said, and Mohamed Atri. "Deep
Learning Based Application for Indoor Scene Recognition." Neural

Processing Letters (2020): 1-11.

[10] Sun, Xudong, Pengcheng Wu, and Steven CH Hoi. "Face detection
using deep learning: An improved faster RCNN approach."

Neurocomputing 299 (2018): 42-50.

[11] Kim, Doyun, Han Young Yim, Sanghyuck Ha, Changgwun Lee, and
Inyup Kang. "Convolutional Neural Network Quantization using

Generalized Gamma Distribution." arXiv preprint arXiv:1810.13329
(2018).

[12] Seo, Sanghyun, and Juntae Kim. "Efficient weights quantization of

convolutional neural networks using kernel density estimation based
non-uniform quantizer." Applied Sciences 9, no. 12 (2019): 2559.

[13] Schindler, Günther, Wolfgang Roth, Franz Pernkopf, and Holger

Fröning. "N-Ary Quantization for CNN Model Compression and
Inference Acceleration." (2018).

[14] Redmon, Joseph, Santosh Divvala, Ross Girshick, and Ali Farhadi.
"You only look once: Unified, real-time object detection." In

Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 779-788. 2016.

[15] Loey, Mohamed, Gunasekaran Manogaran, Mohamed Hamed N. Taha,

and Nour Eldeen M. Khalifa. "A Hybrid Deep Transfer Learning Model

https://www.who.int/emergencies/diseases/novel-coronavirus-2019
https://www.worldometers.info/coronavirus/

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 9, 2020

106 | P a g e
www.ijacsa.thesai.org

with Machine Learning Methods for Face Mask Detection in the Era of

the COVID-19 Pandemic." Measurement (2020): 108288.

[16] He, Kaiming, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. "Deep
residual learning for image recognition." In Proceedings of the IEEE

conference on computer vision and pattern recognition, pp. 770-778.
2016.

[17] Liu, Wei, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott

Reed, Cheng-Yang Fu, and Alexander C. Berg. "Ssd: Single shot
multibox detector." In European conference on computer vision, pp. 21-

37. Springer, Cham, 2016.

[18] Yadav, Shashi. "Deep Learning based Safe Social Distancing and Face
Mask Detection in Public Areas for COVID-19 Safety Guidelines

Adherence." International Journal for Research in Applied Science &
Engineering Technology (IJRASET). 2020.

[19] Jiang, Mingjie, and Xinqi Fan. "RetinaFaceMask: A Face Mask

detector." arXiv preprint arXiv:2005.03950 (2020).

[20] Lin, Tsung-Yi, Priya Goyal, Ross Girshick, Kaiming He, and Piotr

Dollár. "Focal loss for dense object detection." In Proceedings of the
IEEE international conference on computer vision, pp. 2980-2988. 2017.

[21] Deng, Jia, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei.

"Imagenet: A large-scale hierarchical image database." In 2009 IEEE
conference on computer vision and pattern recognition, pp. 248-255.

Ieee, 2009.

[22] Inamdar, Madhura, and Ninad Mehendale. "Real-Time Face Mask

Identification Using Facemasknet Deep Learning Network." Available
at SSRN 3663305 (2020).

[23] Ayachi, Riadh, Mouna Afif, Yahia Said, and Mohamed Atri. "Strided

convolution instead of max pooling for memory efficiency of
convolutional neural networks." In International conference on the

Sciences of Electronics, Technologies of Information and
Telecommunications, pp. 234-243. Springer, Cham, 2018.

[24] Everingham, Mark, Luc Van Gool, Christopher KI Williams, John

Winn, and Andrew Zisserman. "The pascal visual object classes (voc)
challenge." International journal of computer vision 88, no. 2 (2010):

303-338.

[25] Wang, Zhongyuan, Guangcheng Wang, Baojin Huang, Zhangyang
Xiong, Qi Hong, Hao Wu, Peng Yi et al. "Masked face recognition

dataset and application." arXiv preprint arXiv:2003.09093 (2020).

[26] Huang, Gary B., Marwan Mattar, Tamara Berg, and Eric Learned-
Miller. "Labeled faces in the wild: A database for studying face

recognition in unconstrained environments." 2008.

[27] Yi, Dong, Zhen Lei, Shengcai Liao, and Stan Z. Li. "Learning face

representation from scratch." arXiv preprint arXiv: 1411.7923 (2014).

[28] Ge, Shiming, Jia Li, Qiting Ye, and Zhao Luo. "Detecting masked faces
in the wild with lle-cnns." In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, pp. 2682-2690. 2017.

