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Abstract—Thorough and precise estrus detection plays a 

crucial role in the fertility of dairy cows. Farmers commonly used 

direct visual monitoring in recognizing estrus signs which 

demands time and effort and causes misinterpretations. The 

primary sign of estrus is the standing heat, where the dairy cows 

stand to be mounted by other cows for a few seconds. Through 

the years, researchers developed various detection methods, yet 

most of these methods involve contact and invasive approaches 

that affect the estrus behaviors of cows. So, the proponents 

developed a non-invasive and non-contact estrus detection system 

using image processing to detect standing heat behaviors. 

Through the TensorFlow Object Detection API, the proponents 

trained two custom neural network models capable of visualizing 

bounding boxes of the predicted cow objects on image frames. 

The proponents also developed an object overlapping algorithm 

that utilizes the bounding box corners to detect estrus activities. 

Based on the conducted tests, an estrus event occurs when the 

centroids of the detected objects measure a distance of less than 

360px and have two interior angles with another fixed point of 

less than 25° and greater than 65° for Y and X axes, respectively. 

If the conditions are met, the program will save the image frame 

and will declare an estrus activity. Otherwise, it will restart its 

estrus detection and counting. The system observed 17 cows, a 

carabao, and a bull through the cameras installed atop of a 

cowshed, and detects the estrus events with an efficiency of 50%. 

Keywords—Dairy cows; estrus detection; image processing; 

TensorFlow Object Detection API; custom neural network; object 

overlapping 

I. INTRODUCTION 

The estrus cycle of mammals, such as dairy cattle and water 
buffaloes, is the period from one estrus to the next. On a typical 
basis, the cycle has an average duration of 21 days. In the 
Philippines, farmers observe a period of between 18 and 24 
days. Research shows that estrus usually lasts between 10 and 
18 hours. Even so, recent studies show that modern dairy cows' 
cycles are about 8 hours shorter [1] [2]. A livestock requires 
thorough heat detection, and correct timing of artificial 
insemination. So, not being able to detect in-heat signatures of 
cattle may lead to low fertility. If the producers could not 
detect and differ the in-heat and non-heat signs of the cattle, the 
farm may suffer. Also, the extended calving intervals and 
semen expenses affect the farm's economic status. 

Farmers and researchers have introduced various methods 
to determine in-heat signatures in livestock. Today, farmers 

commonly use visual observation of estrus signs of cows. But 
doing so may lead to misinterpretations as well. Meanwhile, 
some farmers track the roaming activities of the cows through 
a motion sensor on the cows' neck or leg. This method still 
varies depending on the efficiency and accuracy of the 
devices [3]. 

Several companies in America and Europe developed 
electronic products and services such as the AfiACT, the 
HeatWatch system, the MountCount, etc. to identify the cows’ 
estrus behaviors [4]. But in Asia, there are few companies 
known to offer such products. And in the Philippines, 
companies offering these types of products and services are 
non-existent. These show how underdeveloped the cattle 
industry in the Philippines is. According to the Philippine 
Statistics Authority, the fourth reading of the total cattle 
production in 2018 is 0.33 percent lower than in 2017. The 
stock of cattle is also decreased by 0.73 percent, and the rate of 
slaughter is high and rising [5]. These statistics proved that the 
Philippines' performance in cattle production is slower than in 
other ASEAN countries. That is why farmers and researchers 
should develop new methods to meet the demands of the 
country. 

As a solution to the problem, in this paper, the researchers 
proposed a non-invasive and non-contact estrus detection 
system that uses image processing and artificial intelligence 
through TensorFlow Object detection API to identify standing 
heat behaviors of Holstein-Friesian and Sahiwal crosses. The 
research specifically aims to: (1) develop an automated estrus 
detection system which visualizes bounding boxes of the cattle 
objects, and verifies if the overlapping instances are estrus 
activities through the surveillance system; and (2) conduct an 
evaluation and assessment on the system’s functionality and 
reliability of detection in comparison with the manual visual 
inspection methods of the farmers. 

The findings of the study will benefit small and large farms 
in the cattle industry, given the current lack of commercially 
available products and services, and advanced breeding 
methods. The implementation of the estrus detection system 
minimizes the workload of farmers through the real-time 
monitoring capabilities of the system and increases the dairy 
production and fertility rate of cows through immediate 
insemination. Such benefits consequently contribute to the 
economic growth of the farms. 
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This research paper is structured as follows: Section II 
pertains to the gaps and limitations of the related researches, 
Section III defines the materials and methods used by the 
researchers, Section IV explains the detection and database 
results of the study, Section V declares the conclusion and 
Section VI enumerates possible future works of the research. 

II. RELATED WORKS 

Researchers develop high-tech devices that helps farmers 
track the estrus signs of cows. Such technologies based its 
efficiency on the detection of physical activities, mounting 
behaviors, body temperature, etc. [6]. 

In [7], the researchers developed an estrus detection system 
based on the following behavior of the cows for a short time 
using IP cameras. The system implements a motion detection 
technique to identify probable mounting regions, and blob 
analysis on the said regions to detect changes on the image 
frames. By incorporating both methods, the proponents were 
able to accurately identify true estrus events on the surveillance 
feed. 

Talukder et al. tested the effectivity of implementing 
infrared thermography (IRT) in detecting estrus behaviors of 
dairy cattle. The proponents also incorporated a breeding 
indicator with IRT which resulted in a sensitive heat detector 
with false-positive results. The technology can only yield true 
estrus events only when the IRT was implemented during the 
ovulation phase of the subjects [8]. 

In [9], the researchers devised a cattle identifier based on 
Region Based Convolutional Neural Networks (R-CNN) in an 
open field setup using unmanned aerial vehicles (UAV) drones. 
The study has shown great results in detecting unique 
individual cow patterns through deep learning frameworks and 
end-to-end training of image datasets. However, false-positive 
results still occur due to the similarity of structures and features 
of some cows. 

Yang et al. also proposed an estrus detection system based 
on the following and restlessness behaviors of the cows using 
infrared technology. The infrared cameras were able to monitor 
and detect estrus events at both daytime and nighttime with the 
aid of artificial lighting. Despite that, their experimentations 
showed that the efficiency for detecting objects was greater in 
contrast to the visual observation considering good 
illumination in the area [10]. 

Meanwhile, Xia et al. constructed an estrus detection 
system based on the activities of the cows using pedometers 
and readers. Through the pedometers and the readers, the 
system was able to gather and analyze cow information to 
declare estrus and notify the end-users via text messages. The 
results proved the system’s accuracy, in which it can replace 
the conventional rectum identification of cows in detecting 
estrus [11]. 

In [12], the researchers also proposed an estrus detection 
system through geometric region analysis using fixed IP 
cameras. This system’s operability is similar to the 
aforementioned studies that filter the collected image frames 
and extracts the relevant features of the cows from the images 
to perform analysis and identification of estrus. Still, the 

proposed techniques in this research accurately recognized the 
mounting behaviors of the cows with minimal false-positive 
detection rates. 

Table I shows the comparison framework of the related 
works in this research. Unlike with the aforementioned studies, 
this research performs estrus detection by detecting Holstein-
Friesian and Sahiwal Crosses, a bull, and a water buffalo from 
the surveillance feed of three pan-tilt-zoom (PTZ) cameras 
(DH-SD22404T-GN Lite Series, 4 MP). The researchers also 
customized two neural network models using pre-trained 
frameworks from the TensorFlow Zoo for the object detection 
and utilized bounding box corners for the analysis of 
overlapping instances in the image sequences and declaration 
of estrus events. 

TABLE I. BRIEF COMPARISON FRAMEWORK OF THE RELATED WORKS 

Authors 

Breed of 

Cattle  

to be 

monitored 

Materials and Methods 

Sensors 

used 

Techniques and 

Algorithms used 

Tsai and Huang 

(2014) 
[7] 

Holstein 
IP Dome 

Camera 

Motion Detection,  
Region Segmentation,  

Foreground Segmentation, 

and Blob Analysis 

Talukder et al. 
(2014) 

[8] 

Holstein-

Friesian 

Thermal 
Infrared 

Camera 

Infrared Thermography 

Andrew, 
Greatwood, and 

Burghardt 

(2017) 
[9] 

Holstein-
Friesian 

UAV 

integrated 

camera 

R-CNN Localization, 
and Tracking 

Yang, Lin, and 

Peng (2017) 
[10] 

Holstein 
Infrared 

Camera 

Motion Detection, 

Region Segmentation, 
Foreground Segmentation. 

Xia et al. 

(2017)  
[12] 

Holstein 
Pedometer 

and reader 
Motion Analysis 

Guo, Zhang, 
He, Niu, and 

Tan (2019) 

[13] 

Holstein 
Fixed IP 

Camera 

Background Subtraction 

with Color and  

Texture Features (BSCTF), 
Geometric  

and Optical Flow  

feature extraction, 
Support Vector Machine 

(SVM) 

III. METHODOLOGY 

A. Research Locale - Barn 

In this research, the estrus detection system is deployed in a 
small-scale commercial farm in the province of San Ildefonso, 
Bulacan, in the Philippines. The barn houses 17 Holstein-
Friesian and Sahiwal crosses, a bull, and a water buffalo. 
Similarly with the research of Porto et al. [13], they have 
observed some delimiting factors in the barn that may affect 
the automated detection system, such as: high variation in 
lumination in areas near the open side of the barn; metal 
surfaces of stable crossbars; color indifferences of cows; and 
surface reflection caused by manure or dirt. The panoramic 
top-viewed images of the barn are crucial in to capture image 
frames which shows the true shape of cow’s body [13]. To 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 11, No. 9, 2020 

305 | P a g e  

www.ijacsa.thesai.org 

capture the panoramic top-view images, three 4 Megapixel 
Pan-tilt-zoom (PTZ) Network Cameras, as in [13], were 
installed at a height of 3.78m. Each camera monitors an area 
for about 4.87 m x 3.97 m with a separation distance of 
approximately 2.98 m apart atop the cowshed, as shown in 
Fig. 1 and Fig. 2. 

B. TensorFlow Object Detection API 

TensorFlow Object Detection API is a framework that is 
currently being utilized today to resolve object detection 
problems. With this, deploying accurate machine learning 
models that can localize and identify multiple objects in an 
image frame is easier, as in. Within the models, the feature 
extraction and the classification processes play vital roles in the 
cow pattern recognition, as in [14]. 

According to Huang et al., there will be trade-offs between 
speed and accuracy in constructing an object detection 
architecture that depends on the application and platform [15]. 
In their repository, the user can modify the model to satisfy 
his/her requirements and platform. The TensorFlow Object 
Detection API library comprises of object detection structures, 
such as Single Shot Detector (SSD), Faster Region-based 
Convolutional Neural Network (Faster R-CNN), etc. 

 

Fig. 1. The Isometric view of the Experimental Setup which Displays the 

Position of the Cameras. 

 

Fig. 2. The Bottom view of the Experimental Setup which Depicts the 

Camera Separation and the Field of views. 

Feature extractors such as Inception, MobileNet [16] and 
Resnet play critical roles in the speed and accuracy trade-off of 

the framework. Even with the recent studies of various 
researchers, constructing convolutional networks from scratch 
requires a great volume of image datasets and a long period of 
training and testing time. That is why transfer learning is more 
applicable with pre-trained models like the TensorFlow API 
[17]. Transfer learning is a technique in which a model is 
reprocessed as a starting point for a second function model [18] 
[19]. 

In this research, two (custom) object detection frameworks 
using TensorFlow CPU and the pre-trained Faster R-CNN [20] 
and SSD [21] models were developed and integrated as its core 
architectures from the TensorFlow Zoo. 

C. Data Acquisition and Pre-Processing 

In this research, all of the cows, including the bull and the 
water buffalo, are pre-identified with a corresponding ID. In 
building the dataset, a total of 1400 images for each defining 
class for the Faster R-CNN model, and a total of 21,912 images 
of cows for the SSD model were used. By accessing the 
playback videos from the Network Video Recorder, and using 
image processing techniques through OpenCV, the image 
frames were obtained at a rate of 1 frame per second. 

To provide the necessary supervised learning for the 
detection system, the researchers used a label annotator tool, as 
in [19]. For the Faster R-CNN model, each cow object on 
every image frame were annotated as: “BULL”; 
“CARACOW”; “COW A”; “COW B”; “COW C”; “COW D”; 
“COW E”; “COW F”; “COW G”; “COW H”; “COW I”; 
“COW J”; “COW K”; “COW L”; “COW M”; “COW N”; 
“COW O”; “COW P”; and “COW Q” in accordance to its 
COW ID whereas, for the SSD model, all objects were labeled 
as “COW”. The annotations will be saved as Extensible 
Markup Language data files (XML) and will be processed after 
the data slicing. Next, the image datasets were divided into the 
training and the testing data. The partition used for data slicing 
is 90:10 wherein 90% is for the training data while the 10% is 
for the testing data, as in [9] [17] [22] [23]. 

Afterwards, two label maps for each model were created, in 
which 19 labels were listed for the Faster R-CNN model but 
only 1 label for the SSD model. From the XML data files, 
TensorFlow Records in “RECORD” format will be generated. 
These records contain the filename, the labels (classes), the 
height and width of the images, and the bounding box corners 
(xmin, ymin, xmax, and ymax), as in [9] [24]. 

D. Configuring the Pipeline 

In selecting a pre-trained model, the performance, speed, 
and mean Average Precision (mAP) that define the accuracy of 
the detector were considered, as in [16] [18]. According to the 
analysis of Huang et al. [15], the Faster R-CNN model with 
Inception V2 and SSD model with Inception V2 yields a mAP 
of 28 and 24, respectively, which requires a speed of at least 58 
ms and 42 ms per image, respectively. To configure the 
pipeline, the researchers utilized two of the pre-trained models 
provided by TensorFlow Zoo. The speed and mAP of the given 
pre-trained models were considered, and the Faster R-CNN and 
the SSD with Inception V2 models will be implemented. 

The pipeline configurations given in Fig. 3 and Fig. 4 only 
show the changes made from the pre-configured models. 
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Adjusting some of the parameters does not necessarily give 
similar results on other applications. 

E. Training the Networks 

In training the custom neural network models, it is expected 
to obtain a minimum TotalLoss value of 1.0 or less. The 
training job for both the Faster R-CNN and SSD with Inception 
V2 models can be monitored using the TensorBoard. Once the 
optimal range of TotalLoss is observed, the training job can be 
interrupted. Also, checkpoints that represent the training steps 
are being saved in the system unit as the training progresses. 
These checkpoints will be used in visualizing the training 
performance. The training for both networks took 
approximately 387 hours. 

Fig. 5 depicts the TotalLoss graph obtained from training 
the Faster R-CNN with Inception V2 model while Table II 
shows the model’s training metrics having TotalLoss between 
approximately 0.04 and 0.14. 

Fig. 6 depicts the TotalLoss graph obtained from training 
the SSD with Inception V2 model while Table III shows the 
model’s training metrics having TotalLoss between 
approximately 1.7 and 2.0. 

Once the training jobs are complete, trained inference 
graphs will be generated to be integrated into the object 
detection program. 

F. Estrus Detection Criteria 

According to the research done by Tsai et al. an estrus 
event in images projects an object with a size of about 2-cows 
which will change into roughly 1.5-cows during the activity. 
Furthermore, based on the blob analysis and segmentation 
approach, if the distance between two centroids of the cows 
exhibiting “following” behavior is equal to or less than the 
distance threshold for more than 2 seconds or exactly equal to 
4 seconds, the system will declare an estrus activity [7]. By 
adapting this research with the abovementioned study, the 
researchers were able to construct a similar detection rule for 
identifying the standing-heat activities of cows. The 
researchers initially hypothesized that in a panoramic top-
viewed image depicting a standing-heat activity, the mounting 
(top) cattle’s head and half body overlaps the other (bottom) 
cattle’s half body. Consequently, having both objects stand 
very close to each other, an estrus activity can be declared. 

In the numerical and photographic perspective, if the 
cattle’s head and half of its body is treated as 0.5-cow while it 
mounts the other cattle’s body (1.0-cow) on the prescribed 
time, the total length will eventually be equivalent to roughly 
1.5-cows, giving the idea that the cow’s features in pixels will 
be in the same range of value with the latter. Also, if the 
distance and the angles between their centroids meets a certain 
threshold, an estrus activity can be declared while taking all 
into account that the objects are highlighted by bounding boxes 
through the TensorFlow Object Detection API. 

 

Fig. 3. Pipeline Configuration for the Faster R-CNN Model. 

 
Fig. 4. Pipeline Configuration for the SSD Model. 

Input: training and testing TFRecord files, and a label map file of 
the subjects 

Output: configuration file for training 

1: num_classes = {19};  

2: feature_extractor:  

3: type = {faster_rcnn_inception_v2}; 

4: second_stage_post_processing: 

5: batch_non_max_suppression: 

6: scales = {0.25, 0.5, 1.0, 2.0}  

7: aspect_ratios = {0.5, 1.0, 2.0};  

8: first_stage_nms_iou_threshold = {0.7};  

9: second_stage_post_processing:  

10: batch_non_max_suppression: 

11: score_threshold = {0.0}  

12: iou_threshold = {0.75}  

13: max_detections_per_class = {1}  

14: max_total_detections = {300};  

15: train_config:  

16: batch_size = {1}  

17: learning_rate = {0.0002, 0.00002, 0.000002};  

18: num_steps = {200,000}; 

19: data_augmentation_options = {autoaugment_image};  

20: eval_config:  

21: num_examples = {26,600}; 

Faster R-CNN Configuration 

Input: training and testing TFRecord files, and a label map file of 
the subjects 

Output: configuration file for training 

1: num_classes = {1};  

2: feature_extractor:  

3: type = {ssd_inception_v2}; 

4: anchor_generator: 

5: ssd_anchor_generator: 

6: aspect_ratios = {0.333, 0.5, 1.0, 2.0};  

8: loss: 

9: hard_example_miner: 

10: iou_threshold = {0.99}; 

13: post_processing: 

14: batch_non_max_suppression: 

15: score_threshold = {0.0} 

16: iou_threshold = {0.75} 

17: max_detection_per_class = {19} 

18: max_total_detections = {19}; 

19: train_config: 

20: batch_size = {4};  

21: learning_rate = {0.0002, 0.00002, 0.000002}; 

22: num_steps = {200,000}; 

23: data_augmentation_options = {random_rotate_90, 
random_horizontal_flip, 
 random_vertical_flip, ssd_random_crop};  

24: eval_config:  

25: num_examples = {21,912}; 

SSD Configuration 
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Fig. 5. The Line Graph Representation of the TotalLoss for the Faster R-

CNN with Inception V2 Model. 

TABLE II. TRAINING METRICS OF THE FASTER R-CNN MODEL 

Steps Value 

45616 0.040272284 

45672 0.431099415 

45699 0.083715603 

45727 0.708893716 

45755 0.06934201 

45783 0.584971786 

45810 0.254837424 

45866 0.302880734 

45894 0.229811206 

45977 0.143239096 

The formula for the Euclidean distance, as in [25], (1) and 
the interior angles between centroid (2 and 3) are as follows: 

D = √ [(x2 - x1)
2
 + (y2 - y1)

2
]            (1)

y = sin
-1

[(y2-y1)/D] (180°/)            (2) 

x = sin
-1

[(x2-x1)/D] (180°/)            (3) 

 

Fig. 6. The Line Graph Representation of the TotalLoss for the SSD Model. 

TABLE III. TRAINING METRICS OF THE SSD MODEL 

Steps Value 

140129 1.688523769 

140171 1.409463882 

140213 2.607795238 

140467 1.906678438 

140764 1.774537325 

140978 3.171329737 

141275 3.082624435 

141445 1.949746 

where D is the Euclidean distance between two centroids in 
pixels, x1 is the centroid of the first object in x-axis, x2 is the 
centroid of the second object in x-axis, y1 is the centroid of the 
first object in y-axis, y2 is the centroid of the Second object in 
y-axis, θy is the interior angle between centroids in y-axis, and 
θx is the interior angle between centroids in x-axis. 

G. Overall Structure of the System 

In the input section, the program will load the necessary 
packages, the label map, and the frozen inference graph that is 
generated and trained. Consequently, the camera will process 
the image frames through the VideoCapture objects of the 
program. In the image processing section, the SSD-based 
neural network will visualize “COW” predictions and identify 
object overlapping activities through bounding box corner 
analysis in real-time, as in [24], if the prediction score exceeds 
seventy percent. The program will also generate data frames 
[23] to contain information such as the Cow Name, ID, box 
coordinates and angles, and date and time of detection, 
considering there is only one class to be predicted in the image. 
If the data frames contain more than one detection, the program 
will filter out the prediction and will calculate the distances 
between two centroids of object instances and the interior 
angles between the two centroids and a point connecting it. 
After meeting the criteria, the program will iteratively count for 
the overlapping of object instances from 2 to 8 frames per 
second. If an overlapping of object instances occurred, as in [9] 
[24], then a copy of the frame will be directed to the Faster 
RCNN model, which will be initialized to perform image 
classification and object detection. The model will also be 
generating data frames to contain the Cow Names, IDs, box 
coordinates and angles, and date and time of detection of the 
nineteen classes predicted in the image. If the similar 
conditions are met in the Faster R-CNN model, an object 
overlapping or estrus activity will be declared, and the current 
image frame and record will be locally saved. Subsequently, 
the program will restart its counter and will continue to 
perform object detection. A flowchart represents the program 
flow of the automated estrus detection system using 
TensorFlow object detection API is illustrated in Fig. 7. 
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Fig. 7. The Line Graph Representation of the TotalLoss for the SSD Model. 

IV. RESULTS AND DISCUSSION 

A. Object Detection Results 

The researchers deployed the system and operated locally 
in the barn for 4 months, with 10 hours of daylight and 
artificial light exposure in the barn. The system unit can 
execute the program at 30 fps and 1fps for image frame 
recognition with the SSD and the Faster R-CNN models, 
respectively. 

Based on the results obtained, the system reported only two 
confirmed estrus events for 19 subjects in the trials, as shown 
in Fig. 8 and Fig. 9. Even after attaining acceptable and low 
TotalLoss values from the training of the Faster R-CNN model, 
the system still produced inaccurate cow predictions with 50% 
detection efficiency. According to the cow caretaker, the estrus 
activity depicted in Fig. 8 between “COW H” and 
“CARACOW” is validated. But in Fig. 9, the event is 
misidentified since it should be in-between the “BULL” and 
“COW Q”, but not in-between “COW P” and “COW N”, 
respectively. 

Moreover, the confidence scores of the model for “COW 
N” and “COW P” are 71% and 75%, whereas, the confidence 
scores for “COW H” and “CARACOW” are 96% and 97%, 
respectively. Nevertheless, the SSD model effectively 
visualized “COW” objects with confidence scores of 94%, as 
shown in Fig. 10. These results suggest additional training 
time, dataset acquisition, and data cleaning to attain higher 
prediction scores for both models. 

B. Database Results 

Table III represents the validity of the results in monitoring 
the standing-heat of cattle. Based on the verification of the cow 
caretaker from the locally saved dataframes and images, the 
detected event in-between “CARACOW” and “COW H” is 
“TRUE” while the detected event in-between “COW N” and 
“COW P” is “FALSE due to the misidentification of the Faster 
R-CNN model which led to the 50% detection efficiency. 
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Fig. 8. An Image Frame of an Estrus Activity between the Cow (“COW H”) 

and the Water Buffalo (“CARACOW”). 

 

Fig. 9. An Image Frame of an Estrus Activity between the Cow (“COW P”)  

and the Bull (“COW N”). 

 

Fig. 10. An Image Frame of an Estrus activity between the Cow (“COW H”) 

and the Water Buffalo (“COW”). 

As shown in Fig. 11, there are a total of 4 app-detections of 
standing-heat, 4 manually detected standing-heat signs, and 2 
“True Positive” and “False Positive” detections from the 
program. As represented in Table IV, the end-user stated 
“FALSE” due to the incorrect detection of the system with 
“COW N” and “COW P” as in-heat cows, which instead 
should be the “BULL” and “COW Q”. Still, the system 
initially and correctly detected 4 standing-heat signs, but with 2 
false predictions and identifications leading to 2 “True 
Positive” and 2 “False Positive” results, attaining a 50% 
detection efficiency. 

C. Performance Assessment with other Related Works 

Table V represents the summarized comparison framework 
between the proposed method and other relevant researchers in 
estrus detection. As abovementioned, this research deals with 
the detection of mounting behaviors of Holstein-Friesian and 
Sahiwal crosses, a bull, and a water buffalo. In contrast with 
the papers [7], [10]- [12], the proponents integrated a cattle 
identifier using customized neural network frameworks with a 
detection efficiency of approximately 90% and 50% for the 
Faster R-CNN and SSD models, respectively. Besides, most of 
the formulated methods do not include cattle identifiers since 
the researchers and the cow caretakers employ manual 
inspection of the cow tags after the process of standing-heat 
detection, by which, in this case, the system automatically 
identifies the cows and declares the estrus event at the same 
time. 

The system also calculated a detection efficiency of 50% as 
a subsequent effect from the system's image classifier or cattle 
identifier. These results suggest the integration of other 
machine learning algorithms such as Foreground segmentation, 
background subtraction, support vector machine, and more 
within the deep learning framework, or the application of 
unsupervised learning in the detection system. 

TABLE IV. TABULAR REPRESENTATION FOR THE VERIFICATION OF THE 

ACTUAL PROJECT TESTING 

Cow ID 
Date of 

Detection 

Time of 

Detection 

Estrus 

validity 
Inseminated 

1 
January 11, 

2020 
2:37:22 PM TRUE NO 

1229-1 
January. 

11, 2020 
2:37:22 PM TRUE YES 

257-2b 
April 2, 
2020 

06:24:13 AM FALSE NO 

67 
April 2, 

2020 
06:24:13 AM FALSE NO 
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Fig. 11. Summarized Graphical Representation of Database Result for the Frequency of Standing-heat from January to December. 

TABLE V. COMPARISON FRAMEWORK OF THE PROPOSED METHOD WITH OTHER RELEVANT WORKS IN TERMS OF PERFORMANCE AND ACCURACY 

Author Tsai and Huang [7] 

Andrew, 

Greatwood, and  
Burghardt [9] 

Yang, Lin, and 

Peng [10] 
Xia et al. [11] 

Guo, Zhang, He, 

Niu, and Tan [12] 
Proposed work 

Cattle Breed Holstein Holstein-Friesian Holstein Holstein Holstein 
Holstein-Friesian, 

Sahiwal 

Sensors used IP Dome Camera 
UAV integrated 
camera 

Infrared Camera 
Pedometer and 
reader 

Fixed IP Camera PTZ Camera 

Algorithm 

Motion Detection, 

Region 
Segmentation,  

Foreground 

Segmentation, 
and Blob Analysis 

R-CNN 

Localization, 
and Tracking 

Motion Detection, 

Region 

Segmentation, 
Foreground 

Segmentation. 

Motion Analysis 

BSCTF, SVM, 
Geometric and 

Optical Flow 

Feature extraction 

Faster R-CNN and 

SSD Localization 
and Tracking 

Output Image Image Image Steps Image 
Image, 

Printed message 

Accuracy in object 

(cattle) detection 
- 98.13% - - 98.3% 

94% (SSD), 
50% (FRCNN) 

Accuracy in estrus 

detection 

100% (TP) 

0.333% (FP) 
- - 91.86% 

90.9% (TP) 

4.2% (FP) 

50% (TP) 

50% (FP) 

Limitations 
Only at daytime, 

Indoor setup 

Only at daytime, 

Not suitable for 

marker-less cattle 

Shadow 

appearances 

Indoor setup 

Lack of cattle 

identification 

Indoor setup 

Lack of cattle 

identification 

Indoor setup, 

Not suitable for 

marker-less cattle 

Recommendations 
Lameness 

detection 

Larger herd 

identification 

Changing type of 

camera, Cattle 
identification 

None None 

Integrate other 
machine learning 

algorithms, 

implement 
unsupervised 

learning in the 

framework 
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V. CONCLUSION 

In this study, the researchers presented a novel way of 
detecting estrus for dairy cattle, specifically the Holstein-
Friesian and Sahiwal crosses, using the TensorFlow Object 
Detection API and its pre-trained models such as the Faster R-
CNN and Single Shot Detector models with the Inception V2 
as the feature extractor. Based from the obtained results, it can 
be concluded that (1) the Single Shot Detector (SSD) with 
Inception V2 proved to be effective in visualizing bounding 
boxes on the single class objects (e.g. “COW”) with confidence 
scores of more than 90%, and (2) the Faster R-CNN with 
Inception V2 proved to be inaccurate in identifying objects 
with color indifferences between the subjects and the surface 
area of the barn obtaining a detection efficiency of 50%. 
Despite the inaccuracy, the proposed system can detect 
mounting behaviors of dairy cattle, given that the system will 
classify only one class (e.g. “COW) as shown in Fig. 8. 

VI. FUTURE WORK 

This research aims to report the preliminary attempt and 
provide learnings for other researchers to devise a system 
which classifies the dairy cattle subjects as well. The 
researchers also recommend to: (1) implement unsupervised 
learning techniques and machine learning algorithms within the 
deep learning framework that enhances the efficiency of cow 
classification and estrus detection without the aid of cowhide 
patterns, (2) develop a system that can monitor and detect 
mounting behaviors of cows on an outdoor setup, (3) define 
other suitable estrus detection criteria that maximize the 
camera’s performance and line-of-sight, and (4) integrate a 
notification subsystem to immediately inform the end-users of 
the estrus events and initiate insemination on the cows. 

ACKNOWLEDGMENT 

The authors would like to express their deepest gratitude to 
Mr. Arcadio Francisco De Belen Jr., Farm Foreman, and the 
personnel of De Belen Dairy Farm for allowing the researchers 
to use the facilities, and to implement and deploy the project on 
the barn; and to the University Research and Development 
Services (URDS) of the Technological University of the 
Philippines, Ermita, Manila for the project funding. 

REFERENCES 

[1] T. J.Parkinson, "Infertility in the Cow Due to Functional and 
Management Deficiencies," Veterinary Reproduction and Obstetrics, vol. 
10, pp. 361-407, 2019. 

[2] M. Mária, P. Strapák, I. Szencziová, E. Strapáková and O. Hanušovský, 
"Several Methods of Estrus Detection in Cattle Dams: A Review," Acta 
Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, vol. 
66, no. 2, p. 619 – 625, 2018. 

[3] J. B. Roelofs, C. Krijnen and E. v. E.-v. d. Kooij, "The effect of housing 
condition on the performance of two types of activity meters to detect 
estrus in dairy cows," Theriogenology, vol. 93, pp. 12-15, 2017. 

[4] R. W. Rorie, T. R. Bilby and T. D. Lester, "Application of electronic 
estrus detection technologies to reproductive management of cattle," 
Theriogenology, vol. 57, pp. 137-148, 2002. 

[5] L. G. S. Bersales, "Philippine Statistics Authority," January-December 
2018. [Online]. Available: https://psa.gov.ph/livestock-poultry-
iprs/cattle/inventory. [Accessed 2019]. 

[6] S. Reith and S. Hoy, "Review: Behavioral signs of estrus and the 
potential of fully automated systems for detection of estrus in dairy 
cattle," The Animal Consortium 2017, vol. 12, no. 2, pp. 398-407, 2018. 

[7] D.-M. Tsai and C.-Y. Huang, "A Motion and Image Analysis Method for 
Automatic Detection of Estrus and Mating Behavior in Cattle," 
Computers and Electronics in Agriculture , vol. 104, pp. 25-31, 2014. 

[8] S. Talukder, K. L. Kerrisk, L. Ingenhoff, P. C. Thomson, S. C. Garcia and 
P. Celi, "Infrared technology for estrus detection and as a predictor of 
time of ovulation in dairy cows in a pasture-based system," 
Theriogenology, vol. 81, no. 7, pp. 925-935, 22014. 

[9] W. Andrew, C. Greatwood and T. Burghardt, "Visual Localisation and 
Individual Identification of Holstein Friesian Cattle via Deep Learning," 
in 2017 IEEE International Conference on Computer Vision Workshops 
(ICCVW), Venice, Italy, 2017. 

[10] C.-J. Yang, Y.-H. Lin and S.-Y. Peng, "Develop a Video Monitoring 
System for Dairy Estrus Detection at Night," in 2017 International 
Conference on Applied System Innovation (ICASI), Sapporo, Japan, 
2017. 

[11] T. Xia, C. Song, J. Li, C. Li, G. Xu, F. Xu, J. Liu, G. M. P. O'Hare and Q. 
Zhou, "Research and Application of Cow Estrus Detection Based on the 
Internet of Things," in 2017 IEEE International Conference on 
Computational Science and Engineering (CSE) and IEEE International 
Conference, Guangzhou, China, 2017. 

[12] Y. Guo, Z. Zhang, D. He, J. Niu and Y. Tan, "Detection of cow mounting 
behavior using region geometry and optical flow characteristics," 
Computers and Electronics in Agriculture, vol. 163, 2019. 

[13] Porto, S. MC, C. Arcidiacono, U. Anguzza and G. Cascone, "A computer 
vision-based system for the automatic detection of lying behaviour of 
dairy cows in free-stall barns," Biosystems Engineering, vol. 115, pp. 
184-194, 2013. 

[14] J. O’Rourke and G. T. Toussaint, "Pattern Recognition," in Handbook of 
Discrete and Computational Geometry, Florida, CRC Press LLC, 2017, 
pp. 1421-1450. 

[15] J. Huang, V. Rathod, C. Sun, M. Zhu, A. Korattikara, A. Fathi, I. Fischer, 
Z. Wojna, Y. Song, S. Guadarrama and K. Murphy, "Speed/Accuracy 
Trade-Offs for Modern Convolutional Object Detectors," in 2017 IEEE 
Conference on Computer Vision and Pattern Recognition (CVPR), 
Honolulu, HI, USA, 2017. 

[16] J. S. Velasco, C. G. Pascion, J. W. Alberio, J. Apuang, J. S. Cruz, M. A. 
Gomez, B. J. Molina, L. Tuala, A. Thio-ac and R. L. J. Jr., "A 
Smartphone-Based Skin Disease Classification Using MobileNet CNN," 
International Journal of Advanced Trends in Computer Science and 
Engineering, vol. 8, pp. 2632-2637, 2019. 

[17] F. Al-Azzoa, A. M. Taqia and M. Milanova, "Human Related-Health 
Actions Detection using Android Camera based on TensorFlow Object 
Detection API," (IJACSA) International Journal of Advanced Computer 
Science and Applications, vol. 9, no. 10, pp. 9-23, 2018. 

[18] J. S. Velasco, N. M. Arago, R. M. Mamba, M. V. C. Padilla, J. P. M. 
Ramos and G. C. Virrey, "Cattle Sperm Classification Using Transfer 
Learning Models," International Journal of Emerging Trends in 
Engineering Research, vol. 8, pp. 4325-4331, 2020. 

[19] X. Ma, S. Pan, Y. Li, C. Feng and A. Wang, "Intelligent welding robot 
system based on deep learning," in 2019 Chinese Automation Congress 
(CAC), Hangzhou, China, 2019. 

[20] S. Ren, K. He, R. Girshick and J. Sun, "Faster R-CNN: Towards Real-
Time Object Detection with Region Proposal Networks," IEEE 
Transactions on Pattern Analysis and Machine Intelligence, vol. 39, no. 6, 
pp. 1137-1149, 2016. 

[21] D. A. D. E. Wei Liu, C. Szegedy, S. E. Reed, C.-Y. Fu and A. C. Berg, 
"SSD: Single Shot MultiBox Detector," European Conference on 
Computer Vision 2016, vol. 9905, pp. 21-37, 2016. 

[22] V. N. and S. A., "Pre-processing," in Studies in Systems, Decision and 
Control, New York City, Springer, 2020, pp. 89-120. 

[23] Porcu, Python for Data Mining Quick Syntax Reference, New York City: 
Appress, 2018. 

[24] Y. He, C. Zhu, J. Wang, M. Savvides and X. Zhang, "Bounding box 
regression with uncertainty for accurate object detection," 2019 
IEEE/CVF Conference on Computer Vision and Pattern Recognition 
(CVPR), pp. 2883-2892, 2019. 

[25] O. B, Elementary Differential Geometry, Amsterdam, Netherlands: 
Elsevier Inc., 2006. 


