
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 9, 2020

210 | P a g e

www.ijacsa.thesai.org

Prioritization of Software Functional

Requirements from Developers Perspective

Muhammad Yaseen
1
, Aida Mustapha

2
, Noraini Ibrahim

3

Faculty of Computer Science and Information Technology

Universiti Tun Hussein Onn Malaysia, Parit Raya

86400 Batu Pahat, Johor, Malaysia

Abstract—Prioritizing software requirements is important

and difficult task during requirements management phase of

requirements engineering. To ensure timely delivery of project,

software developers have to prioritize functional requirements.

The importance of prioritization increases when size of

requirements is big. Software for large enterprises like the

Enterprise Resource Planning (ERP) systems are more likely to

be developed by a team of software developers where large size

requirements are distributed in parallel team members.

However, requirements are dependent on each other, therefore

development of pre-requisite requirements must be carefully

timed and should be implemented first. Therefore, assigning

importance and priority to some requirements over others is

necessary so that requirements can be available on time to

developers. This paper proposes a prioritization approach for

functional requirements on the basis of their importance during

implementation. The design of research method consists of

Analytical Hierarchical Process (AHP) technique based on

spanning trees. Through spanning trees, dependent requirements

were linked in hierarchical structure and then AHP were

applied. As a result of prioritization, requirements were

distributed in such a way that dependency among requirements

of developers were kept minimum as much as possible so that

waiting time of requirements for their pre-requisite were

reduced. With reduced effect of dependency in requirements of

parallel developers, timely delivery of software projects can be

assured.

Keywords—Requirements prioritization; Functional

Requirements (FRs); directed graph; spanning tree (ST);

Analytical Hierarchical Process (AHP)

I. INTRODUCTION

Requirements Engineering (RE) is a systematic way of
collecting software requirements [1][2][3]. There are different
types of software requirements [4][5][6]; Business
Requirements (BRs) that deal with benefits of implementing
requirements, Process Requirements (PRs) that deal with time
and cost issues during development, Functional Requirements
(FRs) that deal with the actual functionalities of the software,
and finally Non-Functional Requirements (NFRs) that deal
with requirements such as usability, security, and
performance. The collected FRs need proper management in
determining issues such as which requirements should be
given higher priority, which team member will implement a
particular requirement, when the requirements is expected to
be delivered, how will the requirements be integrated and
other concerns related to requirements management [7][8].

Requirements Prioritization (RP) is a task in RE that
focuses on giving priority or ordering a group of requirements
[9][10]. Techniques such as cost-value ranking, attribute goal-
oriented, and value-oriented approaches work well for BRs in
combination with high level FRs [11][12]. FRs are prioritized
either from client‘s perspective or developer‘s perspective
[13][14]. FRs from client‘s perspective are normally high
level requirements that are also known as user requirements
(URs). Techniques like the Analytical Hierarchical Process
(AHP), binary trees, Genetic Algorithm (GA) are more
suitable to prioritize FRs from user perspective [15][16][17].
Meanwhile, techniques like Quality Function Deployment
(QFD) and contextual preference-based technique are
suggested for prioritizing NFRs [18][19]. Although most of
the techniques like AHP work well for small size
requirements, they are not scalable and suitable to apply on
large requirements. While machine learning techniques and
intelligent based techniques such as Artificial Neural
Networks (ANN) and SNIPR are suitable for prioritizing
large-sized FRs, but they are not suitable techniques to
prioritize FRs from developer‘s perspective where
requirements are distributed in parallel development team
[20][21][22].

As FRs are not isolated but inter-related so prioritization of
FRs is necessary especially when parallel team members are
assigned to implement the entire requirements. Giving
importance and priority to some requirements over the others
is necessary so that pre-requisite requirements can be available
on time for other requirements. According to [23], successful
projects are not only those that meet all their FRs and NFRs
but timely delivery of these requirements is also necessary.
Most of big size software‘s fail to deliver in time, thus proper
management and prioritization of FRs from developer‘s
perspective is necessary for successful implementation and
delivery of any software project [24].

Although the current prioritization techniques are able to
prioritize FRs from user perspective effectively in selecting
particular modules or requirements, the same techniques are
not either capable or applied to prioritize FRs from
developer‘s perspective when it involves the internal structure
and dependency of one requirement on others. Another
problem is that most techniques are suitable for prioritizing
small-sized requirements but not scalable for large set of
requirements. Therefore, a new prioritization is needed for
focusing on prioritizing FRs from developer perspective

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 9, 2020

211 | P a g e

www.ijacsa.thesai.org

within the setting of large size requirements especially in
parallel developing projects.

Technique like AHP can be applied with pre-defined
prioritization rules to FRs but it is not scalable for big-sized
requirements. However, we can use technique such as AHP
that pairwise compare requirements to prioritize requirements
from developer‘s perspective.

To address this gap, this research work proposes a new
approach to prioritize FRs using AHP but based on spanning
trees, called the SAHP. The proposed prioritization approach
will then be evaluated on FRs of ODOO ERP as case study.
Finally, this paper will also investigate the scalability of
SAHP in ERP systems by comparing time complexity of the
SAHP with existing AHP. The remaining of this paper
proceeds as follows. Section 2 presents preliminary studies
related to AHP. Section 3 presents the proposed AHP based
on Spanning Trees called the SAHP. Section 4 reports
evaluation of prioritization experiments using requirements of
ERP system. Section 5 presents efficient distribution of
requirements in parallel team members and finally Section 6
concludes with some indication for future work.

II. BACKGROUND STUDY

Analytical Hierarchical Process (AHP) is an organized
decision-making method that is intended to compute complex
multi-criteria decision problems. AHP is technique that is also
applied efficiently in many other fields such as biology and
social sciences for prioritization. In fact, AHP is the utmost
frequently discussed prioritization technique within decision
making in requirements engineering. AHP is led by comparing
all possible pairs of hierarchically categorized entities such as
requirements as well as stakeholders for obtaining
comparative priorities for all objects [15].

Research in [25] revealed that AHP is capable of
improving total time of calculations for pairwise comparisons
of the requirements by using eigenvalues and matrix
evaluation. The research also proposed Consistency Index (CI)
to remove errors like inconsistency. Basically the
requirements are arranged in groups called bins in the form of
hierarchy. This form of prioritization although be helpful in
those cases where requirements are not too much and we need
to prioritize with the help of AHP. Number of comparisons
will be less as compared to traditional AHP but still it fails
large set of requirements.

According to [26], although we assign priorities to FRs,
we can also assign priorities on the basis of PRs. The work
discussed prioritization of PRs by considering both local
priority and perspective priority and proposed the Correlation-
Based Priority Assessment (CBPA) that prioritizes
requirements from different stakeholder perspectives while to
highlight the key issues among them. Two types of
requirements were considered (1) from business point of view
and (2) from management point of view. Increased profit, lead
in competition, reduced cost of development, reduced time to
development are business-oriented process requirements while
maintaining a project within budget, on schedule, high
customer satisfaction, increase productivity are management-
oriented process requirements that are considered and

prioritized in the research work by author. The relationship
between different requirements, its prioritization and impact
are discussed in the paper in the form of matrix. Apart from
PRs, prioritization of requirements from multiple
stakeholder‘s point of view is also discussed. High priority
requirement needs more attention and leads to project success
[26].

Apart from fully AHP-based solutions to prioritization of
requirements, intelligent-based solution has also been
proposed for prioritization of requirements collected from
stakeholders by applying machine learning techniques to first
group similar requirements, and then apply Artificial Neural
Networks (ANN) for further prioritization. Finally, AHP was
applied at the end for final comparisons. In first step, before
clustering, stakeholders are requested to prepare requirements,
then on the basis of profiles of stakeholders and through
expert opinions using ANN, requirements can be prioritized
[22].

Along with stakeholder preferences, it is also necessary to
have prioritization which can handle dependencies in between
requirements from user perspective. DRANK is an automated
algorithm was presented to perform comparisons based on the
importance of dependent requirements and compared the
results with AHP and other techniques. Experiments proved
that this technique is more efficient and scalable for large size
URs [27].

Though many authors have used AHP and tried to reduce
number of comparisons from different perspectives, AHP are
still unable to cater prioritization of FRs during an active
implementation software life cycle. Existing AHP
implementation needs user input for pairwise comparison of
requirements, while we need this process to be automatic i.e.
to take input from its internal structure rather than user. The
purpose of this study is to reduce this research gap to prioritize
FRs from developer‘s perspective.

III. PROPOSED AHP BASED ON SPANNING TREE (SAHP)

This section proposes spanning trees based approach to
represent FRs and then prioritized with AHP. Spanning tree
represents hierarchal order and dependencies of all inter-
related requirements. From spanning tree, one can easily
pairwise compare requirements with AHP. FRs collected from
any sources using appropriate elicitation technique and must
be specified in the form of Software Requirement
Specification (SRS). In this research, the FRs are represented
as alphabets R1, R2, …, Rn and are enclosed in circles as
nodes.

A. Spanning Trees

In graph theory, a spanning tree is a subset of graph. A
graph G = (V; E) consists of finite set of vertices V and finite
set of edges E. Edge is something that connects two vertices.
Graphs are useful for the representation of any kind of data in
particular sequence [28][29]. This research uses directed
acyclic graphs (DAG) rather than cyclic graphs. Requirements
are represented as vertices and arrows in the graph indicates
the dependency of a requirement on another requirement. The
requirement generates arrow and points to another
requirement indicating that it is necessary or required for

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 9, 2020

212 | P a g e

www.ijacsa.thesai.org

another requirement. For example, R1  R2 indicates that R1
is depended on R2 or R2 is required for the completion of R1.
Given the requirements collected, Fig. 1 shows the graphical
representation of requirements through DAG. Cycles in
requirements are not possible because if one requirement is
needed for the implementation of other requirement than
opposite is not possible e.g. if R1 is required for R2 and R2 is
required for R3 than it is not possible that R3 will be required
for R2 and R1. Graph based approach is also used in one of
our previous research study to related FRs [30].

Spanning trees are special graph that have several
important properties. First, if T is a spanning tree of graph G,
then T must span G, meaning T must contain every vertex in
G. Second, T must be a sub graph of G. In other words, every

edge that is in T must also appear in G. Third, if every edge in
T also exists in G, then G is identical to T [31]. Spanning trees
can be formed simply either by performing breadth-first
search (BFS) or depth-first search (DFS) or it can be formed
directly from adjacency matrix. Because spanning trees use
graph-based search algorithms that are only dependent on the
number of vertices in the graph, the algorithms are
considerably fast [32][33]. The general properties of spanning
trees are as follows.

The resulting spanning trees from graph of Fig. 1 are
shown in Fig. 2. From a spanning tree, one can easily see the
need of particular requirement in relation to other
requirements.

Fig. 1. Graph Connecting Requirements for Making Spanning Tree from Graphs.

Fig. 2. Tree 1, Tree 2, Tree 3, Tree 4, Respectively.

R1

R2

R3

R4 R5

R7
R8

R10

R13

R9
R11

R6
R14

R12

R2

R1

R4

R3

R1

R5

R3

R1

R6

R7
R8

R9

R10
R11

R13

R12

R14

R3

R1

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 9, 2020

213 | P a g e

www.ijacsa.thesai.org

B. Analytical Hierarchical Process (AHP)

Spanning trees will show the relationship of requirement
with other requirements. As shown in Fig. 2, a finite number
of spanning trees will be produced from directed graph. Next,
AHP will be applied to individual trees or combination of
many trees that have common requirements. The main idea is
that while applying AHP to spanning tree, only depended
requirements will be compared, hence resulting in optimal
prioritization in a reduced time. For example, consider the
spanning tree with starting node R6 shown in Fig. 2, R6 will
be compared with R3, R1 and R7 as it is required for all these
requirements. However, R7 will be not compared with R1 or
R3 as there is no direct relation with these requirements. In
this case, when R6 is compared with R3 or any other
requirement, then there is no need to compare between R3
with R6. Requirements that are not depended can be
considered as equal during comparison and assigned with
value 1. This means with the help of spanning tree, the
number of comparisons can be greatly reduced. AHP can be
applied to either every spanning tree individually or
combination of two or more trees if they have some
requirements in common. We have five spanning trees as
given in Fig. 2. AHP will be applied to first four spanning
trees combined as they are related by some common
requirements. First, apply AHP to Tree 5 starting with root R8
and then apply AHP to combined four trees. Table I shows
requirements of Tree 5 for comparison and calculation.

From Table I, we can see that we can put value either 1 or
greater than 1 while comparing any two requirements. We can

only put 1 or greater value where 1 represents equal priority
requirements and value greater than 1 represents those
requirements that have not equal priorities. For instance, we
can use values such as 2, 3, 4, …, n for requirements that are
not equal in priorities. If we increase the value, the difference
in both requirements will be increased. The value 2 is taken
for requirement that is needed for other requirement. For
instance, if R1 is required for R2 and R2 is required for R3,
then we will put 2 for R1 against R2 and will put 4 for R1
against R3. The value 1 is taken for requirements that have
either equal priority or not related and 2 against those
requirements that need this particular requirement as well and
value ½ for the reverse case. In this case, as R8 is required for
R9, therefore the value is 2 against R9 for R8. Priority value
for each requirement against other requirements is shown in
Table I e.g. priority of R9 against R8 is 0.5 which means
priority of R8 is double as compare to R9. For independent
requirements like R10 and R12, we put value 1 because these
requirements have no relation.

Next, the task is to calculate normalized values for each
requirement by dividing the values of each column value in
Table I by column sum. Column sum for each column is
shown in Table II. For example, the value 1 in the first row
and the first column will be divided by 2.5, which comes to
0.4. Consequently, normalized values for each requirement are
shown in Table II. The column sum2 represents the averaging
over normalized values for each row. The same process is then
repeated for the combined four trees together and the values
obtained in shown in Table III.

TABLE I. PAIRWISE COMPARISON FOR TREE 5

 R8 R9 R10 R11 R12 R13 R14

R8 1.000 2.000 4.000 4.000 4.000 8.000 8.000

R9 0.500 1.000 2.000 2.000 2.000 4.000 4.000

R10 0.250 0.500 1.000 1.000 1.000 1.000 1.000

R11 0.250 0.500 1.000 1.000 1.000 2.000 2.000

R12 0.250 0.500 1.000 1.000 1.000 1.000 1.000

R13 0.125 0.250 1.000 0.500 1.000 1.000 1.000

R14 0.125 0.250 1.000 0.500 1.000 1.000 1.000

Sum 2.500 5.000 11.000 10.000 11.000 18.000 18.000

TABLE II. NORMALIZATION AND AVERAGING AND FOR TREE 5

 R8 R9 R10 R11 R12 R13 R14
Sum2/

priority

Out of 1

(x = sum/7)
Z= (x/2)

R8 0.400 0.400 0.360 0.400 0.360 0.440 0.440 2.800 0.400 0.200

R9 0.200 0.200 0.180 0.200 0.180 0.220 0.220 1.400 0.200 0.100

R10 0.100 0.100 0.090 0.100 0.090 0.055 0.055 0.600 0.090 0.045

R11 0.100 0.100 0.090 0.100 0.090 0.110 0.110 0.700 0.100 0.050

R12 0.100 0.100 0.090 0.100 0.090 0.055 0.055 0.600 0.090 0.045

R13 0.050 0.050 0.090 0.050 0.090 0.055 0.055 0.440 0.060 0.030

R14 0.050 0.050 0.090 0.050 0.090 0.055 0.055 0.440 0.060 0.030

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 9, 2020

214 | P a g e

www.ijacsa.thesai.org

TABLE III. CALCULATING PRIORITIES OF TREE 1 TO TREE 4 (COMBINED)

 R1 R2 R3 R4 R5 R6 R7
Sum2/

priority

Out of 1

(y = sum/7)
Z = (y/2)

R1 0.055 0.076 0.050 0.040 0.040 0.043 0.125 0.430 0.060 0.030

R2 0.110 0.153 0.105 0.170 0.170 0.173 0.125 1.000 0.140 0.070

R3 0.110 0.153 0.105 0.086 0.086 0.086 0.125 0.751 0.110 0.055

R4 0.220 0.153 0.210 0.170 0.170 0.173 0.125 1.221 0.200 0.100

R5 0.220 0.153 0.210 0.170 0.170 0.173 0.125 1.221 0.200 0.100

R6 0.220 0.153 0.210 0.170 0.170 0.173 0.250 1.346 0.200 0.100

R7 0.055 0.153 0.105 0.170 0.170 0.086 0.125 0.864 0.123 0.062

The column sum2 also shows the priority value of every
requirement of the spanning tree, in particular, or combination
of spanning trees. The sum of these sum2 values will equal to
number of requirements i.e. 7. These values can be divided on
number of requirements to find priority of requirements out of
1. For considering whole set of requirements i.e. In 14
requirements, priority value will be divided on 2 (2 is sum
value for all requirements priorities). Column value z for
Table II and Table III shows priority out of 14 requirements.
Priority out of 14 is calculated. Similarly, for calculating
priority of requirement in 100, value 100 is multiplied.

C. Time Complexity of SAHP

Time complexity of AHP depends on total number of
pairwise comparisons. With spanning tree, total number of
comparisons are reduced because of limited number of
relations. Either we consider combination of all spanning trees
in one table or individual trees, the number of comparisons of
dependent or related requirements will be always same (from
adjacency matrix one can see how much relations exists). The
number of comparisons in all cases will depend on how much
relations of requirements in graph exist. In this example, as
only 20 relations are possible, the total number of comparisons
will equal to only 20. Therefore, in this way, number of
necessary comparisons are reduced from n*(n-1) / 2, which
was from 91 to only 20 in this example. This reduction in
value shows the advantage of using spanning trees for related
depended requirements only. Overall values and calculations
during comparing requirements can be reduced by considering
individual trees for prioritization as explained.

For given requirements set, maximum relations that can
exists are equal to ((n-1) + (n-2) + (n-3) + . . . + (n-n)), where
n are total number of requirements. This is possible when all
requirements are connected point to point in chain like
structure such that one requirement is dependent on other
requirement. The value of n will be decremented and will be
added until it reaches to 0. In such case, total number of
comparisons will become n*(n-1) / 2 which is equal to number
of comparisons of AHP. The minimum number of relations
will be 0 in any requirements set. In such case, priority of all
requirements will be consider to be equal i.e. 1. Fig. 3 shows
number of comparisons of two techniques i.e. AHP without
spanning trees by considering all requirements and AHP with
spanning trees. Let‘s take 10 requirements. Minimum possible
relations are 0 while maximum relations can be 45. Any
number of relations can be possible between 0 and 45. The
orange linear line of Fig. 3 shows that number of comparisons

in this proposed approach is directly proportional to number of
relations. It is equal to 45 i.e. case of AHP where maximum
relations exist. In small set of requirements where
requirements are few in amount, this is possible that maximum
relations exist (number of relations reaches number of
requirements) such that each requirement is point to point
connected with other requirement but we rarely can see such
number of relations in large set of requirements like ERP.

From this discussion, it can be concluded that by
comparing only the depended requirements through spanning
tree, the number of comparisons and calculations can be
greatly reduced. Therefore, although total comparisons of
dependent requirements are same in all cases, but as the entire
project, the number of comparisons and calculated normalized
values are not same due to independent requirements.

D. Requirements Priority

Priority is assigned to requirements on the basis of its
position in spanning tree i.e. how much they are needed and
dependent on other requirements. Requirements need can
either increase breadth-wise or depth-wise. In either case,
priority can increase but priority values in both cases can be
different. Similarly, priority of requirement can decrease when
requirements are dependent and wait for other requirements.

AHP can be applied for calculating priority of requirement
on the basis of how much they are depended or required for
other requirements. AHP is simple and accurate prioritizing
technique that can find priority of requirements by comparing
pairwise all requirements together. If requirement let say R1 is
required for R2 and R2 is required for R3, then priority of R1
can be taken as double of R2 or it can be said that priority of
R1 is two times as compared to R2 while R1 priority is 4
times as compare to R3. The following scenarios show
different cases of requirements behavior as they change when
applied with AHP.

Scenario 1: In this scenario priority of requirement is
determined when its need for other requirements increases
breadthwise. Breadthwise contain all requirements on same
level with same priority. Two cases can be considered here,
one with seven requirements and other with five requirements
and calculate priorities.

Case 1: In this case, R1 is required for six other
requirements with all requirements on same level with same
priority as shown in Fig. 4.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 9, 2020

215 | P a g e

www.ijacsa.thesai.org

Through AHP, we have calculated priority of R1 by
comparing all seven requirements together which is equal to
1.75. R1 is considered to be double in priority as compare to
individual requirements during pairwise comparison. The
priority of all other requirements is shown in Table IV.
Table IV summarizes priority values for all requirements.

Case 2: In this case, R1 is required for four other
requirements with all requirements on same level or priority in
Fig. 4. Now priority of R1 is reduced to 1.32 as shown in
Table IV.

Scenario 2: In this scenario, requirements size increases
depth wise. In case 01 of scenario 1, R1 is required for six

other requirements in depth wise structure such that one
requirement is depended on other requirement as shown in
Fig. 5. In case 02, number of requirements that need R1 are
reduced from six to four. Priority of R1 in first case comes out
3.5 while in second case it is 2.21. The priority of R1 in 2

nd

case of scenario 2 (required for four requirements) is still
greater than case 01 of scenario 1 (required for six
requirements). This shows priority increases with greater ratio
depth wise and this has advantage because in scenario 1, R1 is
available to all requirements after implementation but in
scenario 2, it is not available to all requirements e.g. R7 in
scenario 2 can‘t be implemented when R6 is not available but
in scenario 1, all requirements are dependent on R1.

Fig. 3. Comparison of AHP and Proposed Approach.

Fig. 4. Breadth-Wise Increase of Requirements.

TABLE IV. COMPARISON OF PRIORITY OF REQUIREMENTS AS RESULT OF AHP

Requirements
Scenario 1 Scenario 2

Scenario 3
Case 1 Case 2 Case 1 Case 2

R1 1.750 1.32 3.500 2.210 1.0

R2 0.875 0.68 1.750 1.245 0.5

R3 0.875 0.68 0.875 0.758 0.5

R4 0.875 0.68 0.437 0.515 0.5

R5 0.875 0.08 0.210 0.400 0.5

R6 0.875 x 0.105 0.900 2.0

R7 0.875 x 0.500 0.900 2.0

Fig. 5. Depth-Wise Increase of Requirements.

R4 R5

R1

R2 R3 R4 R5

R1

R2 R3
R6 R7

R1 R2 R3 R4 R5 R6 R7

R1 R2 R33 R4 R5

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 9, 2020

216 | P a g e

www.ijacsa.thesai.org

Scenario 3: Priority of requirement decreases when its
dependency on other requirements increase. The reason is that
during comparison against other requirements, sum of values
are reciprocal of 1. Fig. 6 shows the priority of R1 against R6
and R7 will be equal to ½. The sum of reciprocal values will
reduce the priority of requirement. Priority of R1 is now 1,
which is minimum as compared to all cases. Priority of other
requirements are shown in Table IV.

From values given in above Table IV, it can be concluded
that requirement priority is associated with its increasing size
but the ratio in which it increases depth wise is greater than
breadth wise and it should be increase with high ratio in depth
wise as compare to breadthwise because in breadthwise, the

pre-requisite requirement is available for all requirements and
the delay is not too much as compare to the case of depth wise
where pre-requisite requirement is not available for all
requirements and by delaying this requirement can delay the
implementation of its requirements more in case of parallel
developing project.

Similarly, if number of pre-requisite requirements and
number of requirements for which particular requirement is
needed are equal then priority of requirement will be equal.
For example, in Fig. 7, the number of backward and forward
requirements for R1 are equal, in all cases priority of
requirement will be equal. With AHP, we have calculated
priority of R1 that is 0.84 for all cases of Fig. 7.

Fig. 6. Number of Pre-Requisite Connected with Requirement.

Fig. 7. Distribution of Requirements with Same Ratio.

IV. VALIDATION OF SAHP ON ODOO ERP

SAHP was evaluated on requirements of On Demand
Open Object (ODOO). ODOO is open source ERP software
system that is used by millions of users for managing
hundreds of possible enterprises and their resources. In many
of research studies, authors used different modules of ODOO
ERP [34][35][36]. In ERP system, all modules are integrated
which shows that all the requirements should be inter-related.
Modules of ERP are highest level URs that are further
comprised of low level FRs. With spanning tree, we can relate
FRs that can belong to any module. Module is just high level
abstraction to which requirements of same nature belong e.g.

customer and supplier creation are FRs that belong to HR
module while customer sale and supplier sale are FRs that
belong to sale management module. With spanning tree, we
can relate these FRs that belong to different modules. Thus
spanning tree does not show abstraction or high level
representation of requirements because it relates only different
requirements that belong to particular module. Selection of
particular modules have impact on priority of their FRs. This
means variations in selecting different modules by users have
impact on FRs structure. The suggested prioritization
approach will be applied on the FRs of ODOO to prioritize
them. The modules of ERP consists of 96 FRs for this study as
shown in Table V.

R4

R1

R5 R2 R3

R6 R7

R2

R3

R1

R2

R4

R1

R3

R5

R2

R4

R1

R3

R5

R6

R7

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 9, 2020

217 | P a g e

www.ijacsa.thesai.org

TABLE V. REQUIREMENTS OF ODOO ERP FOR HR MODULE

Notation Requirement
Module

No.

Required

For
Tree Notation Requirement

Module

No.

Required

For

Tree

R1 employee creation 1

R81, R25,

R23, R67,

R2, R4, R10,

R11, R12,

R17, R18,

R20, R21,

R22, R7, R9,

R8

T1 R69 sale return view 3
T10

R2

public

information‘s of

employee

1 T1 R42 purchase 4 R51, R59
T4, T5,

T6

R3
employee personal

info
1 R59 purchase view 4

T4, T5,

T6

R4 contact info 1 T4 R60 purchase return 4 R68
T4

R5 job position 1 T2, T3 R68
purchase return

view
4

T4

R6 department 1 R5, R61, R67 T2, T3 R34 product 5

R42, R60,

R66, R35,

R70, R71,

R90,

R7 job information‘s 1 R66 stock ledgers 5
T4

R8 manager 1 R5, R24, R67 R70 product transfer in 5
T4

R9 coach 1 R71 product transfer out 5
T4

R10
contract

information‘s
1 T1 R56 company 5

R11
contract reference

information‘s
1 T1 R90

manufacturing

orders
5

T4

R12 salary generation 1 R21
T1,

T18
R24 project management 6

R26, R27,

R28, R29
T3

R22 hr expenses 1 R23 T1 R25 add team members 6
T1

R23 hr expenses detail 1 T1 R26 extra information‘s 6
T3

R33 customer detail 1

R73, R55,

R36, R35,

R61, R64,

R39

T10 R27 project stages 6
T3

R37 sales persons 1
R58,

R63,R35
 R28 view current task 6

T3

R41 supplier detail 1

R44, R65,

R72, R42,

R52, R60

 R29 create a task 6 R31
T3

R43 sales man 1 R42,R44 T5 R30 extra information‘s 6

R57 region 1 R58 R8 R31 tasks stages 6
T3

R58 area 1 R35 R7, R8 R93
directories for

documents
7

T11

R80
job position in

recruitment
1 T4 R94 documents history 7 R96

T15

R81 job 1 T1, T2 R95
documents

attachments
7 R96

T14

R82 appraisal form 1 R91 fleet management 8 R92
T11

R83
create a job

position
1 R92 vehicle repairing 8

R84 recruitment form 1 R13 salary rules 9
T18

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 9, 2020

218 | P a g e

www.ijacsa.thesai.org

R85
job selection

process
1 R14 salary structure 9 R12

T16

R86 link tracker 1 R15 salary categories 9 R12
T17

R87 mass mailing 1 R16 registers 9 R12, R13
T18

R88 contact 1 R21 hr payroll process 9

T1,

T16,

T17,

T18

R89 business pipeline 1 R17 apply for leave 10 R19, R20
T1

R38 customer receipts 2 T10 R18 allocation request 10
T1

R39 customer payment 2 R55, R38 T10 R19 leave approval 10
T1

R40 supplier receipts 2 T12 R20 leave summary 10
T1

R44 supplier refund 2 T5, T6 R46 bank statement 11 R47
T9

R45 supplier payment 2 R40 T12 R47 bank detail 11
R49, R50,

R53
T9

R52 supplier payment 2 R48 cash registers 11

R53 journals accounts 2 R54 T9 R49 put money in 11
T9

R54 chart of accounts 2
T9,

T10
R50 put money out 11

T9

R55 analytic accounts 2 R54 T10 R51 profit and lost 11
T4, T5,

T6

R63 salesman ledgers 2 T7 R75 compose message 12

R64 customer ledgers 2 T10 R76 message inbox 12 R79
T13

R65 supplier ledgers 2 T6 R77 message draft 12

R67
hr expense

management
2

T1, T2,

T3
R78 sent messages 12

R74 balance sheet 2 R79 message searching 12
T13

R32 customer invoice 3 R36 R72 order to suppliers 13
T6

R35 sale 3
R61, R62,

R32
 R73 order from customer

T10

R36 customer refund 3 T10 R96
documents

attachment

T14,

T15

R61 sale return 3 R69 T10

R62 sale view 3

A. Results and Discussion

Results of prioritization of ODOO ERP requirements after
applying suggested framework using AHP and spanning tree
combination have been calculated. Requirements are
prioritized by applying the same criteria discussed.

1) Spanning trees: As the result, 8 spanning trees are

constructed (T1, T2 up to T18) while 19 requirements are

independent requirements which are neither required nor

dependent on other requirements. The root and the detail

requirements are given in Table VI. Spanning trees are

categorized into different groups which are made on the basis

of common requirements in different spanning trees. For

example, in T1 and T2, the common requirement is R67.

Similarly, R21 is common in T1, T16, T17 and T18. Six

groups (A, B, C, D, E, and F) of different trees are made

which are shown in Table VI.

2) Applying AHP to spanning trees: The column

―priority‖ as shown in Table VII shows priority of

requirements as a result of applying AHP on spanning tree.

Priority of requirements in spanning trees are calculated. We

have calculated priority of these requirements out of 100 as

shown in Table VII.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 9, 2020

219 | P a g e

www.ijacsa.thesai.org

TABLE VI. COMBINING REQUIREMENTS OF SPANNING TREES

Group Tree Root Requirements Efforts (Hours)

A

T1

T2
T3

T16

T17
T18

R1

R6
R8

R14

R15
R16

R81, R23, R25, R2, R4, R10, R11, R12, R17, R18, R19, R20, R22, R21, R67

R5, R67, R81,
R5, R67, R24, R26, R27, R28, R29, R31

R21

R21
R12, R13, R21

720

B

T9
T8

T7

T10
T4

T5

T6

R46
R57

R37

R33
R34

R43

R41

R47, R49, R50, R53, R54
R58

R58, R63, R35, R61, R62, R32, R36, R69

R73, R55, R54, R35, R61, R62, R32, R36, R69, R64, R38, R39,
R42, R51, R59, R60, R66, R68, R70, R71, R80, R90, R35, R61, R62, R32, R36, R69

R42, R51, R59, R44

R42, R51, R59, R44, R52, R60, R68

1230

C T11 R92 R93 50

D T12 R45 R40 50

E T13 R76 R79 50

F
T14
T15

R95
R94

R96
R96

80

Individual requirements 470

Total efforts in man hours 2650

TABLE VII. REQUIREMENTS PRIORITY OF ODOO

Notation
Combined Priority

(Out of 100)

Separate Priority

(Out of 100)
Notation

Combined Priority

(Out of 100)

Separate Priority

(Out of 100)

R1 1.66 2.22 R62 0.72 0.84

R2 0.96 0.96 R69 0.62 0.79

R3 1.03 1.03 R42 0.9 0.91

R4 0.96 0.96 R59 0.77 0.75

R5 0.98 0.82 R60 0.9 0.90

R6 1.08 1.20 R68 0.81 0.80

R7 1.03 1.03 R34 2.37 2.90

R8 1.65 2.68 R66 0.9 0.90

R9 1.03 1.03 R70 0.93 0.94

R10 0.96 0.96 R71 0.9 0.90

R11 0.96 0.96 R56 1.03 1.03

R12 0.97 0.88 R90 0.9 0.90

R22 0.96 0.96 R24 1.16 1.34

R33 2.72 3.10 R25 0.96 0.96

R37 2.57 2.70 R26 0.92 0.73

R41 1.47 2.056 R27 0.92 0.73

R43 1.20 1.414 R28 0.92 0.73

R57 1.031 1.045 R29 0.96 0.78

R58 0.78 0.79 R30 1.03 1.03

R80 0.86 0.79 R31 0.92 0.61

R81 0.98 0.92 R93 0.72 0.72

R82 1.03 1.03 R94 1.23 1.23

R83 1.03 1.03 R95 1.23 1.23

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 9, 2020

220 | P a g e

www.ijacsa.thesai.org

R84 1.03 1.03 R91 1.03 1.03

R85 1.03 1.03 R92 1.37 1.37

R86 1.03 1.03 R13 0.97 0.90

R87 1.03 1.03 R14 1.01 1.07

R88 1.03 1.03 R15 1.01 1.07

R89 1.03 1.03 R16 1.1 1.44

R38 0.87 0.81 R21 0.90 0.88

R39 1.10 1.12 R17 1.02 1.06

R40 0.72 1.03 R18 0.96 0.96

R44 0.87 0.85 R19 0.95 0.88

R45 1.37 1.37 R20 0.96 0.88

R52 0.90 0.90 R46 1.6 2.63

R53 1.08 0.79 R47 1.15 1.17

R54 0.70 0.41 R48 1.03 1.03

R55 0.90 0.81 R49 0.89 0.60

R63 0.84 0.85 R50 0.89 0.60

R64 0.93 0.87 R51 0.77 0.75

R65 0.91 0.90 R75 1.03 1.03

R67 0.92 0.83 R76 1.37 1.37

R74 1.03 1.03 R77 1.03 1.03

R32 0.77 0.88 R78 1.03 1.03

R35 1.34 1.47 R79 0.72 0.72

R36 0.62 0.79 R72 0.91 0.90

R61 0.77 0.64 R73 0.93 0.88

R23 0.96 0.96 R96 0.618 0.62

B. Time Estimation

Time estimation is time taken by particular requirement to
complete its implementation. Every requirement consume
certain amount of efforts on the basis of which time can be
calculated. Many models are suggested by authors for
calculating efforts and time estimation of requirements and
projects. We applied USE CASE point (UCP) estimation
technique which was simple in use and more appropriate for
our requirements. The UCP estimation method was presented
initially in 1993 by Karner estimates efforts in person-hours
based on use cases that primarily specify FRs of a system
[11][12]. Use cases are assumed to be developed from scratch,
be sufficiently detailed and typically have less than 10-12
transactions. The method has previous been used in numerous
industrial software development projects. There have been
promising outcomes and the method was highly accurate than
expert estimates in industrial trials.

UCP defines the functional scope of the system to be
developed. Attributes of a use case model may therefore serve
as measures of the size and complexity of the functionality of
a system. After following all steps of USE case estimation
technique, effort in hours for each requirement is calculated.
After approximation, we have divided requirements into three
categories as follows.

 First category contains requirements that take
approximately 20 hours to complete its
implementation. This is time just needed to implement
requirement with functionalities. This time contain unit
and integration testing time.

 Second category contain requirements that contain
requirements that take approximately 30 hours to
complete its implementation.

 Third category contain requirements contain
requirements that take approximately 60 hours to
complete its implementation.

Completion time of particular module will be sum of time
taken by all its requirements. This time reduces when the
project is to be developed by parallel team members. But total
actual time can exceed calculated time in parallel development
projects because requirements are interrelated to each other‘s
and waiting time for particular requirements can cause delay
in projects. The purpose of prioritization is to minimize the
delay or waiting time.

V. DISTRIBUTION OF REQUIREMENTS IN PARALLEL

DEVELOPERS

From results of prioritization we can conclude that not
only priority value and order of requirements is necessary for
reducing delays and assuring timely delivery of project but

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 9, 2020

221 | P a g e

www.ijacsa.thesai.org

distribution of requirements in team members is also
necessary. Total delivery time of project is equal to maximum
time taken by any team member to implement all
requirements. Distribution of requirements as shown in
Table VIII are not uniform e.g. actual time estimation of
requirements of A = 410 hours, B = 610 hours, C = 880 hours
and D = 670 hours. Total delivery time of the project can
exceed from 880 hours due to waiting time which is the
maximum time of team member C but total time can‘t be less
than 880 hours. This is because C is given those requirements
which take more time in hours. Efficient distribution will be in
that case where everyone is given requirements with same
efforts. The generalized formula we can make for equal
distribution is as follows.

Where total efforts (man hours) = Total efforts (for all
requirements starts from R1 to Rn).

From this formula, we will get average time for every team
member which becomes 660 hours. If every team member gets
no more than 660 hours than in ideal case total estimation time
of delivery of project can be 660 hours which is reduced from
880 hours. This means further adjustment will be needed to
reduce time estimation more and for this purpose some
requirements of C can be assigned to A.

Along with equal distribution of requirements, we should
reduce dependency among requirements of different team
members as much as possible. Requirements of A that are
required for C can be adjusted and can be assigned to C.
Similarly, some requirements of C can be adjusted and
implemented by A. From the spanning tree, one can easily

identify which requirements are dependent on each other, so
dependent requirements can be assigned to same team
members. In ideal case, distribution of requirements will be
uniform and dependency between different team member
requirements will be zero.

The best way to distribute requirements is thus assigning
requirements of whole spanning tree to same team member.
Requirements of spanning trees should be adjusted in such a
way that every team member get requirements with equal
weight of man hours. Team members can either implement big
spanning tree requirements or requirements of many small
spanning trees. If some trees requirements are distributed in
more than one member than requirements should be
prioritized in order to reduce the waiting time.

A. Combining and Splitting the Spanning Trees

If two or more than two trees have some common
requirements than we can combine two trees and consider as
one group. The reason is that common requirements are
depended on requirements of more than one trees
requirements and hence this dependency can increase waiting
time and cause delays in parallel developing projects. Splitting
process is taken when tree size is either big or difficult to
assign all its requirements to single developer or sometimes
small size trees are split to assure equal distribution of
requirements. Table VIII shows how different trees are
combined. Six groups were made as result of combining trees
with common requirements. Total efforts in man hours for
each group are also shown below. It is better to split tree at
edge where two trees are combined for assigning requirements
to different developers. For example, T9 and T10 are
combined with R54, so the tree can be break here.

TABLE VIII. COMBINING AND SPLITTING OF REQUIREMENTS OF SPANNING TREES

No of team

members

Efforts per team

(hours) with equal
distribution

Splitting of trees Combining trees

Time estimation for

implementing
requirements

Time completion with

prioritization

01 2650 NIL All trees are considered 2650 hours 2650 hours

02 1325 NIL

Developer 1: [B + C + D]

Developer 2: [A + E + F + 470

individuals]

1230 hours 1230 hours

03 880
Breaking of Group B:

1230 = 350 + 880

Developer 1: [880 of B]

Developer 2: [350 of B + C + D
+ E + F + 300 individuals]

Developer 3: [A+ 170
individuals]

880 hours 880 hours

04 660

Breaking of Group B: 1230 =

640 + 590

Breaking of Group A:

720 = 660 + 60

Developer 1: [640 of B + 20
individuals]

Developer 2:[590 of B + C + 20
individuals]

Developer 3:[660 of A]

Developer 4: [60 of A + D + E +

F + 430 individuals]

670 hours 670 hours

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 9, 2020

222 | P a g e

www.ijacsa.thesai.org

Common requirements can be assigned to any tree.
Common requirements normally get low priority as they are
dependent on other requirements. Similarly, T4 and T6 are
combined with R42. In this case, we can break here (edge of
R42) in order to equally distribute requirements. Common
requirements can be adjusted with any tree requirements. But
for equal distribution in terms of time efforts, especially in
case where a single tree is quite large and needs to split, then
we will split it. In such case, try to split an edge and assign
those requirements that have significantly high priority
difference from their parent requirements. It is better to split at
edge where there exists quite big difference in priorities
between two requirements. E.g. if tree T4 is to be split, there
can many options, either to split edge at R60, R66, R35, R70,
R71 or R90.

The difference in priorities between R34 and R35 is less as
compare to other requirements because R35 is high priority
requirement, so splitting at R35 can increase waiting time if
R35 is assigned to different team member. Splitting at edge of
low priority requirement and assigning it to other team
member will decrease the effect of dependency and waiting
time. For maintaining balance and equal distribution, more
than one trees can be split e.g. T3 can be split along with T4
but at point where there exists quite difference in priority.
Thus from values of SAHP, distributed priority can be
determined requirements can be easily assigned to team
members such that effect of dependency in requirements
become low as much as possible.

B. Distribution of Requirements

Requirements will be distributed in such a way that there
does not exist either relation between requirements of different
team members or if relation exist, then requirements should be
prioritized so that waiting time can be reduced and timely
implementation of requirements can be assured. Few cases are
considered for distribution of requirements as shown below.

1) Distribution of requirements in 2 team members: In

distributing requirements based on efforts in man hours per

team member, the value will be equal to 1325 hours i.e. half of

total 2650 hours. There is no need to split any tree or group of

trees because different groups can be managed to produce

total efforts of 1325 hours. We can assign requirements of

groups B, C, D to one developer for implementation and

groups A, E, F along with 470 individual requirements to

second developer. In this way two different developers will

get independent requirements with no relationship between

any two requirements.

2) Distribution of requirements on 3 team members: In

this case efforts per team member will be equal to 880 hours.

While distributing requirements on three developers, it is must

to split large tree or group of trees to assure equal distribution

of requirements on developers. Requirements with total efforts

of 350 hours were separated from group B. The separated

requirements from any tree of group based on values of

SAHP. Group B requirements after splitting will remain with

efforts of 880 hours. In this way two sub groups are made.

Sub-group with 350 hours can be adjusted with groups C, D,

E, F and 300 hours of individual requirements to comprise

total of 880 hours. Similarly, requirements of group A can be

implemented along with remaining individual requirements

i.e. 170 hours. In such way equal distribution of requirements

can be assured. After distributing requirements, it is necessary

to prioritize it to reduce waiting time and delays in project.

3) Distribution of requirements in 4 team members: To

assure equal distribution of requirements, every team member

will get requirements of 660 hours. For equal distribution, we

can split group B into two subgroups with 640 and 590 hours.

Similarly group A can be split into two subgroups with 660

and 60 hours. Splitting Group A were necessary as

requirements of A were exceeded from 660 hours. Efficient

distribution and prioritization of requirements reduces the

effect of dependency between requirements and waiting time

in parallel developing projects which results in timely delivery

of projects. Separated requirements are shown in Table IX.

TABLE IX. SEPARATED REQUIREMENTS OF SPANNING TREES

Number of
Developers

A B C D E F

2 nil nil nil nil nil nil

3 nil

(R66, R70, R71, R80, R90, R42, R43, R44, R38, R52, R72)

OR

(R41, R44, R65, R72, R52, R42, R51, R59, R52, R60, R68)

nil nil nil nil

4 R4, R10, R11
R66, R70, R71, R80, R90, R42, R43, R44, R38, R52, R72, R41,

R64, R68, R65, R60
nil nil nil nil

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 9, 2020

223 | P a g e

www.ijacsa.thesai.org

VI. CONCLUSION

This paper proposed an approach for prioritizing FRs using
AHP based on spanning trees. The proposed approach of
SAHP has been presented in detail with evaluation on ODOO
ERP system. The proposed framework is capable of
prioritizing large-sized FRs while in active development cycle.
As FRs are inter-related, so prioritization will help in easy
arrangement of requirements. Similarly, apart from its
implementation priority, in which the requirement is pre-
requisite for other requirements, if we compare two
requirements that are totally independent of each other, then
deciding about which requirement is more important is a very
important task. Importance of requirement was measured from
how much it can reduce delay or waiting time.

Prioritizing and implementing important requirements
decrease not only total estimation time but also decrease non-
critical delay. Although non-critical delay does not increase
estimation time of the project, it affects the waiting time of
requirements. Another big problem that needs to be solved is
that how much the proposed technique is scalable of handling
and prioritizing large requirements size. Prioritizing large size
requirements on the basis of its importance was solved using
AHP and spanning tree in combination. AHP is used because
it can solve dependency issues of requirements as it
statistically compares pairwise for each and every requirement
against other requirements. Requirements were represented
with directed graph and spanning tree. From spanning tree, it
became easy to decide about not only which requirement was
necessary for other requirement but it became easy to compare
all neighbor requirements that belong to same tree. AHP was
applied to each tree separately and only depended
requirements were scored value greater than 1. Priority of all
other requirements during comparison were considered equal.

The results were obtained and were evaluated on parallel
developing requirements of ODOO ERP. From different cases
for prioritized and un-prioritized requirements, we showed
that the proposed framework not only deal with big size
requirements but reduce all possible delays in projects. We
have shown that how spanning tree can help in equal and
efficient distribution of requirements in parallel developing
team members so that the effect of dependency and waiting
time of requirements can be reduced. In future, we aim to do
more industrial based experiments in order to validate
framework on big projects and get feedbacks from industry.

ACKNOWLEDGMENT

This paper is supported by Research Fund E15501,
Research Management Centre, Universiti Tun Hussein Onn
Malaysia.

REFERENCES

[1] M. Yaseen, S. Baseer, and S. Sherin, ‗Critical Challenges for
Requirement Implementation in Context of Global Software
Development : A Systematic Literature Review‘, pp. 120–125, 2015.

[2] M. Yaseen, M. Bacha, and Z. Ali, ‗REVIEW PAPER
COORDINATION AND COLLABORATION PRACTICES IN
GLOBAL By‘, vol. 14, no. 2, 2020.

[3] Z. Ali and M. Yaseen, ‗Critical Challenges for Requirement
Implementation in Global Software Development : A Systematic

Literature Review Protocol with Preliminary Results‘, vol. 182, no. 48,
pp. 17–23, 2019.

[4] M. Yaseen, Z. Ali, and M. Humayoun, ‗Requirements Management
Model (RMM): A Proposed Model for Successful Delivery of Software
Projects‘, Int. J. Comput. Appl., vol. 178, no. 17, pp. 32–36, 2019.

[5] A. U. Rahman, M. Yaseen, and Z. Ali, ‗Identification of Practices for
Proper Implementation of Requirements in Global Software
Development : A Systematic Literature Review Protocol‘, vol. 177, no.
13, pp. 53–58, 2019.

[6] Z. Ali, M. Yaseen, and S. Ahmed, ‗Effective communication as critical
success factor during requirement elicitation in global software
development‘, vol. 8, no. 03, pp. 108–115, 2019.

[7] M. Yaseen, S. . Baseer, S. . Ali, S. U. . Khan, and Abdullahb,
‗Requirement implementation model (RIM) in the context of global
software development‘, 2015 Int. Conf. Inf. Commun. Technol. ICICT
2015, 2015.

[8] M. Yaseen and Z. Ali, ‗Success Factors during Requirements
Implementation in Global Software Development : A Systematic
Literature Review‘, vol. 8, no. 3, pp. 56–68, 2019.

[9] M. Yaseen, A. Mustapha, and N. Ibrahim, ‗Minimizing Inter-
Dependency Issues of Requirements in Parallel Developing Software
Projects with AHP‘, vol. 8, no. Viii, 2019.

[10] M. Yaseen, A. Mustapha, and N. Ibrahim, ‗An Approach for Managing
Large-Sized Software Requirements During Prioritization‘, 2018 IEEE
Conf. Open Syst., pp. 98–103, 2019.

[11] N. Garg, M. Sadiq, and P. Agarwal, ‗GOASREP : Goal Oriented
Approach for Software Requirements Elicitation and Prioritization
Using Analytic Hierarchy Process‘, pp. 281–287, 2017.

[12] M. A. A. Elsood and H. A. Hefny, ‗A Goal-Based Technique for
Requirements Prioritization‘, 2014.

[13] M. Yaseen, A. Mustapha, A. U. Rahman, S. Khan, and W. Kamal,
‗Importance of Requirements Prioritization in Parallel Developing
Software Projects‘, vol. 9, no. 2, pp. 171–179, 2020.

[14] M. Yaseen, N. Ibrahim, and A. Mustapha, ‗Requirements Prioritization
and using Iteration Model for Successful Implementation of
Requirements‘, Int. J. Adv. Comput. Sci. Appl., vol. 10, no. 1, pp. 121–
127, 2019.

[15] R. Beg, R. P. Verma, and A. Joshi, ‗Reduction in number of
comparisons for requirement prioritization using B-Tree‘, no. March, pp.
6–7, 2009.

[16] P. Tonella, A. Susi, and F. Palma, ‗Interactive requirements
prioritization using a genetic algorithm‘, Inf. Softw. Technol., vol. 55,
no. 1, pp. 173–187, 2013.

[17] A. K. Massey, P. N. Otto, and A. I. Antón, ‗Prioritizing Legal
Requirements‘, vol. 1936, no. 111, 2010.

[18] C. E. Otero, E. Dell, A. Qureshi, and L. D. Otero, ‗A Quality-Based
Requirement Prioritization Framework Using Binary Inputs‘, pp. 0–5,
2010.

[19] F. Dalpiaz, ‗Contextual Requirements Prioritization and Its Application
to Smart Homes‘, vol. 1, pp. 94–109, 2017.

[20] N. Setiani and T. Dirgahayu, ‗Clustering Technique for Information
Requirement Prioritization in Specific CMSs‘, 2016.

[21] A. Perini, A. Susi, and P. Avesani, ‗A Machine Learning Approach to
Software Requirements Prioritization‘, vol. 39, no. 4, pp. 445–461,
2013.

[22] M. I. Babar, M. Ghazali, D. N. A. Jawawi, S. M. Shamsuddin, and N.
Ibrahim, ‗Knowledge-Based Systems PHandler : An expert system for a
scalable software requirements prioritization process‘, KNOWLEDGE-
BASED Syst., 2015.

[23] H. Taherdoost and A. Keshavarzsaleh, ‗A Theoretical Review on IT
Project Success / Failure Factors and Evaluating the Associated Risks‘,
4th Int. Conf. Telecommun. Informatics, Sliema, Malta, no. August, pp.
80–88, 2015.

[24] R. Prioritization and U. Hierarchical, ‗Requirements Prioritization Using
Hierarchical Dependencies‘, pp. 459–464, 2018.

[25] M. A. Iqbal, A. M. Zaidi, and S. Murtaza, ‗A new requirement
prioritization model for market driven products using analytical

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 9, 2020

224 | P a g e

www.ijacsa.thesai.org

hierarchical process‘, DSDE 2010 - Int. Conf. Data Storage Data Eng.,
pp. 142–149, 2010.

[26] X. Frank, Y. Sun, and C. Sekhar, ‗Priority assessment of software
process requirements from multiple perspectives‘, vol. 79, pp. 1649–
1660, 2006.

[27] F. Shao, R. Peng, H. Lai, and B. Wang, ‗The Journal of Systems and
Software DRank : A semi-automated requirements prioritization method
based on preferences and dependencies‘, vol. 126, pp. 141–156, 2017.

[28] M. Yaseen, I. Journal, M. Yaseen, A. Mustapha, M. A. Salamat, and N.
Ibrahim, ‗International Journal of Advanced Trends in Computer
Science and Engineering Available Online at http://www.warse.org
/IJATCSE/static/pdf/file/ijatcse09912020.pdf Prioritization of Software
Functional Requirements : A Novel Approach using AHP and Spanning
Tree‘, vol. 9, no. 1, 2020.

[29] S. Ma, J. Li, C. Hu, X. Lin, and J. Huai, ‗Big graph search : challenges
and techniques‘, 2015.

[30] M. Yaseen, A. Mustapha, S. Qureshi, A. Khan, and A. U. Rahman, ‗A
Graph Based Approach to Prioritization of Software Functional
Requirements‘, vol. 9, no. 3, pp. 64–73, 2020.

[31] S. Kapoor and H. Ramesh, ‗Algorithmica An Algorithm for
Enumerating All Spanning Trees of a Directed Graph 1‘, pp. 120–130,
2000.

[32] M. Usman, D. Sakethi, R. Yuniarti, and A. Cucus, ‗The Hybrid of Depth
First Search Technique and Kruskal ‘ s Algorithm for Solving The
Multiperiod Degree Constrained Minimum Spanning Tree‘, no. Icidm,
pp. 0–3, 2015.

[33] S. Dhingra, ‗Finding Strongly Connected Components in a Social
Network Graph‘, vol. 136, no. 7, pp. 1–5, 2016.

[34] E. Reitsma, P. Hilletofth, and U. Mukhtar, ‗Implementation of enterprise
resource planning using Odoo module sales and CRM . Case study : PT
Ecosains Hayati Implementation of enterprise resource planning using
Odoo module sales and CRM . Case study : PT Ecosains Hayati‘, 2017.

[35] M. Yaseen, A. Mustapha, and N. Ibrahim, ‗Prioritization of Software
Functional Requirements : Spanning Tree based Approach‘, vol. 10, no.
7, pp. 489–497, 2019.

[36] M. Yaseen, A. Mustapha, N. Ibrahim, and U. Farooq, ‗International
Journal of Advanced Trends in Computer Science and Engineering
Effective Requirement Elicitation Process using Developed Open
Source Software Systems‘, vol. 9, no. 1, 2020.

