
(IJACSA) International Journal of Advanced Computer Science and Applications, 
Vol. 11, No. 9, 2020 

107 | P a g e  
www.ijacsa.thesai.org 

Best Path in Mountain Environment based on Parallel 

Hill Climbing Algorithm 

Raja Masadeh1 

Computer Science department 

The World Islamic Sciences and 

Education University 

Amman, Jordan 

Ahmad Sharieh2, Sanad Jamal3 

Mais Haj Qasem4 

Computer Science department 

The University of Jordan 

Amman, Jordan 

Bayan Alsaaidah5 

Computer Science department 

Al-Balqa Applied University 

Al-Salt, Jordan 

 

 
Abstract—Heuristic search is a search process that uses 

domain knowledge in heuristic rules or procedures to direct the 

progress of a search algorithm. Hill climbing is a heuristic search 

technique for solving certain mathematical optimization 

problems in the field of artificial intelligence. In this technique, 

starting with a suboptimal solution is compared to starting from 

the base of the hill, and improving the solution is compared to 

walking up the hill. The optimal solution of the hill climbing 

technique can be achieved in polynomial time and is an NP-

complete problem in which the numbers of local maxima can 

lead to an exponential increase in computational time. To address 

these problems, the proposed hill climbing algorithm based on 

the local optimal solution is applied to the message passing 

interface, which is a library of routines that can be used to create 

parallel programs by using commonly available operating system 

services to create parallel processes and exchange information 

among these processes. Experimental results show that parallel 
hill climbing outperforms sequential methods. 
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I. INTRODUCTION 

Hill climbing algorithm based on the local optimal solution 
was proposed and applied to the Message Passing Interface 
(MPI), which is a library of routines that can be used to create 
parallel programs in C, C++, and Fortran 77 by using 
commonly available operating system services to create 
parallel processes and exchange information among these 
processes [1]. In this algorithm, the 10 closest points around 
the current point are scanned, and the cost needed to go from 
the current point to the next point is obtained by calculating the 
sum of the obstacles between the current point and the 10 other 
points. The MPI method is used to validate the performance of 
the hill climbing algorithm by using parallel and distributed 
computing systems compared with sequential methods [2]. 

Hill climbing is a heuristic search technique for solving 
certain mathematical optimization problems in the field of 
artificial intelligence [3]. In this technique, starting with a 
suboptimal solution is compared to starting from the base of 
the hill, and improving the solution is compared to walking up 
the hill. The solution is improved repeatedly until a certain 
condition is maximized and becomes optimal. This technique is 
mainly used to solve difficult problems computationally [4]. 

Heuristic search is an artificial intelligence search 
technique and a computer simulation of thinking that utilizes 
heuristic for its moves [5, 6]. Heuristic search is a search 
process that uses domain knowledge in heuristic rules or 
procedures to direct the progress of a search algorithm, is 
utilized to prune the search space, and is adopted in 
applications where a combinatorial explosion indicates that an 
exhaustive search is impossible [7]. 

The objective of heuristic search is to produce a solution in 
a reasonable time frame that is sufficient to solve the problem 
at hand. This solution may not be the best of all the solutions to 
this problem, or it may simply approximate the exact solution, 
but it is still valuable because finding it does not require a 
prohibitively long time. For large and complex problems, 
finding an optimal solution path can take a long time and a 
suboptimal solution that can be obtained rapidly may be useful. 
Various techniques for modifying a heuristic search algorithm, 
such as hill climbing, to allow a tradeoff between solution 
quality and search time have been investigated [8, 9]. 

The optimal solution of Hill Climbing technique can be 
achieved in polynomial time and it is one of the NP-Complete 
problem that the numbers of local maxima can be the cause of 
exponential computational time. To address these problems 
parallel and distributed computing systems can be applied to 
Hill Climbing algorithm. Parallel and distributed computing 
systems are high-performance computing systems that spread 
out a single application over many multi-core and multi-
processor computers in order to rapidly complete the task. 
Parallel and distributed computing systems divide large 
problems into smaller sub-problems and assign each of them to 
different processors in a typically distributed system running 
concurrently in parallel. MPI are one these computing systems 
[10, 11]. 

The MPI is a standardized means of exchanging messages 
among multiple computers running a parallel program across a 
distributed memory. The MPI is generally considered to be the 
industry standard and forms the basis for most communication 
interfaces adopted by parallel computing programmers. The 
MPI is used to improve scalability, performance, multi-core 
and cluster support, and interoperation with other applications 
[12]. 
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The rest of the paper is organized as follows. Section II 
reviews works that are closely related to the hill climbing 
algorithm. Sections III and IV present the methodology of the 
new proposed algorithm and its analysis. Section V presents 
the experimental results. Section VI provides the conclusion. 

II. RELATED WORK 

Mathematicians and research scientists have found many 
applications that use heuristic search. The increased use of 
heuristic search in a wide variety of applications, such as 
science, engineering, economics, and technology, is due to the 
advent of personal and large-scale computers. 

Rashid and Tao [13] presented an optimized hill climbing 
algorithm called parallel iterated local search with efficiently 
accelerated GPUs. They also tested the algorithm by using a 
typical case study of the graph bisection in computational 
science. The proposed algorithm minimizes the data transfer 
between two components to achieve the best performance. 
Then, the purpose of the parallelism control is to control the 
generation of the neighborhood for meeting the memory 
constraints and finding efficient mappings between 
neighborhood candidate solutions and GPU threads. The 
authors found through experiments that GPU computing not 
only accelerates the search process but also exploits parallelism 
to improve the quality of the obtained solutions for 
combinatorial optimization problem. 

Jiang et al. [14] proposed an optimal power allocation 
(OPA) method to exert the maximum efficiency of parallel 
grid-connected inverters. They established the power model of 
every inverter and compared each model by using the equal 
power allocation (EPA) method. Theoretically, high overall 
system efficiency can be achieved using the OPA method. 
Then, the authors calculated the overall system efficiency with 
easily measurable electric parameters and realized online 
optimization by adopting an existing method, such as the hill 
climbing method. They tested the effectiveness of the proposed 
method by comparing it with the equivalent power allocation 
method. They found that the overall system efficiency of the 
OPA method is higher than that of the EPA method. Moreover, 
the system using the hill climbing method performs effectively 
in the dynamic process with short response time. 

Kim et al. [15] performed component sizing of power 
sources of parallel hybrid vehicle by applying the golden 
section search and hill climbing algorithms. The golden section 
search algorithm was used in selecting a reduction gear ratio 
that connects the transmission to the electric motor by using the 
hill climbing search algorithm to find the optimal engine and 
electric motor sizes. The use of the hill climbing search 
algorithm reduces the number of simulations and 
simultaneously optimizes the capacity of the power source and 
the gear ratio of the torque coupler. The authors verified the 
validity of the component sizing results by comparing the 
global optimal solution obtained by the conventional technique 
with the solution obtained by the proposed optimization 
technique. 

Robinson et al. [16] presented an improved algorithm for 
approximating the TSP on fully connected, symmetric graphs 
by utilizing the GPU. They improved an existing 2-opt hill 

climbing algorithm with random restarts by considering 
multiple updates to the current path found in parallel. Their 
approach has a k-swap function, which allows k number of 
updates per iteration. The authors showed that their 
modifications result in a substantial speedup without a 
reduction in the quality of the result by applying the k-swap 
method. Their experimental results showed that common 
assumptions in obtaining good performance for the GPU are 
not always true, such as saturating the GPU with blocks. 
Instead, for problems in which the search space can be 
deterministically enumerated, the number of active blocks can 
be limited as determined by the hardware. This property allows 
for reduced memory allocation. A limited amount of memory 
can be used because each block can allocate the amount of 
memory upfront. 

Chen et al. [17] proposed an automatic machine learning 
(AutoML) modeling architecture called Autostacker, which is a 
machine learning system with an innovative architecture for 
automatic modeling and a well-behaved efficient search 
algorithm. Autostacker improves the prediction accuracy of 
machine learning baselines by utilizing an innovative 
hierarchical stacking architecture and an efficient parameter 
search algorithm. Neither prior domain knowledge about the 
data nor feature preprocessing is needed. The authors reduced 
the time of AutoML by using a naturally inspired algorithm 
called PHC. They demonstrated the operation and performance 
of their system by comparing it with human initial trails and 
related state-of-the-art techniques. They also confirmed the 
scaling and parallelization ability of their system. The authors 
also automated the machine learning modeling process by 
providing an efficient, flexible, and well-behaved system. This 
system can be generalized into complicated problems and 
integrated with data and feature processing modules. 

III. METHODOLOGY 

Hill climbing is a heuristic search technique for solving 
certain mathematical optimization problems in the field of 
artificial intelligence [18]. In this technique, starting with a 
suboptimal solution is compared to starting from the base of 
the hill, and improving the solution is compared to walking up 
the hill; the solution is improved repeatedly until some 
condition is maximized and becomes optimal, as illustrated in 
Fig. 1. This technique is mainly used for solving difficult 
problems computationally. It focuses on the current and 
immediate future states and does not maintain a search tree, 
thereby making it memory efficient [19]. 

 

Fig. 1. Hill Climbing. 
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Hill climbing technique can be used to solve many 
problems, such as network flow, traveling salesman, and 8-
Queens, in which the current state allows for an accurate 
evaluation function [20]. This technique does not suffer from 
space-related issues because it focuses on the current state in 
which previously explored paths are not stored; nonetheless, an 
optimal solution can be achieved in polynomial time. However, 
for NP-complete problems, computational time can be 
exponential based on the number of local maxima [21]. 

Hill climbing technique comprises several phases, which 
start by constructing a suboptimal solution considering the 
constraints of the problem, followed by improving the solution 
by step and enhancing the solution until no more improvement 
is possible [22]. This technique is performed following the 
steps below. 

1) Define the current state as initial state. 

2) Loop until the goal state is achieved or no more 

operators can be applied on the current state. 

a) Apply an operation to the current state and obtain a 

new state. 

b) Compare the new state with the goal state. 

c) Quit if the goal state is achieved. 

d) Evaluate the new state with heuristic function and 

compare it with the current state. 

e) If the newer state is closer to the goal than the current 

state, then update the current state. 

In the hill climbing algorithm, achieving the goal is 
equivalent to reaching the top of the hill. 

In this research, a new hill climbing algorithm is proposed 
on the basis of local optimal solution. In this algorithm, the 
closest 10 points around the current point are scanned, and the 
cost needed to go from the current point to the next point is 
obtained by calculating the sum of the obstacles between the 
current point and the 10 other points. In this proposed 
algorithm we have designed the optimization technique as 
explained in the following equation: 

𝑂𝑝𝑡𝑖𝑚𝑖𝑧𝑒 𝑀𝑖𝑛 (∑ 𝑤𝑠 ∗ 𝑆5
𝑅𝑖𝑔ℎ𝑡 𝑃𝑎𝑡ℎ𝑠=1 + 𝑤𝑔 ∗ 𝐺 +  𝑤𝑜 ∗

𝑂, ∑ 𝑤𝑠 ∗ 𝑆5
𝐿𝑒𝑓𝑡 𝑃𝑎𝑡ℎ𝑠=1 + 𝑤𝑔 ∗ 𝐺 +  𝑤𝑜 ∗ 𝑂 )  

Where Ws is the weight of the slop, S is the slop of the 
point, Sg is the weight of the gravity, G is the gravity at that 
point, Wo is the weight of the obstacles, O is the value of the 
obstacles. 

These values will be counted for each path from right and 
from left. Then, the path which has the lowest cost will be 
selected. 

The scanning approach is performed as follows: 

In Table I, the current point is in red (23); each cell has a 
weight represented by a number. The scanning area is five 
paths to the right and five paths to the left. 

Paths from left: 

1) 2316161216 (83). 

2) 2315231032 (103). 

3) 2315165620 (103). 

4) 2315161615 (85). 

5) 2315161623 (93). 

Paths from Right: 

1) 2365261523 (152). 

2) 2323152032 (113). 

3) 2323293010 (115). 

4) 2323292832 (135). 

5) 2323292872 (175). 

Thereafter, we decide which path should be taken 
depending on the minimum value among the total obstacle 
weights in each path. In the example above, the best path is 
number 1 because it has the minimum total value. Fig. 2 
illustrates the Proposed Sequential Algorithm. 

The above pseudocode is for sequential execution. To 
parallelize this algorithm, we must follow the following 
approach: 

1) There will be a master node that will generate the 

matrix. 

2) The master node must fill the matrix with the obstacle’s 

weights based on the following equation so that the algorithm 

can calculate the cost. 

𝐶𝑜𝑠𝑡 = 𝑤𝑠 ∗ 𝑆 + 𝑤𝑔 ∗ 𝐺 + 𝑤𝑜 ∗ 𝑂 

Ws is the weight of the slop, S is the slop of the point, Sg is 
the weight of the gravity, G is the gravity at that point, Wo is 
the weight of the obstacles, O is the value of the obstacles. 

1) The master node will broadcast the matrix to all other 

nodes so they can work in parallel. 

2) Each node will calculate its start region from bottom 

and its end region from top as shown in Fig. 3. 

3) All the node will start working at the same time. 

4) After they all finish, each node will send the best path 

for the master node. 

5) Finally, the master node will decide which path is the 

best path based on what did it get from the other nodes. 

TABLE I. PROPOSED ALGORITHM EXAMPLE 

2 10 20 26 23 23 15 16 10 20 23 

51 32 30 15 65 32 16 23 56 15 65 

32 23 12 54 72 28 29 30 21 16 72 

16 32 15 32 64 23 95 65 12 32 64 

2 10 20 26 23 23 15 16 10 20 23 

51 32 30 15 65 32 16 23 56 15 65 

54 72 28 29 23 23 15 16 16 23 23 

32 64 23 95 65 32 16 23 29 30 65 
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Let Mat [100][100]; 

Set StartPoint; 

Let Prow = 0; 

Let Check = 0; 

Sub GO(ByVal rowIndex As Integer, ByVal Colindex As 

Integer) 

                If PRow = rowIndex Then 

            check = 0 

            If rowIndex >= 4 Then 

                GO(rowIndex - 1, Colindex + 1) 

                            End If 

            Exit Sub 

        End If 

        If PRow = rowIndex Then 

            check += 1 

        End If 

        PRow = rowIndex 

        Dim arr As New ArrayList 

        Dim Rounds As Integer = 4 

        Dim TotalRounds As Integer = 4 

        For j As Integer = Colindex To Colindex + 4 

            Dim counter As Integer = 0 

            Dim sum As Double = 0 

            For i As Integer = rowIndex To rowIndex - Rounds Step -

1 

                sum += grd.Rows(i).Cells(j + counter).Value 

                counter += 1 

            Next 

            For i As Integer = j - 1 To Colindex Step -1 

                If j <> Colindex Then 

                    sum += grd.Rows(rowIndex).Cells(i).Value 

                End If 

            Next 

            arr.Add(rowIndex - Rounds & "," & Colindex + 

TotalRounds) 

 

            arr.Add(sum) 

            Rounds -= 1 

        Next 

        Rounds = 4 

        For j As Integer = Colindex To Colindex - 4 Step -1 

            Dim counter As Integer = 0 

            Dim sum As Double = 0 

            For i As Integer = rowIndex To rowIndex - Rounds Step -1 

                sum += grd.Rows(i).Cells(j - counter).Value 

                counter += 1 

 

            Next 

            For i As Integer = j + 1 To Colindex 

                If j <> Colindex Then 

                    sum += grd.Rows(rowIndex).Cells(i).Value 

                End If 

            Next 

            arr.Add(rowIndex - Rounds & "," & Colindex - TotalRounds) 
            arr.Add(sum) 

            Rounds -= 1 

        Next 

        Dim min As Integer = arr(1) 

        Dim Row As Integer = 0 

        Dim Col As Integer = 0 

        Dim Sign As Integer = txtDest.Text - Colindex 

        Dim Right As Integer = Math.Abs(txtDest.Text - (Colindex 

+ TotalRounds)) 

        Dim Left As Integer = Math.Abs(txtDest.Text - (Colindex - 

TotalRounds)) 

        Dim SelectedPath As Integer = 0 

        If Right < Left AndAlso Colindex + TotalRounds < 

Colindex + TotalRounds + Right Then 

            SelectedPath = Colindex + TotalRounds 

 

        ElseIf Left < Right AndAlso Colindex - TotalRounds > 

Colindex - TotalRounds - Left Then 

            SelectedPath = Colindex - TotalRounds 

            min = arr(11) 

        End If 

        For i As Integer = 1 To arr.Count - 1 Step 2 

            If txtSpiciifc.Text = 1 AndAlso SelectedPath <> 0 Then 

                If arr(i) <= min AndAlso arr(i - 1).ToString.Split(",")(1) = 

SelectedPath Then 

                    min = arr(i) 

                    Row = arr(i - 1).ToString.Split(",")(0) 

                    Col = arr(i - 1).ToString.Split(",")(1) 

                End If 

            Else 

                If arr(i) <= min Then 

                    min = arr(i) 

                    Row = arr(i - 1).ToString.Split(",")(0) 

                    Col = arr(i - 1).ToString.Split(",")(1) 

                End If 

            End If 

 

        Next 

         

        grd.Rows(Row).Cells(Col).Style.BackColor = Color.Red 

        coloring(Col, Colindex, Row, rowIndex) 

        Dim endT As TimeSpan = Now.TimeOfDay 

        TotalTime += (endT - start).Milliseconds 

        If Row - 4 >= 0 AndAlso Col + 4 < grd.Columns.Count 

AndAlso Row > 0 Then 

            GO(Row, Col) 

             

 

        End If 

        check = Not check 

    End Sub 

Fig. 2. Sequential Pseudocode. 
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For example, after broadcasting the matrix to all node, each 
processor will choose start region and end region depending on 
its ID. Thus, we will divide the very last row between the 
processor based on the following equations to get the start 
region for each processor: 

𝐵𝑙𝑜𝑐𝑘 𝑆𝑖𝑧𝑒 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑡𝑎𝑟𝑡𝑖𝑛𝑔 𝑝𝑜𝑖𝑛𝑡𝑠

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑜𝑟𝑠 
 

𝑆𝑡𝑎𝑟𝑡𝑠 𝐹𝑟𝑜𝑚 = 𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑜𝑟 𝐼𝐷 ∗ 𝐵𝑙𝑜𝑐𝑘 𝑆𝑖𝑧𝑒 

𝐸𝑛𝑑𝑠 𝐴𝑡 = 𝑆𝑡𝑎𝑟𝑡𝑠 𝐹𝑟𝑜𝑚 + 𝐵𝑙𝑜𝑐𝑘 𝑆𝑖𝑧𝑒 − 1 

To get the end region for each processor, we will divide the 
very first row in the matrix between the processors based on 
the following equations: 

𝐵𝑙𝑜𝑐𝑘 𝑆𝑖𝑧𝑒 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐸𝑛𝑑𝑖𝑛𝑔 𝑝𝑜𝑖𝑛𝑡𝑠

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑜𝑟𝑠 
 

𝑆𝑡𝑎𝑟𝑡𝑠 𝐹𝑟𝑜𝑚 = 𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑜𝑟 𝐼𝐷 ∗ 𝐵𝑙𝑜𝑐𝑘 𝑆𝑖𝑧𝑒 

𝐸𝑛𝑑𝑠 𝐴𝑡 = 𝑆𝑡𝑎𝑟𝑡𝑠 𝐹𝑟𝑜𝑚 + 𝐵𝑙𝑜𝑐𝑘 𝑆𝑖𝑧𝑒 − 1 

Fig. 3 illustrates this example with 10 points and 5 
processors. 

In the proposed system we have considered three 
approaches for finding the best path. 

Approach #1: From All points below to unknown point 
above. In this approach the algorithm will start from each point 
below the hill and try to find a path depending on the discussed 
algorithm above, but the destination is not specified. So, the 
algorithm will suggest the path and will determine the 
destination point. To parallelize this approach each processor 
will start from the points in its region only. 

Approach #2: From All points below to a specific point 
above. In this approach the algorithm will start from each point 
below the hill and try to find a path to a specific point above. 
To parallelize this approach each processor will start from the 
points in its region only. 

Approach #3: From One point below to all points above. 
In this approach the algorithm will start from a specific point 
below the hill and try to find a path to all point above the hill. 
To parallelize this approach each processor will start from the 
specified point then it will use the End region to determine its 
destination based on the end region points only. 

The evaluation of Hill Climbing technique used only at the 
current state, it does not suffer from computational space 
issues, where the source of its computational complexity arises 
from the time required to explore the problem space. The 
optimal solution of Hill Climbing technique can be achieved in 
polynomial time and it is one of the NP-Complete problem that 
the numbers of local maxima can be the cause of exponential 
computational time [23]. To address these problems proposed 
algorithm are applied on message passing interface (MPI) 
parallel and distributed computing systems with high-
performance computing that spread out a single application 
over many multi-core and multi-processor computers to rapidly 
complete the task. MPI divide large problems into smaller sub-

problems and assign each of them to different processors in a 
typically distributed system running concurrently in parallel. 

In this research, Proposed Hill Climbing techniques are 
tested on two methods. First method is sequential that accessed 
code by a single thread. This means that a single thread can 
only do code in a specific order, hence it being sequential. 
Second method is MPI that is a library of routines that can be 
used to create parallel programs in C, C++, and Fortran77 
using commonly available operating system services to create 
parallel processes and exchange information among these 
processes, as shown in Fig. 4. 

The design process of MPI includes vendors (such as IBM, 
Intel, TMC, Cray, and Convex), parallel library authors 
(involved in the development of PVM, and Linda), and 
application specialists. The final version for the draft standard 
became available in May of 1994 [8]. 

MPI is a standardized means of exchanging messages 
among multiple computers running a parallel program across a 
distributed memory to improve scalability, performance, multi-
core and cluster support, and interoperation with other 
applications. These programs cannot use any MPI 
communication routine. The two basic routines are MPI_Send, 
to send a message to another process, and MPI_Recv, to 
receive a message from another process. 

 

Fig. 3. Example of Parallelizing the Matrix. 

 

Fig. 4. MPI Parallel Processes. 
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Proposed algorithm run MPI code in IMAN1, Jordan’s first 
and fastest high-performance Computing resource, funded by 
JAEC and SESAME. It is available for use by academia and 
industry in Jordan and the region. In our project, we worked in 
a Zaina server, an Intel Xeon-based computing cluster with 1G 
Ethernet interconnection as shown in Table II. The cluster is 
mainly used for code development, code porting, and 
synchrotron radiation application purposes. In addition, this 
cluster is composed of two Dell PowerEdge R710 and five HP 
ProLiant DL140 G3 servers. 

TABLE II. ZAINA TECHNICAL DETAILS 

Server 
7 Servers (Two Dell PowerEdge R710 and five HP 

ProLiant DL140 G3) 

CPU per server 
Dell (2 X 8 cores Intel Xeon) HP (2 X 4 cores Intel 

Xeon) 

RAM per server Dell (16 GB) HP (6 GB) 

Total storage (TB) 1 TB NFS Share 

OS Scientific Linux 6.4 

IV. PROPOSED HILL CLIMBING ALGORITHM ANALYSIS 

In this section, analysis of the proposed hill climbing 
algorithm were discussed. Variables that included in all the 
analysis equation are giving as follows: 

Let N = Number of rows in matrix; 

Let Paths = Number of scanned paths each time; 

Let Points = Number of points in each path; 

First; sequential analysis for best paths and parallel analysis 
for best paths indicate that the proposed algorithm is cost 
optimal based on the following equation: 

A. Sequential Analysis for Best Paths 

𝑇𝑆 =
𝑁

𝑃𝑜𝑖𝑛𝑡𝑠
∗ (𝑃𝑎𝑡ℎ𝑠 ∗ 𝑃𝑜𝑖𝑛𝑡𝑠) =  𝑁 ∗ 𝑃𝑎𝑡ℎ𝑠     (1) 

B. Parallel Analysis for Best Paths 

Let P = Number of Processors 

𝑇𝑝 =  𝑇𝐶𝑜𝑚𝑚 +  𝑇𝐶𝑜𝑚𝑝              (2) 

𝑇𝐶𝑜𝑚𝑚 = 𝑡𝑠 (
𝑁

𝑃
) + 𝑡𝑤 (

𝑁

𝑃𝑜𝑖𝑛𝑡𝑠
∗(𝑃𝑎𝑡ℎ𝑠∗𝑃𝑜𝑖𝑛𝑡𝑠)

𝑃
) = 𝑡𝑠 (

𝑁

𝑃
) +

𝑡𝑤 (
𝑁 ∗(𝑃𝑎𝑡ℎ𝑠)

𝑃
)              (3) 

𝑇𝐶𝑜𝑚𝑝 = (
𝑁 ∗(𝑃𝑎𝑡ℎ𝑠)

𝑃
)              (4) 

𝑇𝑝 = 𝑡𝑠 (
𝑁

𝑃
) + 𝑡𝑤 (

𝑁 ∗(𝑃𝑎𝑡ℎ𝑠)

𝑃
) + (

𝑁 ∗(𝑃𝑎𝑡ℎ𝑠)

𝑃
)            (5) 

C. Total Parallel Overhead 

𝑇 = 𝑃(𝑡𝑠 (
𝑁

𝑃
) + 𝑡𝑤 (

𝑁 ∗(𝑃𝑎𝑡ℎ𝑠)

𝑃
) +  (

𝑁 ∗(𝑃𝑎𝑡ℎ𝑠)

𝑃
)) −

(𝑁 ∗ 𝑃𝑎𝑡ℎ𝑠)  = 𝑡𝑠(𝑁) + 𝑡𝑤(𝑁 ∗ 𝑃𝑎𝑡ℎ𝑠)           (6) 

𝑆𝑝𝑒𝑒𝑑𝑢𝑝 =
𝑁∗𝑃𝑎𝑡ℎ𝑠

𝑡𝑠(
𝑁

𝑃
)+𝑡𝑤(

𝑁 ∗(𝑃𝑎𝑡ℎ𝑠)

𝑃
)+ (

𝑁 ∗(𝑃𝑎𝑡ℎ𝑠)

𝑃
)
              (7) 

𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 =
𝑁∗𝑃𝑎𝑡ℎ𝑠

𝑡𝑠(𝑁)+𝑡𝑤(𝑁∗𝑃𝑎𝑡ℎ𝑠)+ (𝑁∗𝑃𝑎𝑡ℎ𝑠)
           (8) 

𝐶𝑜𝑠𝑡 = 𝑃(𝑡𝑠 (
𝑁

𝑃
) + 𝑡𝑤 (

𝑁 ∗(𝑃𝑎𝑡ℎ𝑠)

𝑃
) +  (

𝑁 ∗(𝑃𝑎𝑡ℎ𝑠)

𝑃
)          (9) 

Second; sequential analysis for all to one or one to all and 
parallel analysis for all to one or one to all indicate that the 
proposed algorithm is cost optimal based on the following 
equation. 

D. Sequential Analysis for All to One or One to All 

𝑇𝑆 =
𝑁

𝑃𝑜𝑖𝑛𝑡𝑠
∗ (

𝑃𝑎𝑡ℎ𝑠

2
∗ 𝑃𝑜𝑖𝑛𝑡𝑠) = 𝑁 ∗

𝑃𝑎𝑡ℎ𝑠

2
         (10) 

E. Parallel Analysis for All to One or One to All 

Let P = Number of Processors 

𝑇𝑝 =  𝑇𝐶𝑜𝑚𝑚 +  𝑇𝐶𝑜𝑚𝑝          (11) 

𝑇𝐶𝑜𝑚𝑚 = 𝑡𝑠 (
𝑁

𝑃
) + 𝑡𝑤 (

𝑁

𝑃𝑜𝑖𝑛𝑡𝑠
∗(

𝑃𝑎𝑡ℎ𝑠

2
∗𝑃𝑜𝑖𝑛𝑡𝑠)

𝑃
) = 𝑡𝑠 (

𝑁

𝑃
) +

𝑡𝑤 (
𝑁 ∗(

𝑃𝑎𝑡ℎ𝑠

2
)

𝑃
)            (12) 

𝑇𝐶𝑜𝑚𝑝 = (
𝑁 ∗(

𝑃𝑎𝑡ℎ𝑠

2
)

𝑃
)           (13) 

𝑇𝑝 = 𝑡𝑠 (
𝑁

𝑃
) + 𝑡𝑤 (

𝑁 ∗(
𝑃𝑎𝑡ℎ𝑠

2
)

𝑃
) +  (

𝑁 ∗(
𝑃𝑎𝑡ℎ𝑠

2
)

𝑃
)        (14) 

F. Total Parallel Overhead 

𝑇 = 𝑃(𝑡𝑠 (
𝑁

𝑃
) + 𝑡𝑤 (

𝑁 ∗(
𝑃𝑎𝑡ℎ𝑠

2
)

𝑃
) +  (

𝑁 ∗(
𝑃𝑎𝑡ℎ𝑠

2
)

𝑃
))  −

(𝑁 ∗
𝑃𝑎𝑡ℎ𝑠

2
) = 𝑡𝑠(𝑁) + 𝑡𝑤 (𝑁 ∗

𝑃𝑎𝑡ℎ𝑠

2
)         (15) 

𝑆𝑝𝑒𝑒𝑑𝑢𝑝 =
𝑁∗

𝑃𝑎𝑡ℎ𝑠

2

𝑡𝑠(
𝑁

𝑃
)+𝑡𝑤(

𝑁 ∗(
𝑃𝑎𝑡ℎ𝑠

2 )

𝑃
)+ (

𝑁 ∗(
𝑃𝑎𝑡ℎ𝑠

2 )

𝑃
)

         (16) 

𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 =
𝑁∗

𝑃𝑎𝑡ℎ𝑠

2

𝑡𝑠(𝑁)+𝑡𝑤(𝑁∗
𝑃𝑎𝑡ℎ𝑠

2
)+ (𝑁∗

𝑃𝑎𝑡ℎ𝑠

2
)
         (17) 

𝐶𝑜𝑠𝑡 = 𝑃(𝑡𝑠 (
𝑁

𝑃
) + 𝑡𝑤 (

𝑁 ∗(
𝑃𝑎𝑡ℎ𝑠

2
)

𝑃
) + (

𝑁 ∗(
𝑃𝑎𝑡ℎ𝑠

2
)

𝑃
))        (18) 

V. EXPERIMENTS AND RESULTS 

This research uses different matrix sizes that contain points 
that need to go from the current point to the next point in a 
certain matrix. The cost of moving from the current point to the 
next point is calculated using the sum of the obstacles between 
the current point and all the 10 other points. The path is 
decided depending on the minimum value among the total 
obstacle weights in each path. The proposed algorithm is tested 
in sequential and parallel forms coded by MPI. The results are 
compared in terms of efficiency and speedup ratio. 

First, simple hill climbing is used to calculate the time 
needed to find all the best paths from a specific point to another 
point with the least cost from that start point. Second, the 
proposed hill climbing algorithm is utilized to calculate the 
time required to find the best path from all the points below the 
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matrix to a specific point above the matrix. Finally, the 
proposed hill climbing algorithm is adopted to calculate the 
time needed to find the best path from a specific point below 
the matrix to all the points above the matrix. 

The sequential results of the proposed hill climbing 
algorithm are tested with various matrix sizes. The algorithm is 
written in C++. The experimental results are calculated with 
the 1 core in MPI as shown in Table III. 

The MPI results of the proposed hill climbing algorithm are 
tested using different numbers of cores and matrices. The 
results are effective and efficient when the number of cores is 
increased due to the large size of problems that need a high 
degree of parallelism. Table IV and Fig. 5 show the results for 
all the best paths. Fig. 6 illustrates all points below a point 
above, and Fig. 7 presents a point below all points above. 

The comparison between MPI results and sequential 
methods indicates that MPI is always faster and more efficient 
than sequential methods for different matrix sizes. 

Table V presents the calculation results for speedup ratio. 
Fig. 8 shows the comparison of speedup ratio for all best path 
results. Fig. 9 reveals the speedup ratio for a point below to all 
points above.  Fig. 10 illustrates the speedup ratio for all points 
below to a point above. 

TABLE III. SEQUENTIAL RUN TIME RESULTS 

One CPU 

From All Points 

Below to 

Unknown Point 

Above 

From All 

Points Below to 

One Point 

Above 

From One Point 

Below to All 

Points Above 

100 * 100 3.200 s 3.150 s 3.300 s 

500 * 500 130.230 s 132.230 s 134.230 s 

1000 * 1000 593.320 s 598.120 s 601.300 s 

TABLE IV. MPI RUN TIME RESULTS 

2 CPUs 

From All Points 

Below to 

Unknown Point 

Above 

From All 

Points Below to 

One Point 

Above 

From One Point 

Below to All 

Points Above 

100 * 100 2.910  2.890 3.210 

500 * 500 105.600 106.900 106.230 

1000 * 1000 342.250 341.530 342.680 

4 CPUs 

From All Points 

Below to 

Unknown Point 

Above 

From All 

Points Below to 

One Point 

Above 

From One Point 

Below to All 

Points Above 

100 * 100 2.32 2.13 2.23 

500 * 500 39.23 38.32 39.65 

1000 * 1000 160.2 158.7 158.32 

8 CPUs 

From All Points 

Below to 

Unknown Point 

Above 

From All 

Points Below to 

One Point 

Above 

From One Point 

Below to All 

Points Above 

100 * 100 1.51 1.35 1.56 

500 * 500 18.5 18.23 18.9 

1000 * 1000 76.45 75.32 76.81 

16 CPUs 
From All Points 

Below to 

From All 

Points Below to 

From One Point 

Below to All 

Unknown Point 

Above 

One Point 

Above 

Points Above 

100 * 100 1.12 1.23 1.11 

500 * 500 12.23 13.89 12.56 

1000 * 1000 39.56 38.56 39.15 

32 CPUs 

From All Points 

Below to 

Unknown Point 

Above 

From All 

Points Below to 

One Point 

Above 

From One Point 

Below to All 

Points Above 

100 * 100 0.927 0.978 0.968 

500 * 500 6.2 6.3 6.51 

1000 * 1000 19.65 20.3 20.3 

64 CPUs 

From All Points 

Below to 

Unknown Point 

Above 

From All 

Points Below to 

One Point 

Above 

From One Point 

Below to All 

Points Above 

100 * 100 0.748 0.789 0.868 

500 * 500 3.5 3.6 3.78 

1000 * 1000 11.2 11.9 12.3 

100 CPU 

From All Points 

Below to 

Unknown Point 

Above 

From All 

Points Below to 

One Point 

Above 

From One Point 

Below to All 

Points Above 

100 * 100 0.592 0.512 0.54 

500 * 500 1.9 1.8 1.7 

1000 * 1000 6.2 6.9 6.5 

 

Fig. 5. From All Points below to unknown Point above. 

 

Fig. 6. From All Points below to One Point above Plotting. 
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Fig. 7. From One Point below to All Points above Plotting. 

TABLE V. SPEEDUP RESULTS 

2 CPUs 

From All 

Points Below 

to Unknown 

Point Above 

From All 

Points Below 

to One Point 

Above 

From One 

Point Below to 

All Points 

Above 

100 * 100 1.100 1.090 1.028 

500 * 500 1.233 1.237 1.264 

1000 * 1000 1.734 1.751 1.755 

4 CPUs 

From All 

Points Below 

to Unknown 

Point Above 

From All 

Points Below 

to One Point 

Above 

From One 

Point Below to 

All Points 

Above 

100 * 100 1.379 1.479 1.480 

500 * 500 3.320 3.451 3.385 

1000 * 1000 3.704 3.769 3.798 

8 CPUs 

From All 

Points Below 

to Unknown 

Point Above 

From All 

Points Below 

to One Point 

Above 

From One 

Point Below to 

All Points 

Above 

100 * 100 2.119 2.333 2.115 

500 * 500 7.039 7.253 7.102 

1000 * 1000 7.761 7.941 7.828 

16 CPUs 

From All 

Points Below 

to Unknown 

Point Above 

From All 

Points Below 

to One Point 

Above 

From One 

Point Below to 

All Points 

Above 

100 * 100 2.857 2.561 2.973 

500 * 500 10.648 9.520 10.687 

1000 * 1000 14.998 15.511 15.359 

32 CPUs 

From All 

Points Below 

to Unknown 

Point Above 

From All 

Points Below 

to One Point 

Above 

From One 

Point Below to 

All Points 

Above 

100 * 100 3.452 3.221 3.409 

500 * 500 21.005 20.989 20.619 

1000 * 1000 30.194 29.464 29.621 

64 CPUs 

From All 

Points Below 

to Unknown 

Point Above 

From All 

Points Below 

to One Point 

Above 

From One 

Point Below to 

All Points 

Above 

100 * 100 4.278 3.992 3.802 

500 * 500 37.209 36.731 35.511 

1000 * 1000 52.975 50.262 48.886 

100 CPU 

From All 

Points Below 

to Unknown 

Point Above 

From All 

Points Below 

to One Point 

Above 

From One 

Point Below to 

All Points 

Above 

100 * 100 5.405 6.152 6.111 

500 * 500 68.542 73.461 78.959 

1000 * 1000 95.697 86.684 92.508 

 

Fig. 8. From All Points below to unknown Point above Speedup Plotting. 

 

Fig. 9. From One Point below to All Points above Speedup Plotting. 

 

Fig. 10. From All Points below to One Point above Speedup Plotting. 
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Table VI shows the calculation results for parallel 
efficiency. Fig. 11 presents the comparison of parallel 
efficiency for all best path results. Fig. 12 reveals the parallel 
efficiency for all points below to unknown point above. Fig. 13 
illustrates the parallel efficiency for a point below to all points 
above. 

TABLE VI. EFFICIENCY RESULTS 

2 CPUs 

From All 

Points Below 

to Unknown 

Point Above 

From All 

Points Below 

to One Point 

Above 

From One 

Point Below 

to All Points 

Above 

100 * 100 0.550 0.545 0.514 

500 * 500 0.617 0.618 0.632 

1000 * 1000 0.867 0.876 0.877 

4 CPUs 

From All 

Points Below 

to Unknown 

Point Above 

From All 

Points Below 

to One Point 

Above 

From One 

Point Below 

to All Points 

Above 

100 * 100 0.345 0.370 0.370 

500 * 500 0.830 0.863 0.846 

1000 * 1000 0.926 0.942 0.950 

8 CPUs 

From All 

Points Below 

to Unknown 

Point Above 

From All 

Points Below 

to One Point 

Above 

From One 

Point Below 

to All Points 

Above 

100 * 100 0.265 0.292 0.264 

500 * 500 0.880 0.907 0.888 

1000 * 1000 0.970 0.993 0.979 

16 CPUs 

From All 

Points Below 

to Unknown 

Point Above 

From All 

Points Below 

to One Point 

Above 

From One 

Point Below 

to All Points 

Above 

100 * 100 0.179 0.160 0.186 

500 * 500 0.666 0.595 0.668 

1000 * 1000 0.937 0.969 0.960 

32 CPUs 

From All 

Points Below 

to Unknown 

Point Above 

From All 

Points Below 

to One Point 

Above 

From One 

Point Below 

to All Points 

Above 

100 * 100 0.108 0.101 0.107 

500 * 500 0.656 0.656 0.644 

1000 * 1000 0.944 0.921 0.926 

64 CPUs 

From All 

Points Below 

to Unknown 

Point Above 

From All 

Points Below 

to One Point 

Above 

From One 

Point Below 

to All Points 

Above 

100 * 100 0.067 0.062 0.059 

500 * 500 0.581 0.574 0.555 

1000 * 1000 0.828 0.785 0.764 

100 CPU 

From All 

Points Below 

to Unknown 

Point Above 

From All 

Points Below 

to One Point 

Above 

From One 

Point Below 

to All Points 

Above 

100 * 100 0.054 0.062 0.061 

500 * 500 0.685 0.735 0.790 

1000 * 1000 0.957 0.867 0.925 

 

Fig. 11. From All Points below to One Point above Efficiency Plotting. 

 

Fig. 12. From All Points below to unknown Point above Efficiency Plotting. 

 

Fig. 13. From One Point below to All Points above Efficiency Plotting. 

VI.    CONCLUSION 

Heuristic search is a search process that uses domain 
knowledge in heuristic rules or procedures to direct the 
progress of a search algorithm. Hill climbing is a heuristic 
search technique for solving certain mathematical optimization 
problems in the field of artificial intelligence. In this technique, 
starting with a suboptimal solution is compared to starting from 
the base of the hill, and improving the solution is compared to 
walking up the hill. The optimal solution of the hill climbing 
technique can be achieved in polynomial time and is an NP-
complete problem in which the numbers of local maxima can 
lead to an exponential increase in computational time. To 
address these problems, the proposed hill climbing algorithm 
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based on the local optimal solution is applied to the message 
passing interface, which is a library of routines that can be used 
to create parallel programs by using commonly available 
operating system services to create parallel processes and 
exchange information among these processes. Experimental 
results show that parallel hill climbing outperforms sequential 
methods. 

This research uses different matrix sizes that contain points 
that need to go from the current point to the next point in a 
certain matrix. The cost of moving from the current point to the 
next point is calculated using the sum of the obstacles between 
the current point and all the 10 other points. The path is 
decided depending on the minimum value among the total 
obstacle weights in each path. The proposed algorithm is tested 
in sequential and parallel forms coded by MPI. The results are 
compared in terms of efficiency and speedup ratio. 

The comparison between MPI results and sequential 
methods indicates that MPI is always faster and more efficient 
than sequential methods for different matrix sizes. Fig. 7, 8, 
and 9 show the comparison results for sizes 100×100, 
500×500, and 1000×1000, respectively. The MPI outperforms 
the sequential methods; thus, the research goal is achieved. 
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