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Abstract—The article proposes a method for software 

implementation of floating-point computations on a graphics 

processing unit (GPU) with an increased accuracy, which 

eliminates sharp increase in rounding errors when performing 

arithmetic operations of addition, subtraction or multiplication 

with numbers that are significantly different from each other in 

magnitude. The method is based on the representation of 

floating-point numbers in the form of decimal fractions that have 

uniform distribution within a range and the use of redundant 

signed-digit numeral system to speed up calculations. The results 

of computational experiments for evaluating the effectiveness of 

the proposed approach are presented. The effect of accelerating 

computations is obtained for the problems of calculating the sum 

of an array of numbers and determining the dot product of 

vectors. The proposed approach is also applicable to the discrete 

Fourier transform. 
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I. INTRODUCTION 

Most computer calculations are carried out in floating-
point format and double precision computer calculations are 
sufficient for solving many computational problems. 

However, there are a number of problems, for example, in 
computational geometry and other areas where double 
precision floating-point arithmetic is not sufficient [1]. To 
solve such problems, the well-known libraries of high-
precision computations are used, such as ZREAL (Russia), 
MPARITH (Germany), GMP (USA), which implement 
floating-point calculations at the software level with a 
mantissa length set by the user [2, 3, 6, 7, 8, 9, 10]. 

But these libraries have the property of sharply increasing 
the calculation time with the increasing in the length of the 
mantissa and the number of arithmetic operations. In addition, 
they have the inherent disadvantages of the floating-point 
format itself, which does not always guarantee an accurate 
result of computer calculations. 

One of such disadvantages is the uneven distribution of 
floating-point numbers. Fig. 1 below shows the uneven 
distribution of normalized floating-point numbers with the 

mantissa length of 3 binary digits and the order from 0 to 4 
[4]. 

As an example of the loss of accuracy in computer 
calculations consider the problem of determining the dot 
product of two vectors with following coordinates: 
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where  , are given parameters. 

The true result is 8779. The dot product was calculated in 
the single precision format, the relative error was calculated 

with the constant value of 1  and  ranging from 1 

to 21.  

The relative error of the dot product was calculated using 
the formula: 
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The dependence of the relative error of the dot product of 

vectors on the parameter   in single precision floating-

point format is presented in the graph shown in Fig. 2. 

Fig. 2 shows that for significantly different values of 
and  , starting from the value 18 for  , there is a sharp 

loss in the accuracy of the dot product results, which is due to 
the fact that calculations are performed with numbers that 
differ greatly from each other in magnitude. 

Using double precision floating-point format, the increase 
in the relative error occurs at larger values of β compared to 
the single precision format. 
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Fig. 1. Distribution of Floating-Point Numbers. 

 

Fig. 2. Dependence of the Relative Error on the Parameter β. 

Consider the following example that demonstrates the loss 
of precision in floating-point calculations associated with the 
discrete Fourier transform. 

Let a vector 
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be given with coordinates defined as follows: 
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The discrete Fourier transform of a vector 


х  into a 

vector 


y  is performed using the following formula: 
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The inverse Fourier transform is performed using the 
following formula: 
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Obviously, if we carry out the direct discrete Fourier 
transform, then the inverse Fourier transform of the vector. 
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we get the vector 
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which should approximately coincide with  


х , and the 
maximum relative error of the transformations can be 
estimated using the formula: 
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Fig. 3 also demonstrates the loss of accuracy of the 
floating-point calculations with increasing α. 

The first goal of this work is to eliminate the sharp loss of 
accuracy in calculations with numbers that differ greatly from 
each other in magnitude. The second goal is to speed up 
computations by parallelizing them. 

The first goal is achieved by moving from floating-point 
representation to decimal representation that is evenly 
distributed within the range, as shown in Fig. 4, for example 
for decimal fractions of the first degree. 

The second goal is achieved through the use of a redundant 
signed-digit numeral system, in which redundant negative 
digits are introduced into the system of bases in such a way 
that the propagation of the carry when adding is not allowed 
further than one digit [4,5]. Due to this, the arithmetic 
operations of addition, subtraction and multiplication are 
parallelized, which leads to their acceleration, especially when 
the number of digits increases. The time required for addition 
or subtraction of numbers does not depend on the digit 
capacity of the numbers. 

 

Fig. 3. Dependence of the Relative Error on the Parameter α using Single 

Precision Format. 
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Fig. 4. Even Distribution of Decimal Fractions. 

In [11,12,14,15,16] methods of representation and 
algorithms for performing arithmetic operations in a modular 
numeral system and a method for their acceleration due to 
parallelization in several modules are presented. 

This article proposes a different approach based on the 
transition to a redundant signed-digit numeral system. 

Such numeral system has an advantage over modular 
systems in that it is simpler to convert directly and inversely to 
the traditional numeral system and there is no need for 
overflow control. 

A method for summing a group of numbers and 
calculating the dot product, oriented towards parallel 
implementation on a GPU, is considered. The results of 
experimental studies of the effectiveness of this method of 
high-precision calculations are obtained. 

The next section considers a possible way to represent 
numbers in a redundant signed-digit numeral system. 

II. REPRESENTING NUMBERS IN A REDUNDANT SIGNED-

DIGIT NUMERAL SYSTEM 

Consider the representation of floating-point numbers of 
the following form [4]: 

tqKA 
               (6) 

where 

  is a floating-point number, 

  is the mantissa of the number  , an integer such that 

satisfies the inequality 

1 fn
qK , 

  is the base (radix) of the numeral system, 

  is the order, an integer such that satisfies the inequality

fkt   

   is a natural number characterizing the length of the 

mantissa of the floating-point number, 

   is a natural number characterizing the maximum order of 

representable numbers. 

Table I includes positive and negative minimum and 
maximum numbers representable in the form (6) 
[11,13,17,18]. 

The range of representable numbers (6) is as follows: 
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Consider the sum of numbers of the form: 
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            (9) 
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Let us estimate the maximum number of digits required to 
describe the result of the sum (9). Using Table I, we have: 

1
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If 10q  , the maximum number of digits required to 

describe the sum will be equal to: 

lg n nf kf     

From the last expression it can be seen that to implement 
the addition of groups of numbers in floating-point format 
calculations with large numbers are required. 

Consider the format for representing floating-point 
numbers (6) in the signed-digit numeral system as follows:

 

    ,,...,,...,, 21 tA ni 
             (11) 

where 

   are the digits of the signed-digit representation. 

This format will be referred to as the floating-point signed-
digit format. 

Consider the rule for adding two numbers and a group of 
numbers in this format. 

TABLE I. MAXIMUM AND MINIMUM POSITIVE AND NEGATIVE NUMBERS 
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III. RULES FOR PERFORMING ARITHMETIC OPERATIONS IN 

SIGNED-DIGIT FLOATING-POINT FORMAT 

Let there be given two floating-point numbers of the form 
(11). 

    ,,...,,...,, 1211 tA ni 
, 

     ,,...,,...,, 1212 sA ni 
 

Calculating the sum 21 AA 
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Suppose 11 ts  . This does not change the generality of 

reasoning. Then: 
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Let 6, 5,...,0,...6   be the digits of the 

signed-digit numeral system. 

The time required for adding numbers does not depend on 
the number of digits. The addition is performed using the 
following steps: 

1. Calculation of the sum 

10ui xi yi ci   , where 

  {
              

                
           

 

2. Calculation of the final result 

1i i iu c    

Product of numbers 21 AA   is calculated by the 

formula: 

    ,,...,,...,, 1121213 stAAA ni  
          (13) 

where coefficients 1 2, ,..., ,...,i n     are 

determined according to the rules for multiplying numbers in 
the signed-digit numeral system. 

In the next section, the first and second methods of 
summing a group of numbers are considered. 

IV. METHODS OF SUMMING GROUPS OF NUMBERS 

The first method of summing groups of numbers is carried 
out according to the formula (12) using the addition rule 
presented in Section III in redundant signed-digit arithmetic in 
parallel over the digits and sequentially for each number of the 
group. This method, when implemented on GPU, requires a 
large number of synchronizations between cores. In Section V 

the results of experimental study of the effectiveness of this 
method are presented. 

Consider the second method of summation with fewer 
synchronizations. 

Let the number of digits of the summed numbers equal d, 
and the maximum possible number of digits required to 
describe the sum equal     . 

Let a set of numbers for summation be given: 

1
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1 d
a a a  

2
nd
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1 d
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k
th

 number: 2 ....
1
k k k

d
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Let us denote their sum by S. 

Let us add these numbers to the left with zeros to the 
maximum possible number of digits     , getting the 
following: 
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Summation is carried out as follows: 

1. Each one of      threads in parallel and 

independently calculates the sums of the numbers of 

the corresponding column, for example, thread 

number      calculates the sum of the numbers: 

1
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i
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thread number        calculates the sum of the 

numbers: 

1
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i
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


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2. At the end of the first step, the calculations are 

synchronized. 

3. By definition the value S equals: 

21
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Each thread extracts digits from its result, for 

example, thread number        finds digits: 

1 2 3, ,i i i , thread number        finds digits: 

1 2 3, ,j j j . 

4. Each thread forms numbers of the form: 

1 2 3

1 2 3

0 ... 0

0 ... 0

0 ... ... ... ... ...

i i i

j j j
 

Thread number        forms the first line, 

thread number        forms the second line etc. 

5. These numbers are summed sequentially one after 

another bit-parallel in the signed-digit numeral 

system. 

6. The final result is transferred from the GPU to the 

CPU. 
Such summation method requires d - 1 synchronizations in 

the process of summing this array. 

Consider an example.  

Suppose d = 3,      = 5, k = 3. 

Numbers for the summation: 

5 5 6 

1 7 9 

9 7 9 

Calculated sums: 

S4 = 24 

S3 = 19 

S2 = 15 

S1 = 0 

S0 = 0 

Each thread forms one of the following numbers: 

0 0 0 2 4 

0 0 1 9  0 

0 1 5 0 0 

Then these numbers are summed sequentially one after 
another bit-parallel in the signed-digit numeral system 
according to the first method. 

Next section considers the results of experimental studies 
of the efficiency of summation of groups of numbers. 

V. EXPERIMENTAL STUDY OF THE EFFICIENCY OF HIGH-

PRECISION SUMMATION OF GROUPS OF NUMBERS IN THE 

SIGNED-DIGIT NUMERAL SYSTEM 

Numerical experiments were carried out on the addition of 
groups of integers of different magnitudes, with the number of 
integers k = 10000, 100000, 1000000. The addition was 
carried out according to the rules of traditional arithmetic on 
the CPU bitwise each number of the group sequentially and 
using the first method on the Nvidia GPU (1.78 GHz, 1280 
cores) bit-parallel and sequentially for each number of the 
group. 

GPU calculations were performed as follows: 

1) Initial data were generated randomly, integers of fixed 

length were generated and stored in arrays. 

2) Arrays were transferred to the GPU. 

3) A number of threads were created matching the number 

of digits. Each thread carried out sequential summation of the 

array numbers in its corresponding digit in parallel and 

independently. 

4) The result of the summation was transferred from the 

GPU to the CPU. 

The time required for summation of numbers on the CPU 
and the GPU was calculated, considering the transfer of data 
to the GPU and in the opposite direction to the CPU. On the 
basis of these calculations, the absolute acceleration 
coefficients were determined for different numbers of digits 
and values of k by the formulas: 

     
    

    
              (15) 

Fig. 5 shows the dependence of this coefficient on the 
number of digits. 

Fig. 5 shows that the acceleration effect provided by the 
first method is insignificant and is achieved for numbers 
exceeding 400 decimal digits. 

Experiments showed that data transfer from CPU to GPU 
and from GPU to CPU was very fast and did not lead to delays 
in the computation process. One of the main reasons for the 
low efficiency of the first method of summation on the GPU 
in the signed-digit numeral system is associated with the need 
for synchronization after addition of each pair of numbers in 
the group, which slows down the computation. If the array 
contains k numbers, then this summation method requires k-1 
synchronizations in the process of summing this array. 

 

Fig. 5. Dependence of the Absolute Acceleration Coefficient on the Number 

of Digits for the First Summation Method. 
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Experiments on summing the same groups of numbers 
using the second method have shown that it is more efficient 
than the first method. For the second method the computation 
times on the CPU and the GPU were calculated, on the basis 
of which the absolute acceleration coefficient was determined 
by the formula (15) for different values of k. 

Fig. 6 shows the dependence of the absolute acceleration 
coefficient on the number of digits for this summation method. 

Fig. 6 shows that using the second summation method on 
the GPU with numbers comprising of 800 to 900 digits speeds 
up the computation 3 to 4 times in comparison with 
summation on the CPU. With further increase in value of k 
and the number of digits, the acceleration is supposed to be 
even greater. 

 

Fig. 6. Dependence of the Absolute Acceleration Coefficient on the Number 

of Digits for the Second Summation Method. 

Next section considers a method for multiplying numbers 
based on redundant signed-digit arithmetic. 

VI. METHOD FOR MULTIPLYING NUMBERS 

Let the number of digits required to represent initial data 
equal d, and the maximum possible number of digits required 
to represent the result of multiplication equal     . 

Let two numbers be given: 

1
st
 number: 

2

1 1 1
....

1 d
a a a

 

2
nd

 number: 
2

2 2 2
....

1 d
a a a

, 

Let us add these numbers to the left with zeros to the 
maximum possible number of digits     , getting the 
following: 

1 1
1

2 2
1

0 ... 0 ...

0 ... 0 ...

d

d

a a

a a
 

Multiplication process on the GPU involves d threads. 

Thread number 1 forms the results (partial products): 

, ,
1 2 1 2 1 2
1 2

0 ... 0 ...
d d d d

a a a a a a  
 

Thread number 2 forms the results: 

, ,
1 2 1 2 1 2
1 21 1 1

0 ... 0
d d d d

a a a a a a  
            (16) 

Thread number d forms the results: 

, ..., ,
1 2 1 2 1 2
1 1 2 1 1

0 ... ... 0
d

a a a a a a  
 

The results are formed in parallel and independently by 
each thread for each product of two numbers. 

Then they are summed up using the second method 
described in Section IV. 

Next section considers the results of experimental studies 
of the efficiency of calculating the dot product of vectors. 

VII. EXPERIMENTAL STUDY OF THE EFFICIENCY OF HIGH-

PRECISION CALCULATION OF THE DOT PRODUCT OF VECTORS 

IN SIGNED-DIGIT NUMERAL SYSTEM 

The dot product of vectors (x,y), where x = (x1,x2,…,xk), 
y = (y1,y2,…,yk), is calculated as follows: 

1) The values of arrays x,y are transferred to the GPU. 

2) For each pair xi and yi partial products (24-26) are 

calculated in parallel and independently on the GPU. 

3) Next, the summation of the obtained partial products is 

carried out using the second method. 

4) The result of the dot product is transferred to the CPU. 
Numerical experiments were carried out to calculate the 

dot product of vectors with different numbers of coordinates k 
= 10000, 100000, 1000000. The coordinates were integers 
with the length of 50 decimal digits. The dot product was 
calculated according to the rules of traditional integer 
arithmetic on the CPU and in redundant signed-digit 
arithmetic bit-parallel on the GPU. 

The results of the experiments are presented on the graph 
in Fig. 7. 

The graph shows that with the increase of the number of 
digits required to represent initial data d and the maximum 
possible number of digits required to represent the result of the 
dot product      the proposed method provides greater 
acceleration of the computation process. 
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Fig. 7. Dependence of the Absolute Acceleration Coefficient on k with 

different Values of d,     . 

VIII. CONCLUSION 

This article proposes an approach to software 
implementation of computations on a GPU, which prevents 
sharp loss of precision in calculations with numbers that differ 
greatly from each other in magnitude. The approach is based 
on representation of floating-point numbers in the form of 
decimal fractions and the use of a redundant signed-digit 
numeral system to speed up computations with them on the 
GPU. 

The effect of accelerating computations was obtained and 
proven experimentally for the operations of summation of an 
array of numbers on the GPU and calculating the dot product 
of vectors. 

The proposed approach is also applicable for the discrete 
Fourier transform, for the case presented in the article as well 
as in other cases. 
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