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Abstract—Prosthetic is an artificially made as a substitute or 

replacement for missing part of a body. The function of the 

missing body part can be replaced by using the prosthesis and it 

can help disabled people do their activities easily. A myoelectric 

control system is a fundamental part of modern prostheses. The 

electromyogram (EMG) signals are used in this system to control 

the prosthesis movements by taking it from a person’s muscle. 

The problem for the myoelectric control system is when it did not 

receive the same attention to control fingers due to more 

dexterous of individual and combined finger control in a signal. 

Thus, a method to solve the problem of the myoelectric control 

system by using time-frequency distribution (TFD) is proposed in 

this paper. The EMG features of the individual and combine 

finger movements for ten subjects and ten different movements is 

extracted using TFD, ie. spectrogram. Three machine learning 

algorithms which are Support Vector Machine (SVM), k-Nearest 

Neighbor (KNN) and Ensemble Classifier are then used to 

classify the individuals and combine finger movement based on 

the extracted EMG feature from the spectrogram. The 

performance of the proposed method is then verified using 

classification accuracy. Based on the results, the overall accuracy 

for the classification is 90% (SVM), 100% (KNN) and 100% 

(Ensemble Classifier), respectively. The finding of the study 

could serve as an insight to improve the conventional prosthetic 

control strategies. 

Keywords—Electromyography; feature extraction; time-

frequency distribution; spectrogram; classification; machine 

learning 

I. INTRODUCTION 

Nowadays, the world just not depends on current science 
and medicine but instead it also creates a variety of new 
technologies. Among the attention of the world is the creation 
of electronic tools that assist in physiotherapy facilities. In the 
field of physiotherapy, many tools can help to guide paralyzed 
or disabled patients during rehabilitation training such as 
prosthetic hand and leg. 

Furthermore, the first prosthetic hand and leg which is 
used for treatments, especially in physiotherapy, was 
introduced in the early 16th century. Prosthetic is an artificial 
made as a substitute or replacement for missing part of the 
body due to accident or permanent disablement. This 
prosthetic can help disabled people to do their work or 
activities easily. Our body uses the muscles to control the limb 
movement. However, in prosthetic, electromyogram (EMG) 
signals from an individual muscle are used instead [1]. 

The EMG signals are to record the electrical activity of 
muscles. This signal knows the condition of muscles and 
nerve of the body when movements exist. However, the EMG 
signals can be affected by several factors, especially during 
data collection [2]. Thus, several methods can be used to get 
better accuracy of surface EMG signals for a prosthetic hand. 

Currently, there is a high technology that can create and 
manufacture prosthetics which is used to replace the loss part 
of the body and being normal again. Nowadays, artificial 
limbs have advancements in the materials used and the design 
of artificial. There is for enhancements and comfortable use 
when using the prosthetic. Also, the electronics have been 
used as new materials and become common in artificial limbs. 
The myoelectric limbs have become more common than cable 
operated limbs to control the limbs. The myoelectric has been 
used by converting the muscle movements to electrical 
signals. The myoelectric used the electrodes to convert the 
signals of muscle movements to electrical signals. However, 
there still have some technical problems in the process of 
capturing or analyzing the data [3]. The myoelectric signals 
can be triggered by internal and external disturbances. 

Recent attempts have been made to obtain more dexterous 
human finger power, given the success of using EMG signals 
in interpreting the expected forearm gestures. For example, 
using surface EMG signals to determine when the finger is 
active and which finger is enabled using only two electrodes 
positioned on the forearm. There was an experiment that used 
two electrodes to detect four finger movements by using time 
distribution and neural networks of good accuracy. However, 
the performance of the time distribution (TD) features are not 
satisfactory even though time consumption and dimensions of 
TD is faster and smaller [4]. On the other hand, frequency 
distribution (FD) features can be difficult to detect EMG 
signals for stroke subjects due to the lower power frequency at 
muscle contraction [5]. 

Besides that, the classification of individual single finger 
movement is common but there are only several types of 
research that have been made for the classification of multiple 
individuals and combine finger movement in the same finger. 
To recognize the EMG signals from different classes of the 
finger movements, a suitable classifier must be employed in 
the system. 
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II. RELATED WORKS 

A. The Problem of Prosthetic Hand 

In the field of medicine research, the necessary function 
can be continuing by the prosthesis. This new technology and 
behaviors in the field of a prosthesis can be the modern 
treatment of diseases such as diabetes, stroke, and peripheral 
artery disorder. The patient continues to be the final common 
denominator. The prosthetic is made to replace the function of 
missing limbs either to walk or moving depending on their 
desire. 

There have a limited performance for prosthetic tools 
where it is performed with one specific activity or perform by 
bimanually while the prosthetic hand can perform with 
multiple activities and tasks. In contrast to the mechanical 
appearance of prosthetic tools, prosthetic hands appear 
human-like. 

Hybrid devices can be used for high-level amputation for 
example at or above the elbow with a combination of body-
powered and myoelectric elements. This system can control 
two joints at once where one is body-powered and the other 
one is myoelectric. This device is cheaper and smaller than a 
prosthetic composed entirely of EMG controlled components. 
However, the myoelectrical prosthetic has a disadvantage 
where the prosthetic is heavy, expensive than the other type of 
prosthetic, and depending on usage and power consumption to 
operate. Other than that, prosthetic, not 100% reliable because 
the EMG sensor sometimes gets "misreads" the user intent 
when it attached to the skin. Currently, the prosthetic on the 
market is not a full feedback loop and the input proprioceptive 
sensor is not fed back to the natural neural pathways of the 
user [6]. 

B. EMG Signals 

Electromyogram (EMG) is the electrical activity to define 
nerve and muscle problems in response to a simulation of the 
muscle of nerve. During the test, a small needle (electrodes) 
are used to pick up the electrical activity through the skin into 
muscle and displayed on a monitor in a waveform. The EMG 
measured the muscle during rest, slight contraction, and 
forceful contraction for the electrical activity.  There are two 
methods to measure EMG signals: invasive and noninvasive. 
For invasive methods, it uses needle electrodes while a 
noninvasive method uses electrodes above the skin surface of 
the patient’s body [7]. 

EMG is an analytical technique involved in the 
development, recording, and study of myoelectric signals. 
Myoelectric signals are formed by physiological changes in 
the state of the membranes of muscle fiber [8]. EMG signals 
have a wide range of applications in biomedical engineering 
and it is one of the vital biological parameters, prosthetic 
devices, and rehabilitation devices [9]. It is a bio-potential 
signal acquired through the muscle fiber body by electrodes to 
analyze muscle activity [9] and these signals measure the 
electrical activity during contraction and relaxation phase of 
the muscle fiber [7]. 

The EMG has also been used to find the effect of 
symptoms such as muscle weakness, deformity, stiffness, and 

shrinkage. Other than that, EMG is also used to test the 
problem of the motor like involuntary muscle twitching and 
nerve compression, injuries such as carpal tunnel syndrome, 
injured nerve root, and muscle degeneration. 

C. Feature Extraction 

Features extraction is a significant way of collecting useful 
information contained in the surface EMG signals and 
eliminating unnecessary sections and interferences. The 
features of EMG signals are divided into three groups which 
are time-domain, frequency domain, and time-frequency 
domain [10]. The advantages and disadvantages of the 
features are shown in in Table I. 

Time-frequency analysis is evaluated in time and 
frequency domain as shown in Fig. 1. Features taken from 
time-frequency distribution (TFD) should be reduced before 
being sent to the classifier. To improve the accuracy of the 
classification, time-frequency distribution feature is proposed 
to overcome the limitation of TD features [12]. 

The function of TFD feature is to identify time-varying 
system properties from the non-stationary system. The TFD 
has a major problem which is high dimensionality and high 
resolution of features vectors and to overcome the problem is 
to reduce the dimensionality of the data [12]. Furthermore, 
mathematical functions described in the time domain and the 
frequency domain are commonly used as dimensionality 
reduction methods for TD features [13]. There are two 
techniques for dimensionality reduction which are feature 
projection and feature selection. Features projection 
techniques attempt to determine the best combination of the 
original features and create a new feature set that is generally 
smaller than the original one. For  feature selection, it needs to 
consider a features vector for numerous specific EMG signal 
classification [12]. 

Time-frequency also used for EMG signal processing by 
past research. During the test, the surface myoelectric signal is 
compressed towards the lower frequency and the frequency of 
the signal is continuous changes over time. This can classify 
the surface myoelectric as slow and fast. For slow 
nonstationary is because of the electrical manifestations and 
affects the accumulation of metabolites. Next, fast 
nonstationary is related to the biomechanics of the task. The 
modification of the frequency content of the signal is affected 
by the variations in muscle force [14]. 

Besides that the mathematical techniques have been 
advanced to solve the problem in signal processing where 
there are combination methods of state space and statistical 
decision theory. These techniques happen to a broad class of 
nonlinear problems and focus on the presence of additive 
noise due to the problem of signal processing is nonlinear 
[15]. 

D. Classification 

Classification is from the extracted information of the 
EMG signals to map different patterns and match them 
appropriately. The classifier is to divide different categories of 
the features extracted and going to practice being control 
commands for the controller in the next stage [12]. There are 
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many techniques to classify EMG data and have their 
advantages and disadvantages as shown in Table II. 

The problem for biomedical is when there are a few 
applications that can analyse the demand of patients. So, the 
application of machine learning can solve this problem with 
the detection and classification of the neuromuscular disorder 
based on EMG signal processing. From this application, the 
patients can skip techniques of ultrasound or MRI to diagnose 
the neuromuscular disorder. Many biomedical used the 
support vector machine (SVM) in signal classification 
applications as a machine learning method. The SVM can 
improve the accuracy of EMG signal classification and 
classify it into normal, neurogenic, or myopathic. The 
classification for SVM is applied based on the trained model 
after generated the training data in the training process [16]. 

TABLE I. FEATURE EXTRACTION DOMAIN 

Features Domain Advantages Disadvantages 

Time domain  

Low noise 

environments 

Lower computational 
complexity [10] 

Non-stationary property of 

EMG signal 

Changing in statistical 
properties over time [10] 

Frequency domain  

Reducing interference 

Good localization of 

the signal. 

Very clean signal [11] 

High noise environment 

[11] 

Time-frequency 
domain  

Can overcome the 

limitation of time-
domain features [12] 

High dimensionality 

High resolution of feature 
vectors [12] 

 

Fig. 1. Graph of Time-Frequency Domain. 

TABLE II. CLASSIFICATION TECHNIQUES 

Techniques of 

classification 
Advantages Categorize 

Support vector 
machine (SVM) 

Works relatively well when 

there is a clear margin of 

separation between classes 

Multiple motions 

K-nearest neighbor 

(KNN) 
Simple implementation Hand motion 

Multilayer 
perceptron (MLP) 

Capable of prescribing 
nonlinear class boundaries 

Hand motion and 
forearm motion 

Artificial neural 

networks (ANN) 

Suitable for modeling 

nonlinear data due can cover 
the distinctions 

Hand motion (left, 

right, up, and down) 

Fuzzy logic (FL) 
Control techniques in 

biosignal processing 

Biosignal 

characteristics 

Recently, k-nearest neighbor (KNN) is a common machine 
learning tool due to its speed of processing and simplicity in 
the process of recognition. The concept of KNN is quite 
simple. The KNN algorithm creates a set of k data points in 
training data and forecasts test data dependent on the nearest 
neighbor. However, the significance of k must be carefully 
chosen because it has a direct effect on the efficiency of the 
classification. Specifically, the k-value depends mostly on the 
specification of the data set and model. However, the KNN 
algorithm is fast, easy, and effective [17]. 

III. MATERIALS AND METHODS 

A. EMG Data 

The data for this project is obtained from open source by 
past research. The data includes EMG signal of finger 
movement from ten subjects which are six males and four 
females aged between 20 and 35 years old. The characteristic 
of the subject is normally limbed with no neurological or 
muscular disorders. EMG data are taken from this subject by 
using EMG channels. To firmly stick the sensor to the skin, 
two of the slot adhesive skin interface (DELSYS DE 2X 
SERIES EMG SENSOR) was applied to each of the sensors. 
There are ten classes of finger movements were including the 
movements for individuals and combined. The duration of 
every movement is in 5s with a resting period in 3 to 5s 
between each movement. The positions of the first electrode 
are adhesive skin interface stick to the skin and second 
electrode on the wrist. Positions of the electrode are shown in 
Fig. 2. Fig. 3 shows the data acquisition set up for the EMG 
data recording. 

B. Signal Pre-Processing 

In the EMG analysis, signal pre-processing which includes 
eliminating the offset signal, signal segmentation, and 
detection of onset are required. The signal offset was 
estimated using the baseline signal means. The offset in each 
channel was subtracted from the signal to remove the 
unwanted signal. Segments are calculated to produce signals 
indicating muscle activation before the features were removed 
and movement patterns were observed. The auto-segmentation 
as proposed by [18] was used to segment the EMG signal, 
thus, helping to reduce the computational complexity of the 
feature extraction. The magnitude and frequency of muscle 
activation segments varied from those of muscle activation 
segments. 

The data EMG signals have been filtered in this stage. It is 
to improve the accuracy of data EMG signals invalidation. 
Besides, the filtering process is needed to overcome the noise 
in raw data signals and reduce the artifacts by using the 
various method. In this stage, the bandpass filter methods have 
been used to filter the data EMG signals with a range between 
20 and 450 Hz. The filtering has been done for separate 
signals for each movement of EMG signals and to pass the 
only certain range of frequency and sampling rate is 4000 Hz. 
The unnecessary noise will be discarded following the range 
of bandpass filters. However, the noise in signals is very 
difficult to remove. This stage will give a big impact on 
classification because the accuracy of signals is depending on 
the data EMG signals. 
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(a) Electrode 1 (E1)  (b) Electrode 2 (E2) 

Fig. 2. Electrode Position. 

 

Fig. 3. Data Acquisition Set Up. 

C. Time-Frequency Distribution 

In the field of signal processing, feature extraction plays a 
critical role throughout achieving better identification quality 
for the detection of movement patterns. Various signal 
processing methods are applied in raw EMG to achieve an 
accurate and actual EMG signal. This process involves the 
conversions of raw EMG signals into a feature vector. Besides 
that, the characteristics of the EMG signal analysis can be 
classified into three groups, which includes the time-domain 
feature, frequency-domain feature, and time-frequency 
domain feature. The amplitude of the signals depends on the 
type and state of the muscle during the analysis phase. Most of 
the research focuses on time-domain to keep the 
computational complexity low and this feature does not 
require additional signal transformation. Various signal 
processing techniques are used on raw EMG to produce a 
reliable EMG signal. 

In this project, the time-frequency distribution (TFD) 
which is spectrogram is used in feature extraction. The 
spectrogram is a fundamental component of TFD in the 
analysis of signals, particularly for noise and artifact 
reduction. The spectrogram is used to overcomes the 
limitation of time and frequency representation for the non-
stationary EMG signal. It is defined as the squared magnitude 
of STFT as expressed in (1). 

 (   )  |∫  ( ) (   )      
 

  
  |           (1) 

where S(t,f) is the time-frequency representation, x(τ) is 
the EMG signal, and w(t) is the observation window. 

TFD is preferred to obtain time and frequency information 
simultaneously. The spectrogram reveals the non-stationary 
existence of EMG signals in the time-frequency analysis. In 
TFD, the time and frequency resolution can be adjusted to 
obtain valuable signal details. 

The parameter of the EMG signal was then estimated from 
the resulted time-frequency representation of the spectrogram. 

The root mean square voltage (Vrms) was measured 
instantaneously over time and the average values were taken 
for hand movement prediction. The average RMS voltage can 
be expressed as. 
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where Vrms(t) is the instantaneous RMS voltage, Sx (t,f) is 
the time-frequency representation, and fmax is the maximum 
frequency of interest. 

D. Machine Learning 

The information derived from the EMG signals will then 
be fed into the classifier to identify the different patterns and 
match them properly. Classifiers should be used to distinguish 
between different classes of features extracted. The obtained 
classifications will then be used as control commands for the 
controller in the next stage. Multiple methods are used to 
identify EMG information such as artificial neural networks 
(ANN), Bayesian classifier (BC), fuzzy logic (FL), multilayer 
perceptron (MLP), support vector machines (SVM), linear 
discriminant analysis (LDA), hidden Markov models (HMM) 
and K-nearest neighbor (KNN). Recently, several researchers 
have shown interest in effective ways to identify the origins of 
EMG signals. 

The machine learning algorithm selected to determine the 
characteristics of the separation of the 10-finger movement in 
the EMG data signal after the signal processing phase. In this 
stage, the data EMG signals of Vrms have been separated 
according to each movement and electrode by each subject. 
The total Vrms data are 200 of 10 subjects with 10 movements 
for 2 electrodes. The total Vrms data of EMG signals will be 
separated into training and testing sets to evaluate the 
performance of data EMG signals. There are 80% of data for 
training and the other 20% of data for testing. The training test 
is to train the machine before getting an accurate value for 
testing. Next, the data have been imported into apps 
classification learners to analyse the accuracy of classifiers 
with train the data. There have various types of classifier in 
classification learner and the wide classifier has been used is 
KNN and SVM. Therefore, the best selection of classifiers is 
depending on the percentage of accuracy classifier. 

IV. RESULTS AND DISCUSSIONS 

The EMG signal data consist of ten classes of individual 
and combined fingers movement. Every subject completed six 
times of test for 10-finger movements and resting time 
between the tests is around 3 to 5 seconds. Four of the six-
time test is training and two of that is testing. The raw data is 
obtained from 10 individual movements which are 5 tests for 
individual movement and 5 tests for combined movement with 
two electrodes. This part shows the results and discussions for 
all methods that have been used. 

Results of the EMG signal was obtained from individual 
finger movement and combine finger movement. The EMG 
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signal data was run using the MATLAB software and the 
graph of the EMG signal is a voltage (V) versus time (s) and it 
is shown as the amplitude of EMG signal during the test. 

There are different finger movements for individuals and 
combine finger movements. The individual finger movements 
are consisting of thumb (T), index (I), middle (M), ring (R), 
little (L). Then, for combined finger movements are consists 
of hand close (HC), thumb index (T-I), thumb little (T-L), 
thumb middle (T-M), and thumb ring (T-R). The different 
movements of the finger are shown as Fig. 4. 

These results indicate that using two channels of electrodes 
during collected data for individual finger movement. It also 
shows the signal for both electrodes for each movement. From 
the signals, the electrode 1 is more informative than the 
electrode 2 for thumb finger movement. This is due to the 
location of the second electrode where the electrode mounted 
as shown in Fig. 2. The located of the second electrode is on 
the low contraction muscle during finger movement because 
of that the signal of the second electrode not more 
informative. The informative signal depends on the 
contraction or muscle movement during the test of the finger 
movements. The signal of EMG data during the test of thumb 
movement for the individual finger movement as shown in 
Fig. 5. 

These results show the signal of combine finger 
movements and indicate two channels of electrodes during the 
test of finger movement. These signals are made up of two 
electrodes used during the test of combined finger movements. 
For 0.7 s of the signal shows the second electrode gives more 
information than the first electrode in hand close movement. 
This is due to the location of electrodes mounted during the 
test. However, after 0.7 s the signal of both electrodes shows 
the same or constants informative. In detail, contraction or 
muscle movement is higher on the location of the second 
electrode for 0.7 s, and the muscle movement almost the same 
after that. The EMG signal for hand close in combined finger 
movements as shown in Fig. 6. 

 

Fig. 4. The different Finger Movements. 

 

Fig. 5. Raw EMG Signal for Thumb Finger Movement. 

 

Fig. 6. Raw EMG Signal for Hand Close Finger Movement. 

In this part, the signals of EMG are based on the 
information given on the contraction or muscle movement 
during the test of finger movement for individual and 
combined movements. The location of the electrodes is 
important to collect the data during the test. This EMG signal 
needs to filter to reduce unnecessary noise before the signal 
processing stage. The filtering process has been done for each 
movement and separated by electrodes. The bandpass filter 
has been used with range 20 Hz to 450 Hz and the sampling 
rate is 4000 Hz. The signal only passes by the range of 
frequency and the other will discard. The graph shows the 
EMG signal before and after the filtering process for the 
middle finger movement for electrode 1. The filtered middle 
finger movement as shown in Fig. 7. 

In signal processing, the TFD is selected as a fundamental 
component to analyse the EMG signal, especially for noise. 
From this, the time and frequency can be measured for RMS. 
In TFD, to obtain valuable signal details in the EMG signal it 
can adjust the time and frequency resolution. The extraction of 
instantaneous RMS voltage EMG signal for electrode 1 of 
hand close finger movement is shown in Fig. 8. 

The average RMS voltage of the EMG signals for 
individual finger movement is shown in Fig. 9. In the figure, 
subject 4 shows the highest level for electrode 1 and electrode 
2 compare to the other subject in the index finger movement. 
Thus, during the test of individual finger movement, the 
subject 4 get more information in signal due to contraction or 
muscle movement. Subject 4 gives the best signal to control or 
classify the EMG signal for individual finger movement. 

The average RMS voltage of the EMG signals for combine 
finger movement is shown in Fig. 10. Based on the figure, 
subject 4 have the highest level of electrode 1 and electrode 2 
for average combined finger movement compared to the other 
subject. From this, the contraction or muscle movement at the 
location of electrode mounted for subject 4 is higher during 
testing. The EMG signal for subject 4 has more information 
about the muscle movement for electrode 1 and electrode 2 in 
hand close finger movement. 

Fig. 11 shows the average Vrms signals for each electrode 
from all subjects. The average of data EMG signals is to 
investigate the various levels of acceptance of the suggested. 
The figure shows the level of information in EMG signals 
based on the finger movement. The higher level of the graph 
means the more informative the EMG signals. 
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Fig. 7. Raw and Filtered EMG Signal. 

 

Fig. 8. Instantaneous RMS Voltage for Hand Close Finger Movement. 

 

Fig. 9. Average RMS Voltage for Individual Finger Movement (Index). 

 

Fig. 10. Average RMS Voltage for Combined Finger Movement (Hand 

Close). 

 

Fig. 11. The Average Vrms EMG Signals for Each Electrode from All 

Subjects. 

The final step in this project is to determine a suitable 
classifier for data EMG signal from different classes of finger 
movements. After getting an average of Vrm data for EMG 
signal, techniques classifiers are used in signal classification 
to analyse the best machine learning for data EMG signal. The 
techniques are typically used to avoid confusing the prosthetic 
controller with different classification decisions and to 
increase the efficiency of the classifier by avoiding 
unnecessary classification errors. There is the comparison of 
techniques classifier for 100% data EMG signal as shown in 
Table III. 

The total Vrms data EMG signal will divide into two-part 
which is 80% for training and the other 20% for testing. The 
training data is to train the machine learning before taking the 
results for testing finger movements. There is the comparison 
data for 80% and 20% of Vrms EMG signal as shown in 
Table IV. 

From the comparison results, the best classifier for Vrms 

data EMG signal is the k-nearest neighbor (KNN). This is 
because the percentage of the accuracy of the KNN classifier 
is 100% for training and testing which is more accurate from 
the other classifier. The accuracy of EMG classification is 
determined based on the percentage in classification learner 
and can be a plot by a scatter plot and confusion matrix. A 
scatter plot or scatter graph is displaying the values of two 
variables from a set of data and identify the type of 
relationship between variables. The scatter plot for 80% of 
Vrms data EMG signal as shown in Fig. 12 and the scatter plot 
for 20% of Vrms data EMG signal as shown in Fig. 13. 

Next, the confusion matrix or table of confusion is 
showing the error matrix for data with predicted class and 
actual class. The confusion matrix can plot by true positive 
rates and false-negative rates. The confusion matrix for 80% 
of Vrms data EMG signal as shown in Fig. 14 and the 
confusion matrix for 20% of Vrms data EMG signal as shown 
in Fig. 15. 

TABLE III. THE COMPARISON FOR 100% DATA EMG SIGNAL 

Type of classifier Percentage (%) 

SVM (fine gaussian SVM) 64 % 

KNN (fine KNN) 100 % 

ENSEMBLE CLASSIFIER (boosted trees) 73 % 
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TABLE IV. THE COMPARISON OF 80% (TRAINING) AND 20% (TESTING) OF 

THE DATA EMG SIGNAL 

Classifier 80% of data 20% of data 

SVM 75% 90% 

KNN 100% 100% 

Ensemble Classifier 73% 100% 

 

Fig. 12. The Scatter Plot for 80% of Vrms Data EMG Signal (Training). 

 

Fig. 13. The Scatter Plot for 20% of Vrms Data EMG Signal (Testing). 

 

Fig. 14. The Confusion Matrix for 80% of Vrms Data EMG Signal (Testing). 

 

Fig. 15. The Confusion Matric for 20% of Vrms Data EMG Signal (Testing). 

As a result, significant increases in classification precision 
have been made. In the signal classification, three classifiers 
have been used to train the training and testing data of the Vrms 
EMG signal. The most accurate for the Vrms EMG signal is the 
KNN classifier with 100% accuracy for training and testing. 
This is because the KNN classifier is easy to implement. 

V. CONCLUSIONS 

As a conclusion, the research to analyze the surface EMG 
signals (Vrms) in finger movement by using the TFD have been 
presented. This analysis covered the analysis data of an 
individual and combined finger movements of EMG signals 
for prosthetic hand control. The EMG signals have been 
filtered by using the bandpass filter to overcome the 
unnecessary noise in signals with a range from 20 to 450 Hz. 
TFD is then used for the feature extraction to get the average 
of signal to classification. 

In addition, this research classify the accuracy of 
individual and combine finger movement based on surface 
EMG signals towards improved prosthetic control. The three 
classifiers have been used to train all data EMG signal and the 
most accurate classifier have been chosen as machine learning 
to conduct the EMG signals. The data of EMG signals have 
been trained followed by each movement and each subject. 

Finally, the performance of the KNN classifier has been 
compared with other classifiers. The data Vrms EMG signals 
have divided into two parts which are training and testing. For 
instance, the training data is to train the machine learning to 
get accurate data for testing.  The EMG datasets are belong to 
10 different classes for individual and combined movements 
collected from 10 subjects by using two channels of electrodes 
and the accuracy of classifier in the range 64% to 100% with 
various types of classifiers of the data Vrms EMG signals. 
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VI. FUTURE WORKS 

For future works, further studies about other finger 
movements for individual and combined finger movements is 
essential. It is to get data for other movements towards the 
prosthetic hand. Next, the EMG signal must be tested with 
prosthetic hand to make sure the classifier that has been 
chosen is suitable and can be integrated with the prosthetic 
hand. This is to ensure the accuracy of the classifier is 
accurate even after intergrating it with the prosthetic hand. 
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