
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 9, 2020

107 | P a g e
www.ijacsa.thesai.org

Best Path in Mountain Environment based on Parallel

Hill Climbing Algorithm

Raja Masadeh1

Computer Science department

The World Islamic Sciences and

Education University

Amman, Jordan

Ahmad Sharieh2, Sanad Jamal3

Mais Haj Qasem4

Computer Science department

The University of Jordan

Amman, Jordan

Bayan Alsaaidah5

Computer Science department

Al-Balqa Applied University

Al-Salt, Jordan

Abstract—Heuristic search is a search process that uses

domain knowledge in heuristic rules or procedures to direct the

progress of a search algorithm. Hill climbing is a heuristic search

technique for solving certain mathematical optimization

problems in the field of artificial intelligence. In this technique,

starting with a suboptimal solution is compared to starting from

the base of the hill, and improving the solution is compared to

walking up the hill. The optimal solution of the hill climbing

technique can be achieved in polynomial time and is an NP-

complete problem in which the numbers of local maxima can

lead to an exponential increase in computational time. To address

these problems, the proposed hill climbing algorithm based on

the local optimal solution is applied to the message passing

interface, which is a library of routines that can be used to create

parallel programs by using commonly available operating system

services to create parallel processes and exchange information

among these processes. Experimental results show that parallel
hill climbing outperforms sequential methods.

Keywords—Hill climbing; heuristic search; parallel processing;

Message Passing Interface (MPI)

I. INTRODUCTION

Hill climbing algorithm based on the local optimal solution
was proposed and applied to the Message Passing Interface
(MPI), which is a library of routines that can be used to create
parallel programs in C, C++, and Fortran 77 by using
commonly available operating system services to create
parallel processes and exchange information among these
processes [1]. In this algorithm, the 10 closest points around
the current point are scanned, and the cost needed to go from
the current point to the next point is obtained by calculating the
sum of the obstacles between the current point and the 10 other
points. The MPI method is used to validate the performance of
the hill climbing algorithm by using parallel and distributed
computing systems compared with sequential methods [2].

Hill climbing is a heuristic search technique for solving
certain mathematical optimization problems in the field of
artificial intelligence [3]. In this technique, starting with a
suboptimal solution is compared to starting from the base of
the hill, and improving the solution is compared to walking up
the hill. The solution is improved repeatedly until a certain
condition is maximized and becomes optimal. This technique is
mainly used to solve difficult problems computationally [4].

Heuristic search is an artificial intelligence search
technique and a computer simulation of thinking that utilizes
heuristic for its moves [5, 6]. Heuristic search is a search
process that uses domain knowledge in heuristic rules or
procedures to direct the progress of a search algorithm, is
utilized to prune the search space, and is adopted in
applications where a combinatorial explosion indicates that an
exhaustive search is impossible [7].

The objective of heuristic search is to produce a solution in
a reasonable time frame that is sufficient to solve the problem
at hand. This solution may not be the best of all the solutions to
this problem, or it may simply approximate the exact solution,
but it is still valuable because finding it does not require a
prohibitively long time. For large and complex problems,
finding an optimal solution path can take a long time and a
suboptimal solution that can be obtained rapidly may be useful.
Various techniques for modifying a heuristic search algorithm,
such as hill climbing, to allow a tradeoff between solution
quality and search time have been investigated [8, 9].

The optimal solution of Hill Climbing technique can be
achieved in polynomial time and it is one of the NP-Complete
problem that the numbers of local maxima can be the cause of
exponential computational time. To address these problems
parallel and distributed computing systems can be applied to
Hill Climbing algorithm. Parallel and distributed computing
systems are high-performance computing systems that spread
out a single application over many multi-core and multi-
processor computers in order to rapidly complete the task.
Parallel and distributed computing systems divide large
problems into smaller sub-problems and assign each of them to
different processors in a typically distributed system running
concurrently in parallel. MPI are one these computing systems
[10, 11].

The MPI is a standardized means of exchanging messages
among multiple computers running a parallel program across a
distributed memory. The MPI is generally considered to be the
industry standard and forms the basis for most communication
interfaces adopted by parallel computing programmers. The
MPI is used to improve scalability, performance, multi-core
and cluster support, and interoperation with other applications
[12].

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 9, 2020

108 | P a g e
www.ijacsa.thesai.org

The rest of the paper is organized as follows. Section II
reviews works that are closely related to the hill climbing
algorithm. Sections III and IV present the methodology of the
new proposed algorithm and its analysis. Section V presents
the experimental results. Section VI provides the conclusion.

II. RELATED WORK

Mathematicians and research scientists have found many
applications that use heuristic search. The increased use of
heuristic search in a wide variety of applications, such as
science, engineering, economics, and technology, is due to the
advent of personal and large-scale computers.

Rashid and Tao [13] presented an optimized hill climbing
algorithm called parallel iterated local search with efficiently
accelerated GPUs. They also tested the algorithm by using a
typical case study of the graph bisection in computational
science. The proposed algorithm minimizes the data transfer
between two components to achieve the best performance.
Then, the purpose of the parallelism control is to control the
generation of the neighborhood for meeting the memory
constraints and finding efficient mappings between
neighborhood candidate solutions and GPU threads. The
authors found through experiments that GPU computing not
only accelerates the search process but also exploits parallelism
to improve the quality of the obtained solutions for
combinatorial optimization problem.

Jiang et al. [14] proposed an optimal power allocation
(OPA) method to exert the maximum efficiency of parallel
grid-connected inverters. They established the power model of
every inverter and compared each model by using the equal
power allocation (EPA) method. Theoretically, high overall
system efficiency can be achieved using the OPA method.
Then, the authors calculated the overall system efficiency with
easily measurable electric parameters and realized online
optimization by adopting an existing method, such as the hill
climbing method. They tested the effectiveness of the proposed
method by comparing it with the equivalent power allocation
method. They found that the overall system efficiency of the
OPA method is higher than that of the EPA method. Moreover,
the system using the hill climbing method performs effectively
in the dynamic process with short response time.

Kim et al. [15] performed component sizing of power
sources of parallel hybrid vehicle by applying the golden
section search and hill climbing algorithms. The golden section
search algorithm was used in selecting a reduction gear ratio
that connects the transmission to the electric motor by using the
hill climbing search algorithm to find the optimal engine and
electric motor sizes. The use of the hill climbing search
algorithm reduces the number of simulations and
simultaneously optimizes the capacity of the power source and
the gear ratio of the torque coupler. The authors verified the
validity of the component sizing results by comparing the
global optimal solution obtained by the conventional technique
with the solution obtained by the proposed optimization
technique.

Robinson et al. [16] presented an improved algorithm for
approximating the TSP on fully connected, symmetric graphs
by utilizing the GPU. They improved an existing 2-opt hill

climbing algorithm with random restarts by considering
multiple updates to the current path found in parallel. Their
approach has a k-swap function, which allows k number of
updates per iteration. The authors showed that their
modifications result in a substantial speedup without a
reduction in the quality of the result by applying the k-swap
method. Their experimental results showed that common
assumptions in obtaining good performance for the GPU are
not always true, such as saturating the GPU with blocks.
Instead, for problems in which the search space can be
deterministically enumerated, the number of active blocks can
be limited as determined by the hardware. This property allows
for reduced memory allocation. A limited amount of memory
can be used because each block can allocate the amount of
memory upfront.

Chen et al. [17] proposed an automatic machine learning
(AutoML) modeling architecture called Autostacker, which is a
machine learning system with an innovative architecture for
automatic modeling and a well-behaved efficient search
algorithm. Autostacker improves the prediction accuracy of
machine learning baselines by utilizing an innovative
hierarchical stacking architecture and an efficient parameter
search algorithm. Neither prior domain knowledge about the
data nor feature preprocessing is needed. The authors reduced
the time of AutoML by using a naturally inspired algorithm
called PHC. They demonstrated the operation and performance
of their system by comparing it with human initial trails and
related state-of-the-art techniques. They also confirmed the
scaling and parallelization ability of their system. The authors
also automated the machine learning modeling process by
providing an efficient, flexible, and well-behaved system. This
system can be generalized into complicated problems and
integrated with data and feature processing modules.

III. METHODOLOGY

Hill climbing is a heuristic search technique for solving
certain mathematical optimization problems in the field of
artificial intelligence [18]. In this technique, starting with a
suboptimal solution is compared to starting from the base of
the hill, and improving the solution is compared to walking up
the hill; the solution is improved repeatedly until some
condition is maximized and becomes optimal, as illustrated in
Fig. 1. This technique is mainly used for solving difficult
problems computationally. It focuses on the current and
immediate future states and does not maintain a search tree,
thereby making it memory efficient [19].

Fig. 1. Hill Climbing.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 9, 2020

109 | P a g e
www.ijacsa.thesai.org

Hill climbing technique can be used to solve many
problems, such as network flow, traveling salesman, and 8-
Queens, in which the current state allows for an accurate
evaluation function [20]. This technique does not suffer from
space-related issues because it focuses on the current state in
which previously explored paths are not stored; nonetheless, an
optimal solution can be achieved in polynomial time. However,
for NP-complete problems, computational time can be
exponential based on the number of local maxima [21].

Hill climbing technique comprises several phases, which
start by constructing a suboptimal solution considering the
constraints of the problem, followed by improving the solution
by step and enhancing the solution until no more improvement
is possible [22]. This technique is performed following the
steps below.

1) Define the current state as initial state.

2) Loop until the goal state is achieved or no more

operators can be applied on the current state.

a) Apply an operation to the current state and obtain a

new state.

b) Compare the new state with the goal state.

c) Quit if the goal state is achieved.

d) Evaluate the new state with heuristic function and

compare it with the current state.

e) If the newer state is closer to the goal than the current

state, then update the current state.

In the hill climbing algorithm, achieving the goal is
equivalent to reaching the top of the hill.

In this research, a new hill climbing algorithm is proposed
on the basis of local optimal solution. In this algorithm, the
closest 10 points around the current point are scanned, and the
cost needed to go from the current point to the next point is
obtained by calculating the sum of the obstacles between the
current point and the 10 other points. In this proposed
algorithm we have designed the optimization technique as
explained in the following equation:

𝑂𝑝𝑡𝑖𝑚𝑖𝑧𝑒 𝑀𝑖𝑛 (∑ 𝑤𝑠 ∗ 𝑆5
𝑅𝑖𝑔ℎ𝑡 𝑃𝑎𝑡ℎ𝑠=1 + 𝑤𝑔 ∗ 𝐺 + 𝑤𝑜 ∗

𝑂, ∑ 𝑤𝑠 ∗ 𝑆5
𝐿𝑒𝑓𝑡 𝑃𝑎𝑡ℎ𝑠=1 + 𝑤𝑔 ∗ 𝐺 + 𝑤𝑜 ∗ 𝑂)

Where Ws is the weight of the slop, S is the slop of the
point, Sg is the weight of the gravity, G is the gravity at that
point, Wo is the weight of the obstacles, O is the value of the
obstacles.

These values will be counted for each path from right and
from left. Then, the path which has the lowest cost will be
selected.

The scanning approach is performed as follows:

In Table I, the current point is in red (23); each cell has a
weight represented by a number. The scanning area is five
paths to the right and five paths to the left.

Paths from left:

1) 2316161216 (83).

2) 2315231032 (103).

3) 2315165620 (103).

4) 2315161615 (85).

5) 2315161623 (93).

Paths from Right:

1) 2365261523 (152).

2) 2323152032 (113).

3) 2323293010 (115).

4) 2323292832 (135).

5) 2323292872 (175).

Thereafter, we decide which path should be taken
depending on the minimum value among the total obstacle
weights in each path. In the example above, the best path is
number 1 because it has the minimum total value. Fig. 2
illustrates the Proposed Sequential Algorithm.

The above pseudocode is for sequential execution. To
parallelize this algorithm, we must follow the following
approach:

1) There will be a master node that will generate the

matrix.

2) The master node must fill the matrix with the obstacle’s

weights based on the following equation so that the algorithm

can calculate the cost.

𝐶𝑜𝑠𝑡 = 𝑤𝑠 ∗ 𝑆 + 𝑤𝑔 ∗ 𝐺 + 𝑤𝑜 ∗ 𝑂

Ws is the weight of the slop, S is the slop of the point, Sg is
the weight of the gravity, G is the gravity at that point, Wo is
the weight of the obstacles, O is the value of the obstacles.

1) The master node will broadcast the matrix to all other

nodes so they can work in parallel.

2) Each node will calculate its start region from bottom

and its end region from top as shown in Fig. 3.

3) All the node will start working at the same time.

4) After they all finish, each node will send the best path

for the master node.

5) Finally, the master node will decide which path is the

best path based on what did it get from the other nodes.

TABLE I. PROPOSED ALGORITHM EXAMPLE

2 10 20 26 23 23 15 16 10 20 23

51 32 30 15 65 32 16 23 56 15 65

32 23 12 54 72 28 29 30 21 16 72

16 32 15 32 64 23 95 65 12 32 64

2 10 20 26 23 23 15 16 10 20 23

51 32 30 15 65 32 16 23 56 15 65

54 72 28 29 23 23 15 16 16 23 23

32 64 23 95 65 32 16 23 29 30 65

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 9, 2020

110 | P a g e
www.ijacsa.thesai.org

Let Mat [100][100];

Set StartPoint;

Let Prow = 0;

Let Check = 0;

Sub GO(ByVal rowIndex As Integer, ByVal Colindex As

Integer)

 If PRow = rowIndex Then

 check = 0

 If rowIndex >= 4 Then

 GO(rowIndex - 1, Colindex + 1)

 End If

 Exit Sub

 End If

 If PRow = rowIndex Then

 check += 1

 End If

 PRow = rowIndex

 Dim arr As New ArrayList

 Dim Rounds As Integer = 4

 Dim TotalRounds As Integer = 4

 For j As Integer = Colindex To Colindex + 4

 Dim counter As Integer = 0

 Dim sum As Double = 0

 For i As Integer = rowIndex To rowIndex - Rounds Step -

1

 sum += grd.Rows(i).Cells(j + counter).Value

 counter += 1

 Next

 For i As Integer = j - 1 To Colindex Step -1

 If j <> Colindex Then

 sum += grd.Rows(rowIndex).Cells(i).Value

 End If

 Next

 arr.Add(rowIndex - Rounds & "," & Colindex +

TotalRounds)

 arr.Add(sum)

 Rounds -= 1

 Next

 Rounds = 4

 For j As Integer = Colindex To Colindex - 4 Step -1

 Dim counter As Integer = 0

 Dim sum As Double = 0

 For i As Integer = rowIndex To rowIndex - Rounds Step -1

 sum += grd.Rows(i).Cells(j - counter).Value

 counter += 1

 Next

 For i As Integer = j + 1 To Colindex

 If j <> Colindex Then

 sum += grd.Rows(rowIndex).Cells(i).Value

 End If

 Next

 arr.Add(rowIndex - Rounds & "," & Colindex - TotalRounds)
 arr.Add(sum)

 Rounds -= 1

 Next

 Dim min As Integer = arr(1)

 Dim Row As Integer = 0

 Dim Col As Integer = 0

 Dim Sign As Integer = txtDest.Text - Colindex

 Dim Right As Integer = Math.Abs(txtDest.Text - (Colindex

+ TotalRounds))

 Dim Left As Integer = Math.Abs(txtDest.Text - (Colindex -

TotalRounds))

 Dim SelectedPath As Integer = 0

 If Right < Left AndAlso Colindex + TotalRounds <

Colindex + TotalRounds + Right Then

 SelectedPath = Colindex + TotalRounds

 ElseIf Left < Right AndAlso Colindex - TotalRounds >

Colindex - TotalRounds - Left Then

 SelectedPath = Colindex - TotalRounds

 min = arr(11)

 End If

 For i As Integer = 1 To arr.Count - 1 Step 2

 If txtSpiciifc.Text = 1 AndAlso SelectedPath <> 0 Then

 If arr(i) <= min AndAlso arr(i - 1).ToString.Split(",")(1) =

SelectedPath Then

 min = arr(i)

 Row = arr(i - 1).ToString.Split(",")(0)

 Col = arr(i - 1).ToString.Split(",")(1)

 End If

 Else

 If arr(i) <= min Then

 min = arr(i)

 Row = arr(i - 1).ToString.Split(",")(0)

 Col = arr(i - 1).ToString.Split(",")(1)

 End If

 End If

 Next

 grd.Rows(Row).Cells(Col).Style.BackColor = Color.Red

 coloring(Col, Colindex, Row, rowIndex)

 Dim endT As TimeSpan = Now.TimeOfDay

 TotalTime += (endT - start).Milliseconds

 If Row - 4 >= 0 AndAlso Col + 4 < grd.Columns.Count

AndAlso Row > 0 Then

 GO(Row, Col)

 End If

 check = Not check

 End Sub

Fig. 2. Sequential Pseudocode.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 9, 2020

111 | P a g e
www.ijacsa.thesai.org

For example, after broadcasting the matrix to all node, each
processor will choose start region and end region depending on
its ID. Thus, we will divide the very last row between the
processor based on the following equations to get the start
region for each processor:

𝐵𝑙𝑜𝑐𝑘 𝑆𝑖𝑧𝑒 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑡𝑎𝑟𝑡𝑖𝑛𝑔 𝑝𝑜𝑖𝑛𝑡𝑠

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑜𝑟𝑠

𝑆𝑡𝑎𝑟𝑡𝑠 𝐹𝑟𝑜𝑚 = 𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑜𝑟 𝐼𝐷 ∗ 𝐵𝑙𝑜𝑐𝑘 𝑆𝑖𝑧𝑒

𝐸𝑛𝑑𝑠 𝐴𝑡 = 𝑆𝑡𝑎𝑟𝑡𝑠 𝐹𝑟𝑜𝑚 + 𝐵𝑙𝑜𝑐𝑘 𝑆𝑖𝑧𝑒 − 1

To get the end region for each processor, we will divide the
very first row in the matrix between the processors based on
the following equations:

𝐵𝑙𝑜𝑐𝑘 𝑆𝑖𝑧𝑒 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐸𝑛𝑑𝑖𝑛𝑔 𝑝𝑜𝑖𝑛𝑡𝑠

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑜𝑟𝑠

𝑆𝑡𝑎𝑟𝑡𝑠 𝐹𝑟𝑜𝑚 = 𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑜𝑟 𝐼𝐷 ∗ 𝐵𝑙𝑜𝑐𝑘 𝑆𝑖𝑧𝑒

𝐸𝑛𝑑𝑠 𝐴𝑡 = 𝑆𝑡𝑎𝑟𝑡𝑠 𝐹𝑟𝑜𝑚 + 𝐵𝑙𝑜𝑐𝑘 𝑆𝑖𝑧𝑒 − 1

Fig. 3 illustrates this example with 10 points and 5
processors.

In the proposed system we have considered three
approaches for finding the best path.

Approach #1: From All points below to unknown point
above. In this approach the algorithm will start from each point
below the hill and try to find a path depending on the discussed
algorithm above, but the destination is not specified. So, the
algorithm will suggest the path and will determine the
destination point. To parallelize this approach each processor
will start from the points in its region only.

Approach #2: From All points below to a specific point
above. In this approach the algorithm will start from each point
below the hill and try to find a path to a specific point above.
To parallelize this approach each processor will start from the
points in its region only.

Approach #3: From One point below to all points above.
In this approach the algorithm will start from a specific point
below the hill and try to find a path to all point above the hill.
To parallelize this approach each processor will start from the
specified point then it will use the End region to determine its
destination based on the end region points only.

The evaluation of Hill Climbing technique used only at the
current state, it does not suffer from computational space
issues, where the source of its computational complexity arises
from the time required to explore the problem space. The
optimal solution of Hill Climbing technique can be achieved in
polynomial time and it is one of the NP-Complete problem that
the numbers of local maxima can be the cause of exponential
computational time [23]. To address these problems proposed
algorithm are applied on message passing interface (MPI)
parallel and distributed computing systems with high-
performance computing that spread out a single application
over many multi-core and multi-processor computers to rapidly
complete the task. MPI divide large problems into smaller sub-

problems and assign each of them to different processors in a
typically distributed system running concurrently in parallel.

In this research, Proposed Hill Climbing techniques are
tested on two methods. First method is sequential that accessed
code by a single thread. This means that a single thread can
only do code in a specific order, hence it being sequential.
Second method is MPI that is a library of routines that can be
used to create parallel programs in C, C++, and Fortran77
using commonly available operating system services to create
parallel processes and exchange information among these
processes, as shown in Fig. 4.

The design process of MPI includes vendors (such as IBM,
Intel, TMC, Cray, and Convex), parallel library authors
(involved in the development of PVM, and Linda), and
application specialists. The final version for the draft standard
became available in May of 1994 [8].

MPI is a standardized means of exchanging messages
among multiple computers running a parallel program across a
distributed memory to improve scalability, performance, multi-
core and cluster support, and interoperation with other
applications. These programs cannot use any MPI
communication routine. The two basic routines are MPI_Send,
to send a message to another process, and MPI_Recv, to
receive a message from another process.

Fig. 3. Example of Parallelizing the Matrix.

Fig. 4. MPI Parallel Processes.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 9, 2020

112 | P a g e
www.ijacsa.thesai.org

Proposed algorithm run MPI code in IMAN1, Jordan’s first
and fastest high-performance Computing resource, funded by
JAEC and SESAME. It is available for use by academia and
industry in Jordan and the region. In our project, we worked in
a Zaina server, an Intel Xeon-based computing cluster with 1G
Ethernet interconnection as shown in Table II. The cluster is
mainly used for code development, code porting, and
synchrotron radiation application purposes. In addition, this
cluster is composed of two Dell PowerEdge R710 and five HP
ProLiant DL140 G3 servers.

TABLE II. ZAINA TECHNICAL DETAILS

Server
7 Servers (Two Dell PowerEdge R710 and five HP

ProLiant DL140 G3)

CPU per server
Dell (2 X 8 cores Intel Xeon) HP (2 X 4 cores Intel

Xeon)

RAM per server Dell (16 GB) HP (6 GB)

Total storage (TB) 1 TB NFS Share

OS Scientific Linux 6.4

IV. PROPOSED HILL CLIMBING ALGORITHM ANALYSIS

In this section, analysis of the proposed hill climbing
algorithm were discussed. Variables that included in all the
analysis equation are giving as follows:

Let N = Number of rows in matrix;

Let Paths = Number of scanned paths each time;

Let Points = Number of points in each path;

First; sequential analysis for best paths and parallel analysis
for best paths indicate that the proposed algorithm is cost
optimal based on the following equation:

A. Sequential Analysis for Best Paths

𝑇𝑆 =
𝑁

𝑃𝑜𝑖𝑛𝑡𝑠
∗ (𝑃𝑎𝑡ℎ𝑠 ∗ 𝑃𝑜𝑖𝑛𝑡𝑠) = 𝑁 ∗ 𝑃𝑎𝑡ℎ𝑠 (1)

B. Parallel Analysis for Best Paths

Let P = Number of Processors

𝑇𝑝 = 𝑇𝐶𝑜𝑚𝑚 + 𝑇𝐶𝑜𝑚𝑝 (2)

𝑇𝐶𝑜𝑚𝑚 = 𝑡𝑠 (
𝑁

𝑃
) + 𝑡𝑤 (

𝑁

𝑃𝑜𝑖𝑛𝑡𝑠
∗(𝑃𝑎𝑡ℎ𝑠∗𝑃𝑜𝑖𝑛𝑡𝑠)

𝑃
) = 𝑡𝑠 (

𝑁

𝑃
) +

𝑡𝑤 (
𝑁 ∗(𝑃𝑎𝑡ℎ𝑠)

𝑃
) (3)

𝑇𝐶𝑜𝑚𝑝 = (
𝑁 ∗(𝑃𝑎𝑡ℎ𝑠)

𝑃
) (4)

𝑇𝑝 = 𝑡𝑠 (
𝑁

𝑃
) + 𝑡𝑤 (

𝑁 ∗(𝑃𝑎𝑡ℎ𝑠)

𝑃
) + (

𝑁 ∗(𝑃𝑎𝑡ℎ𝑠)

𝑃
) (5)

C. Total Parallel Overhead

𝑇 = 𝑃(𝑡𝑠 (
𝑁

𝑃
) + 𝑡𝑤 (

𝑁 ∗(𝑃𝑎𝑡ℎ𝑠)

𝑃
) + (

𝑁 ∗(𝑃𝑎𝑡ℎ𝑠)

𝑃
)) −

(𝑁 ∗ 𝑃𝑎𝑡ℎ𝑠) = 𝑡𝑠(𝑁) + 𝑡𝑤(𝑁 ∗ 𝑃𝑎𝑡ℎ𝑠) (6)

𝑆𝑝𝑒𝑒𝑑𝑢𝑝 =
𝑁∗𝑃𝑎𝑡ℎ𝑠

𝑡𝑠(
𝑁

𝑃
)+𝑡𝑤(

𝑁 ∗(𝑃𝑎𝑡ℎ𝑠)

𝑃
)+ (

𝑁 ∗(𝑃𝑎𝑡ℎ𝑠)

𝑃
)
 (7)

𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 =
𝑁∗𝑃𝑎𝑡ℎ𝑠

𝑡𝑠(𝑁)+𝑡𝑤(𝑁∗𝑃𝑎𝑡ℎ𝑠)+ (𝑁∗𝑃𝑎𝑡ℎ𝑠)
 (8)

𝐶𝑜𝑠𝑡 = 𝑃(𝑡𝑠 (
𝑁

𝑃
) + 𝑡𝑤 (

𝑁 ∗(𝑃𝑎𝑡ℎ𝑠)

𝑃
) + (

𝑁 ∗(𝑃𝑎𝑡ℎ𝑠)

𝑃
) (9)

Second; sequential analysis for all to one or one to all and
parallel analysis for all to one or one to all indicate that the
proposed algorithm is cost optimal based on the following
equation.

D. Sequential Analysis for All to One or One to All

𝑇𝑆 =
𝑁

𝑃𝑜𝑖𝑛𝑡𝑠
∗ (

𝑃𝑎𝑡ℎ𝑠

2
∗ 𝑃𝑜𝑖𝑛𝑡𝑠) = 𝑁 ∗

𝑃𝑎𝑡ℎ𝑠

2
 (10)

E. Parallel Analysis for All to One or One to All

Let P = Number of Processors

𝑇𝑝 = 𝑇𝐶𝑜𝑚𝑚 + 𝑇𝐶𝑜𝑚𝑝 (11)

𝑇𝐶𝑜𝑚𝑚 = 𝑡𝑠 (
𝑁

𝑃
) + 𝑡𝑤 (

𝑁

𝑃𝑜𝑖𝑛𝑡𝑠
∗(

𝑃𝑎𝑡ℎ𝑠

2
∗𝑃𝑜𝑖𝑛𝑡𝑠)

𝑃
) = 𝑡𝑠 (

𝑁

𝑃
) +

𝑡𝑤 (
𝑁 ∗(

𝑃𝑎𝑡ℎ𝑠

2
)

𝑃
) (12)

𝑇𝐶𝑜𝑚𝑝 = (
𝑁 ∗(

𝑃𝑎𝑡ℎ𝑠

2
)

𝑃
) (13)

𝑇𝑝 = 𝑡𝑠 (
𝑁

𝑃
) + 𝑡𝑤 (

𝑁 ∗(
𝑃𝑎𝑡ℎ𝑠

2
)

𝑃
) + (

𝑁 ∗(
𝑃𝑎𝑡ℎ𝑠

2
)

𝑃
) (14)

F. Total Parallel Overhead

𝑇 = 𝑃(𝑡𝑠 (
𝑁

𝑃
) + 𝑡𝑤 (

𝑁 ∗(
𝑃𝑎𝑡ℎ𝑠

2
)

𝑃
) + (

𝑁 ∗(
𝑃𝑎𝑡ℎ𝑠

2
)

𝑃
)) −

(𝑁 ∗
𝑃𝑎𝑡ℎ𝑠

2
) = 𝑡𝑠(𝑁) + 𝑡𝑤 (𝑁 ∗

𝑃𝑎𝑡ℎ𝑠

2
) (15)

𝑆𝑝𝑒𝑒𝑑𝑢𝑝 =
𝑁∗

𝑃𝑎𝑡ℎ𝑠

2

𝑡𝑠(
𝑁

𝑃
)+𝑡𝑤(

𝑁 ∗(
𝑃𝑎𝑡ℎ𝑠

2)

𝑃
)+ (

𝑁 ∗(
𝑃𝑎𝑡ℎ𝑠

2)

𝑃
)

 (16)

𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 =
𝑁∗

𝑃𝑎𝑡ℎ𝑠

2

𝑡𝑠(𝑁)+𝑡𝑤(𝑁∗
𝑃𝑎𝑡ℎ𝑠

2
)+ (𝑁∗

𝑃𝑎𝑡ℎ𝑠

2
)
 (17)

𝐶𝑜𝑠𝑡 = 𝑃(𝑡𝑠 (
𝑁

𝑃
) + 𝑡𝑤 (

𝑁 ∗(
𝑃𝑎𝑡ℎ𝑠

2
)

𝑃
) + (

𝑁 ∗(
𝑃𝑎𝑡ℎ𝑠

2
)

𝑃
)) (18)

V. EXPERIMENTS AND RESULTS

This research uses different matrix sizes that contain points
that need to go from the current point to the next point in a
certain matrix. The cost of moving from the current point to the
next point is calculated using the sum of the obstacles between
the current point and all the 10 other points. The path is
decided depending on the minimum value among the total
obstacle weights in each path. The proposed algorithm is tested
in sequential and parallel forms coded by MPI. The results are
compared in terms of efficiency and speedup ratio.

First, simple hill climbing is used to calculate the time
needed to find all the best paths from a specific point to another
point with the least cost from that start point. Second, the
proposed hill climbing algorithm is utilized to calculate the
time required to find the best path from all the points below the

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 9, 2020

113 | P a g e
www.ijacsa.thesai.org

matrix to a specific point above the matrix. Finally, the
proposed hill climbing algorithm is adopted to calculate the
time needed to find the best path from a specific point below
the matrix to all the points above the matrix.

The sequential results of the proposed hill climbing
algorithm are tested with various matrix sizes. The algorithm is
written in C++. The experimental results are calculated with
the 1 core in MPI as shown in Table III.

The MPI results of the proposed hill climbing algorithm are
tested using different numbers of cores and matrices. The
results are effective and efficient when the number of cores is
increased due to the large size of problems that need a high
degree of parallelism. Table IV and Fig. 5 show the results for
all the best paths. Fig. 6 illustrates all points below a point
above, and Fig. 7 presents a point below all points above.

The comparison between MPI results and sequential
methods indicates that MPI is always faster and more efficient
than sequential methods for different matrix sizes.

Table V presents the calculation results for speedup ratio.
Fig. 8 shows the comparison of speedup ratio for all best path
results. Fig. 9 reveals the speedup ratio for a point below to all
points above. Fig. 10 illustrates the speedup ratio for all points
below to a point above.

TABLE III. SEQUENTIAL RUN TIME RESULTS

One CPU

From All Points

Below to

Unknown Point

Above

From All

Points Below to

One Point

Above

From One Point

Below to All

Points Above

100 * 100 3.200 s 3.150 s 3.300 s

500 * 500 130.230 s 132.230 s 134.230 s

1000 * 1000 593.320 s 598.120 s 601.300 s

TABLE IV. MPI RUN TIME RESULTS

2 CPUs

From All Points

Below to

Unknown Point

Above

From All

Points Below to

One Point

Above

From One Point

Below to All

Points Above

100 * 100 2.910 2.890 3.210

500 * 500 105.600 106.900 106.230

1000 * 1000 342.250 341.530 342.680

4 CPUs

From All Points

Below to

Unknown Point

Above

From All

Points Below to

One Point

Above

From One Point

Below to All

Points Above

100 * 100 2.32 2.13 2.23

500 * 500 39.23 38.32 39.65

1000 * 1000 160.2 158.7 158.32

8 CPUs

From All Points

Below to

Unknown Point

Above

From All

Points Below to

One Point

Above

From One Point

Below to All

Points Above

100 * 100 1.51 1.35 1.56

500 * 500 18.5 18.23 18.9

1000 * 1000 76.45 75.32 76.81

16 CPUs
From All Points

Below to

From All

Points Below to

From One Point

Below to All

Unknown Point

Above

One Point

Above

Points Above

100 * 100 1.12 1.23 1.11

500 * 500 12.23 13.89 12.56

1000 * 1000 39.56 38.56 39.15

32 CPUs

From All Points

Below to

Unknown Point

Above

From All

Points Below to

One Point

Above

From One Point

Below to All

Points Above

100 * 100 0.927 0.978 0.968

500 * 500 6.2 6.3 6.51

1000 * 1000 19.65 20.3 20.3

64 CPUs

From All Points

Below to

Unknown Point

Above

From All

Points Below to

One Point

Above

From One Point

Below to All

Points Above

100 * 100 0.748 0.789 0.868

500 * 500 3.5 3.6 3.78

1000 * 1000 11.2 11.9 12.3

100 CPU

From All Points

Below to

Unknown Point

Above

From All

Points Below to

One Point

Above

From One Point

Below to All

Points Above

100 * 100 0.592 0.512 0.54

500 * 500 1.9 1.8 1.7

1000 * 1000 6.2 6.9 6.5

Fig. 5. From All Points below to unknown Point above.

Fig. 6. From All Points below to One Point above Plotting.

0
500

100 * 100 500 * 500 1000 * 1000Ti
m

e

Size

From All Points Below to
Unknown Point Above

2 CPU 4 CPU 8 CPU

16 CPU 32 CPU 64 CPU

100 CPU

0

500

100 * 100 500 * 500 1000 * 1000

From All Points Below to One Point
Above

2 CPU 4 CPU 8 CPU

16 CPU 32 CPU 64 CPU

100 CPU

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 9, 2020

114 | P a g e
www.ijacsa.thesai.org

Fig. 7. From One Point below to All Points above Plotting.

TABLE V. SPEEDUP RESULTS

2 CPUs

From All

Points Below

to Unknown

Point Above

From All

Points Below

to One Point

Above

From One

Point Below to

All Points

Above

100 * 100 1.100 1.090 1.028

500 * 500 1.233 1.237 1.264

1000 * 1000 1.734 1.751 1.755

4 CPUs

From All

Points Below

to Unknown

Point Above

From All

Points Below

to One Point

Above

From One

Point Below to

All Points

Above

100 * 100 1.379 1.479 1.480

500 * 500 3.320 3.451 3.385

1000 * 1000 3.704 3.769 3.798

8 CPUs

From All

Points Below

to Unknown

Point Above

From All

Points Below

to One Point

Above

From One

Point Below to

All Points

Above

100 * 100 2.119 2.333 2.115

500 * 500 7.039 7.253 7.102

1000 * 1000 7.761 7.941 7.828

16 CPUs

From All

Points Below

to Unknown

Point Above

From All

Points Below

to One Point

Above

From One

Point Below to

All Points

Above

100 * 100 2.857 2.561 2.973

500 * 500 10.648 9.520 10.687

1000 * 1000 14.998 15.511 15.359

32 CPUs

From All

Points Below

to Unknown

Point Above

From All

Points Below

to One Point

Above

From One

Point Below to

All Points

Above

100 * 100 3.452 3.221 3.409

500 * 500 21.005 20.989 20.619

1000 * 1000 30.194 29.464 29.621

64 CPUs

From All

Points Below

to Unknown

Point Above

From All

Points Below

to One Point

Above

From One

Point Below to

All Points

Above

100 * 100 4.278 3.992 3.802

500 * 500 37.209 36.731 35.511

1000 * 1000 52.975 50.262 48.886

100 CPU

From All

Points Below

to Unknown

Point Above

From All

Points Below

to One Point

Above

From One

Point Below to

All Points

Above

100 * 100 5.405 6.152 6.111

500 * 500 68.542 73.461 78.959

1000 * 1000 95.697 86.684 92.508

Fig. 8. From All Points below to unknown Point above Speedup Plotting.

Fig. 9. From One Point below to All Points above Speedup Plotting.

Fig. 10. From All Points below to One Point above Speedup Plotting.

0

500

100 * 100 500 * 500 1000 * 1000

From One Point Below to All Points
Above

2 CPU 4 CPU 8 CPU

16 CPU 32 CPU 64 CPU

100 CPU

0

200

100 * 100 500 * 500 1000 * 1000Ti
m

e

Size

From All Points Below to
Unknown Point Above

2 CPU 4 CPU 8 CPU

16 CPU 32 CPU 64 CPU

100 CPU

0

100

100 * 100 500 * 500 1000 * 1000

Ti
m

e

Size

From One Point Below to All Points
Above Speedup

2 CPU 4 CPU 8 CPU

16 CPU 32 CPU 64 CPU

100 CPU

0100

100 * 100 500 * 500 1000 * 1000

Ti
m

e

size

From All Points Below to One Point
Above Speedup

2 CPU 4 CPU

8 CPU 16 CPU

32 CPU 64 CPU

100 CPU

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 9, 2020

115 | P a g e
www.ijacsa.thesai.org

Table VI shows the calculation results for parallel
efficiency. Fig. 11 presents the comparison of parallel
efficiency for all best path results. Fig. 12 reveals the parallel
efficiency for all points below to unknown point above. Fig. 13
illustrates the parallel efficiency for a point below to all points
above.

TABLE VI. EFFICIENCY RESULTS

2 CPUs

From All

Points Below

to Unknown

Point Above

From All

Points Below

to One Point

Above

From One

Point Below

to All Points

Above

100 * 100 0.550 0.545 0.514

500 * 500 0.617 0.618 0.632

1000 * 1000 0.867 0.876 0.877

4 CPUs

From All

Points Below

to Unknown

Point Above

From All

Points Below

to One Point

Above

From One

Point Below

to All Points

Above

100 * 100 0.345 0.370 0.370

500 * 500 0.830 0.863 0.846

1000 * 1000 0.926 0.942 0.950

8 CPUs

From All

Points Below

to Unknown

Point Above

From All

Points Below

to One Point

Above

From One

Point Below

to All Points

Above

100 * 100 0.265 0.292 0.264

500 * 500 0.880 0.907 0.888

1000 * 1000 0.970 0.993 0.979

16 CPUs

From All

Points Below

to Unknown

Point Above

From All

Points Below

to One Point

Above

From One

Point Below

to All Points

Above

100 * 100 0.179 0.160 0.186

500 * 500 0.666 0.595 0.668

1000 * 1000 0.937 0.969 0.960

32 CPUs

From All

Points Below

to Unknown

Point Above

From All

Points Below

to One Point

Above

From One

Point Below

to All Points

Above

100 * 100 0.108 0.101 0.107

500 * 500 0.656 0.656 0.644

1000 * 1000 0.944 0.921 0.926

64 CPUs

From All

Points Below

to Unknown

Point Above

From All

Points Below

to One Point

Above

From One

Point Below

to All Points

Above

100 * 100 0.067 0.062 0.059

500 * 500 0.581 0.574 0.555

1000 * 1000 0.828 0.785 0.764

100 CPU

From All

Points Below

to Unknown

Point Above

From All

Points Below

to One Point

Above

From One

Point Below

to All Points

Above

100 * 100 0.054 0.062 0.061

500 * 500 0.685 0.735 0.790

1000 * 1000 0.957 0.867 0.925

Fig. 11. From All Points below to One Point above Efficiency Plotting.

Fig. 12. From All Points below to unknown Point above Efficiency Plotting.

Fig. 13. From One Point below to All Points above Efficiency Plotting.

VI. CONCLUSION

Heuristic search is a search process that uses domain
knowledge in heuristic rules or procedures to direct the
progress of a search algorithm. Hill climbing is a heuristic
search technique for solving certain mathematical optimization
problems in the field of artificial intelligence. In this technique,
starting with a suboptimal solution is compared to starting from
the base of the hill, and improving the solution is compared to
walking up the hill. The optimal solution of the hill climbing
technique can be achieved in polynomial time and is an NP-
complete problem in which the numbers of local maxima can
lead to an exponential increase in computational time. To
address these problems, the proposed hill climbing algorithm

02

100 * 100 500 * 500 1000 * 1000

Ti
m

e

Size

From All Points Below to One Point
Above Efficiency

2 CPU 4 CPU 8 CPU

16 CPU 32 CPU 64 CPU

100 CPU

02

100 * 100 500 * 500 1000 * 1000

Ti
m

e

size

From All Points Below to Unknown
Point Above

2 CPU 4 CPU 8 CPU

16 CPU 32 CPU 64 CPU

100 CPU

02

100 * 100 500 * 500 1000 * 1000

Ti
m

e

Size

From One Point Below to All Points
Above Efficiency

2 CPU 4 CPU 8 CPU

16 CPU 32 CPU 64 CPU

100 CPU

https://www.encyclopedia.com/computing/dictionaries-thesauruses-pictures-and-press-releases/domain-knowledge
https://www.encyclopedia.com/computing/dictionaries-thesauruses-pictures-and-press-releases/domain-knowledge
https://www.encyclopedia.com/science-and-technology/computers-and-electrical-engineering/computers-and-computing/heuristic#1O11heuristic

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 9, 2020

116 | P a g e
www.ijacsa.thesai.org

based on the local optimal solution is applied to the message
passing interface, which is a library of routines that can be used
to create parallel programs by using commonly available
operating system services to create parallel processes and
exchange information among these processes. Experimental
results show that parallel hill climbing outperforms sequential
methods.

This research uses different matrix sizes that contain points
that need to go from the current point to the next point in a
certain matrix. The cost of moving from the current point to the
next point is calculated using the sum of the obstacles between
the current point and all the 10 other points. The path is
decided depending on the minimum value among the total
obstacle weights in each path. The proposed algorithm is tested
in sequential and parallel forms coded by MPI. The results are
compared in terms of efficiency and speedup ratio.

The comparison between MPI results and sequential
methods indicates that MPI is always faster and more efficient
than sequential methods for different matrix sizes. Fig. 7, 8,
and 9 show the comparison results for sizes 100×100,
500×500, and 1000×1000, respectively. The MPI outperforms
the sequential methods; thus, the research goal is achieved.

REFERENCES

[1] Snir, M., Otto, S., Huss-Lederman, S., Dongarra, J., & Walker, D.
(1998). MPI--the Complete Reference: The MPI core (Vol. 1). MIT

press.

[2] Chira, C., Horvath, D., & Dumitrescu, D. (2011). Hill-Climbing search
and diversification within an evolutionary approach to protein structure

prediction. BioData mining, 4(1), 23.

[3] Selman, B., & Gomes, C. P. (2006). Hill-climbing search. Encyclopedia

of Cognitive Science, 81, 82.

[4] Cook, C. M., Rosenfeld, A., & Aronson, A. R. (1976). Grammatical
inference by hill climbing. Information Sciences: an International

Journal, 10(2), 59-80.

[5] Apter, M. J. (1970). The Computer Simulation of behaviour. London:
Hutchinson. Allgemeinverständliche, inzwischen etwas veraltete

Darstellung der Simulationsmethodik mit Diskussion von Anwendungen
aus Bereichen des Lernens, des Problemlösens, des Mustererkennens,

der Sprache und der Persönlichkeitstheorie bis hin zum Problem des
Bewußtseins.

[6] Masadeh, R., Mahafzah, B. A., & Sharieh, A. (2019). Sea Lion

optimization algorithm. International Journal of Advanced Computer
Science and Applications, 10(5), 388-395.

[7] Goswami, S., Das, A. K., Guha, P., Tarafdar, A., Chakraborty, S.,

Chakrabarti, A., & Chakraborty, B. (2017). An approach of feature

selection using graph-theoretic heuristic and hill climbing. Pattern

Analysis and Applications, 1-17.

[8] Hansen, E. A., & Zhou, R. (2007). Anytime heuristic search. Journal of
Artificial Intelligence Research, 28, 267-297.

[9] Masadeh, R., Sharieh, A., & Sliet, A. (2017). Grey wolf optimization

applied to the maximum flow problem. International Journal of
Advanced and Applied Sciences, 4(7), 95-100.

[10] Fox, Geoffrey C., Steve W. Otto, and Anthony JG Hey. "Matrix

algorithms on a hypercube I: Matrix multiplication." Parallel computing
4.1 (1987): 17-31.

[11] Masadeh, R., Alzaqebah, A., Smadi, B., Masadeh, E. (2020). Parallel

Whale Optimization Algorithm for Maximum Flow Problem. Modern
Applied Science, 14(3), 30-44.

[12] Gropp, W. D., Gropp, W., Lusk, E., & Skjellum, A. (1999). Using MPI:
portable parallel programming with the message-passing interface (Vol.

1). MIT press.

[13] Rashid, M. H., & Tao, L. (2017, October). Parallel Combinatorial
Optimization Heuristics with GPUs. In Computer Science and

Intelligent Controls (ISCSIC), 2017 International Symposium on (pp.
118-123). IEEE.

[14] Jiang, W., Wang, P., Wang, J., & Wang, L. (2017). Optimal power

allocation for parallel grid-connected inverters based on lagrangian
function method. Chinese Journal of Electrical Engineering, 3(3), 68-76.

[15] Kim, J., Kim, G., & Park, Y. I. (2018). Component Sizing of Parallel

Hybrid Electric Vehicle Using Optimal Search Algorithm. International
Journal of Automotive Technology, 19(4), 743-749.

[16] Jiang, W., Wang, P., Wang, J., & Wang, L. (2017). Optimal power

allocation for parallel grid-connected inverters based on lagrangian
function method. Chinese Journal of Electrical Engineering, 3(3), 68-76.

[17] Chen, B., Mo, W., Chattopadhyay, I., & Lipson, H. (2018). Autostacker:

an Automatic Evolutionary Hierarchical Machine Learning System.

[18] Mincu, R. S., & Popa, A. (2018, July). Heuristic Algorithms for the

Min-Max Edge 2-Coloring Problem. In International Computing and
Combinatorics Conference (pp. 662-674). Springer, Cham.

[19] Harman, M., & McMinn, P. (2007, July). A theoretical & empirical

analysis of evolutionary testing and hill climbing for structural test data
generation. In Proceedings of the 2007 international symposium on

Software testing and analysis (pp. 73-83). ACM.

[20] Gámez, J. A., Mateo, J. L., & Puerta, J. M. (2011). Learning Bayesian
networks by hill climbing: efficient methods based on progressive

restriction of the neighborhood. Data Mining and Knowledge Discovery,
22(1-2), 106-148.

[21] Khari, M., & Kumar, P. (2017). Empirical Evaluation of Hill Climbing

Algorithm. International Journal of Applied Metaheuristic Computing
(IJAMC), 8(4), 27-40.

[22] Chan, W. K. V., D'Ambrogio, A., Zacharewicz, G., Mustafee, N.,

Wainer, G., & Page, E. A Global and Local Search Approach to Quay
Crane Scheduling Problem.

[23] Nicolau, M., & McDermo, J. (2017). Late-Acceptance and Step-

Counting Hill-Climbing GP for Anomaly Detection.

