
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 9, 2020

357 | P a g e

www.ijacsa.thesai.org

Using of Redundant Signed-Digit Numeral System

for Accelerating and Improving the Accuracy of

Computer Floating-Point Calculations

Otsokov Sh.A
1

Dept. of Computing Machines, Systems and Networks

National Research University "Moscow Power Engineering

Institute", Moscow, Russian Federation

Magomedov Sh.G
2

Dept. of Intelligent Information Security Systems

MIREA Russian Technological University

Moscow, Russian Federation

Abstract—The article proposes a method for software

implementation of floating-point computations on a graphics

processing unit (GPU) with an increased accuracy, which

eliminates sharp increase in rounding errors when performing

arithmetic operations of addition, subtraction or multiplication

with numbers that are significantly different from each other in

magnitude. The method is based on the representation of

floating-point numbers in the form of decimal fractions that have

uniform distribution within a range and the use of redundant

signed-digit numeral system to speed up calculations. The results

of computational experiments for evaluating the effectiveness of

the proposed approach are presented. The effect of accelerating

computations is obtained for the problems of calculating the sum

of an array of numbers and determining the dot product of

vectors. The proposed approach is also applicable to the discrete

Fourier transform.

Keywords—High-precision computation; redundant signed-

digit numeral system; signed-digit floating-point format; redundant

signed-digit arithmetic; decimal fractions

I. INTRODUCTION

Most computer calculations are carried out in floating-
point format and double precision computer calculations are
sufficient for solving many computational problems.

However, there are a number of problems, for example, in
computational geometry and other areas where double
precision floating-point arithmetic is not sufficient [1]. To
solve such problems, the well-known libraries of high-
precision computations are used, such as ZREAL (Russia),
MPARITH (Germany), GMP (USA), which implement
floating-point calculations at the software level with a
mantissa length set by the user [2, 3, 6, 7, 8, 9, 10].

But these libraries have the property of sharply increasing
the calculation time with the increasing in the length of the
mantissa and the number of arithmetic operations. In addition,
they have the inherent disadvantages of the floating-point
format itself, which does not always guarantee an accurate
result of computer calculations.

One of such disadvantages is the uneven distribution of
floating-point numbers. Fig. 1 below shows the uneven
distribution of normalized floating-point numbers with the

mantissa length of 3 binary digits and the order from 0 to 4
[4].

As an example of the loss of accuracy in computer
calculations consider the problem of determining the dot
product of two vectors with following coordinates:

)10- 3, ,10 ,10 ,1223 ,10(521 



х

,

),10 ,2111 ,10 ,10 ,2 ,10(
31 





y

where  , are given parameters.

The true result is 8779. The dot product was calculated in
the single precision format, the relative error was calculated

with the constant value of 1  and  ranging from 1

to 21.

The relative error of the dot product was calculated using
the formula:

(,) 8779
100

8779

x y



 

 (1)

The dependence of the relative error of the dot product of

vectors on the parameter  in single precision floating-

point format is presented in the graph shown in Fig. 2.

Fig. 2 shows that for significantly different values of 
and  , starting from the value 18 for  , there is a sharp

loss in the accuracy of the dot product results, which is due to
the fact that calculations are performed with numbers that
differ greatly from each other in magnitude.

Using double precision floating-point format, the increase
in the relative error occurs at larger values of β compared to
the single precision format.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 9, 2020

358 | P a g e

www.ijacsa.thesai.org

Fig. 1. Distribution of Floating-Point Numbers.

Fig. 2. Dependence of the Relative Error on the Parameter β.

Consider the following example that demonstrates the loss
of precision in floating-point calculations associated with the
discrete Fourier transform.

Let a vector
),...,,,(321 nxxxx



х

be given with coordinates defined as follows:

 {

 if

 if

 (2)

The discrete Fourier transform of a vector


х into a

vector


y is performed using the following formula:

10

,
2

sin
2

cos
1 1

0










 



 





nk

n

kj
i

n

kj
x

n
y

n

j

jk



 (3)

The inverse Fourier transform is performed using the
following formula:

10

,
2

sin
2

cos
1

0








 









nk

n

kj
i

n

kj
yx

n

j

jk



 (4)

Obviously, if we carry out the direct discrete Fourier
transform, then the inverse Fourier transform of the vector.

),...,,,(321 nxxxx


х

we get the vector

),...,*,*,(* 321 nxxxx


х

which should approximately coincide with


х , and the
maximum relative error of the transformations can be
estimated using the formula:

















 100

*
max

i

ii

i x

xx


 (5)

Fig. 3 also demonstrates the loss of accuracy of the
floating-point calculations with increasing α.

The first goal of this work is to eliminate the sharp loss of
accuracy in calculations with numbers that differ greatly from
each other in magnitude. The second goal is to speed up
computations by parallelizing them.

The first goal is achieved by moving from floating-point
representation to decimal representation that is evenly
distributed within the range, as shown in Fig. 4, for example
for decimal fractions of the first degree.

The second goal is achieved through the use of a redundant
signed-digit numeral system, in which redundant negative
digits are introduced into the system of bases in such a way
that the propagation of the carry when adding is not allowed
further than one digit [4,5]. Due to this, the arithmetic
operations of addition, subtraction and multiplication are
parallelized, which leads to their acceleration, especially when
the number of digits increases. The time required for addition
or subtraction of numbers does not depend on the digit
capacity of the numbers.

Fig. 3. Dependence of the Relative Error on the Parameter α using Single

Precision Format.

0

20

40

60

80

100

120

1 3 5 7 9 11 13 15 17 19 21

Relative error, %

0

2

4

6

8

10

12

14

16

18

20

0 1 2 3 4 5 6

R
e

la
ti

ve
 e

rr
o

r,
 %

Parameter α

Dependence of the relative
error on the parameter α

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 9, 2020

359 | P a g e

www.ijacsa.thesai.org

Fig. 4. Even Distribution of Decimal Fractions.

In [11,12,14,15,16] methods of representation and
algorithms for performing arithmetic operations in a modular
numeral system and a method for their acceleration due to
parallelization in several modules are presented.

This article proposes a different approach based on the
transition to a redundant signed-digit numeral system.

Such numeral system has an advantage over modular
systems in that it is simpler to convert directly and inversely to
the traditional numeral system and there is no need for
overflow control.

A method for summing a group of numbers and
calculating the dot product, oriented towards parallel
implementation on a GPU, is considered. The results of
experimental studies of the effectiveness of this method of
high-precision calculations are obtained.

The next section considers a possible way to represent
numbers in a redundant signed-digit numeral system.

II. REPRESENTING NUMBERS IN A REDUNDANT SIGNED-

DIGIT NUMERAL SYSTEM

Consider the representation of floating-point numbers of
the following form [4]:

tqKA 
 (6)

where

 is a floating-point number,

 is the mantissa of the number , an integer such that

satisfies the inequality

1 fn
qK ,

 is the base (radix) of the numeral system,

 is the order, an integer such that satisfies the inequality

fkt 

 is a natural number characterizing the length of the

mantissa of the floating-point number,

 is a natural number characterizing the maximum order of

representable numbers.

Table I includes positive and negative minimum and
maximum numbers representable in the form (6)
[11,13,17,18].

The range of representable numbers (6) is as follows:

 ffff knkn
qq


 ,

 (7)

Consider the sum of numbers of the form:

1 2
1 2 ... n

n

tt t
S K q K q K q      

 (8)

Suppose 1 2min(, ,...,)S nt t t t then:

 (9)

where

1

1 ...S n

t ts tn tsK K q K q     

Let us estimate the maximum number of digits required to
describe the result of the sum (9). Using Table I, we have:

1

1 ...S n

t ts tn tsK K q K q     

...S

nf kf nf kf nf kfK q q n q      
 (10)

If 10q  , the maximum number of digits required to

describe the sum will be equal to:

lg n nf kf   

From the last expression it can be seen that to implement
the addition of groups of numbers in floating-point format
calculations with large numbers are required.

Consider the format for representing floating-point
numbers (6) in the signed-digit numeral system as follows:

   ,,...,,...,, 21 tA ni 
 (11)

where

 are the digits of the signed-digit representation.

This format will be referred to as the floating-point signed-
digit format.

Consider the rule for adding two numbers and a group of
numbers in this format.

TABLE I. MAXIMUM AND MINIMUM POSITIVE AND NEGATIVE NUMBERS

Maximum positive ff kn
q



Minimum positive ff nk
q



Minimum negative ff kn
q




Maximum negative ff nk
q




1 2
1 2 ...S S S n S

n

S
S

t t t t t t t
S q K q K q K q

t
K q

   
        

 

 

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 9, 2020

360 | P a g e

www.ijacsa.thesai.org

III. RULES FOR PERFORMING ARITHMETIC OPERATIONS IN

SIGNED-DIGIT FLOATING-POINT FORMAT

Let there be given two floating-point numbers of the form
(11).

   ,,...,,...,, 1211 tA ni 
,

   ,,...,,...,, 1212 sA ni 

Calculating the sum 21 AA 

4 1 2A A A 

Suppose 11 ts  . This does not change the generality of

reasoning. Then:

 
  121

2
1

1
11

2
1

121

, ,...,,

1

t

KqKqqKqKAA

n

tstst






 (12)

Let 6, 5,...,0,...6  be the digits of the

signed-digit numeral system.

The time required for adding numbers does not depend on
the number of digits. The addition is performed using the
following steps:

1. Calculation of the sum

10ui xi yi ci   , where

 {

2. Calculation of the final result

1i i iu c  

Product of numbers 21 AA  is calculated by the

formula:

   ,,...,,...,, 1121213 stAAA ni  
 (13)

where coefficients 1 2, ,..., ,...,i n    are

determined according to the rules for multiplying numbers in
the signed-digit numeral system.

In the next section, the first and second methods of
summing a group of numbers are considered.

IV. METHODS OF SUMMING GROUPS OF NUMBERS

The first method of summing groups of numbers is carried
out according to the formula (12) using the addition rule
presented in Section III in redundant signed-digit arithmetic in
parallel over the digits and sequentially for each number of the
group. This method, when implemented on GPU, requires a
large number of synchronizations between cores. In Section V

the results of experimental study of the effectiveness of this
method are presented.

Consider the second method of summation with fewer
synchronizations.

Let the number of digits of the summed numbers equal d,
and the maximum possible number of digits required to
describe the sum equal .

Let a set of numbers for summation be given:

1
st
 number: 2

1 1 1
....

1 d
a a a

2
nd

 number: 2

2 2 2
....

1 d
a a a ,

k
th

 number: 2
1
k k k

d
a a a

Let us denote their sum by S.

Let us add these numbers to the left with zeros to the
maximum possible number of digits , getting the
following:

1 1
1

2 2
1

3 3
1

4 4
1

1

0 ... 0 ...

0 ... 0 ...

0 ... 0 ...

0 ... 0 ...

0 ... 0

0 ... 0 ...

d

d

d

d

k k
d

a a

a a

a a

a a

a a

Summation is carried out as follows:

1. Each one of threads in parallel and

independently calculates the sums of the numbers of

the corresponding column, for example, thread

number calculates the sum of the numbers:

1

max
k

i

i
d

S d a




thread number calculates the sum of the

numbers:

1
1

max 1
k

i

i
d

S d a



 

2. At the end of the first step, the calculations are

synchronized.

3. By definition the value S equals:

21
max max 3 max 2 max 1

10 ... 10 10d
d d d d d

S S S S S
   

        (14)

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 9, 2020

361 | P a g e

www.ijacsa.thesai.org

Each thread extracts digits from its result, for

example, thread number finds digits:

1 2 3, ,i i i , thread number finds digits:

1 2 3, ,j j j .

4. Each thread forms numbers of the form:

1 2 3

1 2 3

0 ... 0

0 ... 0

0

i i i

j j j

Thread number forms the first line,

thread number forms the second line etc.

5. These numbers are summed sequentially one after

another bit-parallel in the signed-digit numeral

system.

6. The final result is transferred from the GPU to the

CPU.
Such summation method requires d - 1 synchronizations in

the process of summing this array.

Consider an example.

Suppose d = 3, = 5, k = 3.

Numbers for the summation:

5 5 6

1 7 9

9 7 9

Calculated sums:

S4 = 24

S3 = 19

S2 = 15

S1 = 0

S0 = 0

Each thread forms one of the following numbers:

0 0 0 2 4

0 0 1 9 0

0 1 5 0 0

Then these numbers are summed sequentially one after
another bit-parallel in the signed-digit numeral system
according to the first method.

Next section considers the results of experimental studies
of the efficiency of summation of groups of numbers.

V. EXPERIMENTAL STUDY OF THE EFFICIENCY OF HIGH-

PRECISION SUMMATION OF GROUPS OF NUMBERS IN THE

SIGNED-DIGIT NUMERAL SYSTEM

Numerical experiments were carried out on the addition of
groups of integers of different magnitudes, with the number of
integers k = 10000, 100000, 1000000. The addition was
carried out according to the rules of traditional arithmetic on
the CPU bitwise each number of the group sequentially and
using the first method on the Nvidia GPU (1.78 GHz, 1280
cores) bit-parallel and sequentially for each number of the
group.

GPU calculations were performed as follows:

1) Initial data were generated randomly, integers of fixed

length were generated and stored in arrays.

2) Arrays were transferred to the GPU.

3) A number of threads were created matching the number

of digits. Each thread carried out sequential summation of the

array numbers in its corresponding digit in parallel and

independently.

4) The result of the summation was transferred from the

GPU to the CPU.

The time required for summation of numbers on the CPU
and the GPU was calculated, considering the transfer of data
to the GPU and in the opposite direction to the CPU. On the
basis of these calculations, the absolute acceleration
coefficients were determined for different numbers of digits
and values of k by the formulas:

 (15)

Fig. 5 shows the dependence of this coefficient on the
number of digits.

Fig. 5 shows that the acceleration effect provided by the
first method is insignificant and is achieved for numbers
exceeding 400 decimal digits.

Experiments showed that data transfer from CPU to GPU
and from GPU to CPU was very fast and did not lead to delays
in the computation process. One of the main reasons for the
low efficiency of the first method of summation on the GPU
in the signed-digit numeral system is associated with the need
for synchronization after addition of each pair of numbers in
the group, which slows down the computation. If the array
contains k numbers, then this summation method requires k-1
synchronizations in the process of summing this array.

Fig. 5. Dependence of the Absolute Acceleration Coefficient on the Number

of Digits for the First Summation Method.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0 100 200 300 400 500 600 700

К
 a

b
s

Number of digits

Dependence of Кabs on the number of digits

k=10^6 k=10^5 k=10^4

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 9, 2020

362 | P a g e

www.ijacsa.thesai.org

Experiments on summing the same groups of numbers
using the second method have shown that it is more efficient
than the first method. For the second method the computation
times on the CPU and the GPU were calculated, on the basis
of which the absolute acceleration coefficient was determined
by the formula (15) for different values of k.

Fig. 6 shows the dependence of the absolute acceleration
coefficient on the number of digits for this summation method.

Fig. 6 shows that using the second summation method on
the GPU with numbers comprising of 800 to 900 digits speeds
up the computation 3 to 4 times in comparison with
summation on the CPU. With further increase in value of k
and the number of digits, the acceleration is supposed to be
even greater.

Fig. 6. Dependence of the Absolute Acceleration Coefficient on the Number

of Digits for the Second Summation Method.

Next section considers a method for multiplying numbers
based on redundant signed-digit arithmetic.

VI. METHOD FOR MULTIPLYING NUMBERS

Let the number of digits required to represent initial data
equal d, and the maximum possible number of digits required
to represent the result of multiplication equal .

Let two numbers be given:

1
st
 number:

2

1 1 1
....

1 d
a a a

2
nd

 number:
2

2 2 2
....

1 d
a a a

,

Let us add these numbers to the left with zeros to the
maximum possible number of digits , getting the
following:

1 1
1

2 2
1

0 ... 0 ...

0 ... 0 ...

d

d

a a

a a

Multiplication process on the GPU involves d threads.

Thread number 1 forms the results (partial products):

, ,
1 2 1 2 1 2
1 2

0 ... 0 ...
d d d d

a a a a a a  

Thread number 2 forms the results:

, ,
1 2 1 2 1 2
1 21 1 1

0 ... 0
d d d d

a a a a a a  
   (16)

Thread number d forms the results:

, ..., ,
1 2 1 2 1 2
1 1 2 1 1

0 0
d

a a a a a a  

The results are formed in parallel and independently by
each thread for each product of two numbers.

Then they are summed up using the second method
described in Section IV.

Next section considers the results of experimental studies
of the efficiency of calculating the dot product of vectors.

VII. EXPERIMENTAL STUDY OF THE EFFICIENCY OF HIGH-

PRECISION CALCULATION OF THE DOT PRODUCT OF VECTORS

IN SIGNED-DIGIT NUMERAL SYSTEM

The dot product of vectors (x,y), where x = (x1,x2,…,xk),
y = (y1,y2,…,yk), is calculated as follows:

1) The values of arrays x,y are transferred to the GPU.

2) For each pair xi and yi partial products (24-26) are

calculated in parallel and independently on the GPU.

3) Next, the summation of the obtained partial products is

carried out using the second method.

4) The result of the dot product is transferred to the CPU.
Numerical experiments were carried out to calculate the

dot product of vectors with different numbers of coordinates k
= 10000, 100000, 1000000. The coordinates were integers
with the length of 50 decimal digits. The dot product was
calculated according to the rules of traditional integer
arithmetic on the CPU and in redundant signed-digit
arithmetic bit-parallel on the GPU.

The results of the experiments are presented on the graph
in Fig. 7.

The graph shows that with the increase of the number of
digits required to represent initial data d and the maximum
possible number of digits required to represent the result of the
dot product the proposed method provides greater
acceleration of the computation process.

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0 200 400 600 800 1000

К
 a

b
s

Number of digits

Dependence of Кabs on the number of digits

k=10^6 k=10^5 k=10^4

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 9, 2020

363 | P a g e

www.ijacsa.thesai.org

Fig. 7. Dependence of the Absolute Acceleration Coefficient on k with

different Values of d, .

VIII. CONCLUSION

This article proposes an approach to software
implementation of computations on a GPU, which prevents
sharp loss of precision in calculations with numbers that differ
greatly from each other in magnitude. The approach is based
on representation of floating-point numbers in the form of
decimal fractions and the use of a redundant signed-digit
numeral system to speed up computations with them on the
GPU.

The effect of accelerating computations was obtained and
proven experimentally for the operations of summation of an
array of numbers on the GPU and calculating the dot product
of vectors.

The proposed approach is also applicable for the discrete
Fourier transform, for the case presented in the article as well
as in other cases.

REFERENCES

[1] Bailey D.H., Barrio R., Borwein J.M. High-precision computation:
Mathematical physics and dynamics // Applied Mathematics and
Computation. 2012. Vol. 218, No. 20. P. 10106-10121.

[2] D. H. Bailey, J. M. Borwein. ―High-Precision Arithmetic in
Mathematical Physics‖, Mathematics, 3 (2015), pp. 337–367.

[3] David H. Bailey. High-Precision Computation and Mathematical
Physics Lawrence Berkeley National Laboratory, 2009

[4] J.-M. Muller, N. Brisebarre, F. de Dinechin, C.-P. Jeannerod, V.
Lef`evre, G. Melquiond, N. Revol, D. Stehl´e, S. Torres. Handbook of
Floating-Point Arithmetic, Birkhauser, Boston, 2010, 572 p.

[5] Koren Israel. Computer arithmetic algorithms // University of
Massachusetts, 2nd ed. 2002.

[6] Fousse L., Hanrot G., Lefèvre V., Pélissier P., Zimmermann P. MPFR: a
multiple-precision binary floating-point library with correct rounding //
ACM Transactions on Mathematical Software. 2007. Vol. 33, No. 2.
Article No. 13.

[7] MParithm - package for high precision computation, 2015,
www.wolfgang-ehrhardt.de/mp_intro.html

[8] GNU Scientific Library 2.5 released — 2018,
https://savannah.gnu.org/forum/forum.php?forum_id=9175.

[9] Operations with multi-digit real numbers of the ZReal type.
http://ishodniki.ru/list/index.php?action=name&show=pascal-
math&cat=11.

[10] D. H. Bailey, X. S. Li and B. Thompson, ―ARPREC: An arbitrary
precision computation package,‖ Sep 2002,
http://crd.lbl.gov/~dhbailey/dhbpapers/arprec.pdf.

[11] Otsokov Sh. A and Magomedov Sh.G, ―On the Possibility of
Implementing High-Precision Calculations in Residue Numeral System‖
International Journal of Advanced Computer Science and
Applications(IJACSA), 10(11), 2019. DOI: 10.14569/IJACSA
.2019.0101102.

[12] R. Amos Omondi, Benjamin , ―Residue Number Systems: Theory and
Implementation,‖ Imperial College Press, 2007.

[13] Solovyev R.A., Balaka E.S., Telpukhov D.V. Device for calculation of
vector dot product with error correction based on residue number system
// Problems of the development of prospective micro- and
nanoelectronic systems - 2014. Proceedings / edited by A.L.
Stempkovskiy. M.: IPPM RAS, 2014. Part IV. pp. 173-178.

[14] Jen-Shiun Chiang, Mi Lu, «Floating-point numbers in residue number
systems» Computers & Mathematics with Applications, vol. 22, issue
10, pp. 127–140, 1991.

[15] K. S. Isupov, A. N. Mal’tsev. ―A parallel-processing-oriented method
for the representation of multi-digit floating-point numbers‖,
Vychislitel’nyye metody i programmirovaniye, 15:4 (2014), pp. 631–
643 (in Russian).

[16] Magomedov S.G. Increasing the efficiency of microprocessors in an
access control systems. International Journal of Engineering and
Technology (UAE). 2018. Т. 7. № 4.36. С. 80-83.

[17] Mukunoki D., Ogita T. Performance and energy consumption of
accurate and mixed-precision linear algebra kernels on GPUs //Journal
of Computational and Applied Mathematics. – 2020. – Т. 372. – С.
112701.

[18] Isupov K., Knyazkov V., Kuvaev A. Design and implementation of
multiple-precision BLAS Level 1 functions for graphics processing units
//Journal of Parallel and Distributed Computing. – 2020. – Т. 140. – С.
25-36.

0

1

2

3

4

5

6

7

0 2000 4000 6000 8000 10000 12000

К
 a

b
s

k

Dependence of Кabs on the number of
coordinates for the dot product of vectors

d=128, maxd =512 d=128, maxd=256

d=50, maxd=256

http://www.wolfgang-ehrhardt.de/mp_intro.html
https://savannah.gnu.org/forum/forum.php?forum_id=9175
http://crd.lbl.gov/~dhbailey/dhbpapers/arprec.pdf

