
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 9, 2020

378 | P a g e

www.ijacsa.thesai.org

Machine Learning-Based Phishing Attack Detection

Sohrab Hossain
1
, Dhiman Sarma

2
*, Rana Joyti Chakma

3

Department of Computer Science and Engineering, East Delta University, Chittagong, Bangladesh
1

Department of Computer Science and Engineering, Rangamati Science and Technology University, Rangamati, Bangladesh
2,3

Abstract—This paper explores machine learning techniques

and evaluates their performances when trained to perform

against datasets consisting of features that can differentiate

between a Phishing Website and a safe one. This capability of

telling these sites apart from one another is vital in the modern-

day internet surfing. As more and more of our resources shift

online, one vulnerability and a leak of sensitive information by

someone could bring everything down in a connected network.

This paper's objective through this research is to highlight the

best technique for identifying one of the most commonly

occurring cyberattacks and thus allow faster identification and

blacklisting of such sites, therefore leading to a safer and more

secure web surfing experience for everyone. To achieve this, we

describe each of the techniques we look into in great detail and

use different evaluation techniques to portray their performance

visually. After pitting all of these techniques against each other,

we have concluded with an explanation in this paper that

Random Forest Classifier does indeed work best for Phishing

Website Detection.

Keywords—Phishing attack; phishing attack detection;

phishing website detection; machine learning; random forest

classifier

I. INTRODUCTION

Phishing Attacks are the most common ways of attack in
the digital world these days. Any method of communication
can be used to target an individual to trick them into leaking
confidential data in a fake environment, which can later be
used to harm the sole victim or even an entire business
depending on the attacker's intent and the type of data leaked.

Phishing attacks, while dangerous, can be avoided by
simply creating awareness and developing habits of staying
alert and continuously being on the lookout when surfing
through the internet and only clicking links after verifying if
the source of the links is trustworthy at all. There are also tools
such as browser extensions that notify users when they have
entered their credentials on a fake site, possibly having their
credentials transferred to a user with malicious intent. Other
tools can also allow networks to lock down everything and
allow access to whitelisted sites to provide extra security while
compromising some convenience on the user side [1].

In a related study, five main reasons have been stated
behind users falling into traps of phishing attack schemes:

 Lack of knowledge about URLs.

 Lack of knowledge about trusted websites.

 Lack of visibility of full web addresses due to the
redirection or hidden URLs.

 Lack of time for analyzing URLs, and accidental entries
of some web pages.

 Lack of capability of telling phishing web pages apart
from legitimate ones.

One example of such an attack would be the attack in 2016,
known as the Bangladesh Bank Cyber Heist. Security Hackers
issued thirty-five fraudulent instructions via the SWIFT
network to illegally transfer almost 1 billion US dollars from
the Federal Reserve Bank of New York account that belonged
to Bangladesh Bank. Out of these 35 instructions, 5 of them
successfully transferred 101 million dollars, with 20 million
traced to Sri Lanka and 81 million traced to the Philippines.
Fortunately, the Federal Reserve Bank of New York was able
to block the remaining thirty transactions. Without this block,
another 850 million dollars would have been lost. And it was
possible all thanks to noticing a misspelled instruction that
raised suspicions among the authorities. The money transferred
to Sri Lanka was all recovered, but from the US$ 81 million
transferred to the Philippines, only US$ 18 million was
recovered. Most of the money transferred to the Philippines
were collected into four personal accounts [2].

The method of this attack has been suspected to be a Dridex
malware. It specializes in stealing bank credentials by using
macros set up in a Word or Excel document. Windows users
can fall victim to such an attack if they open email attachments
in Word or Excel, containing such a macro, which once
activated on opening these documents, begin downloading
Dridex, which then infects computers and sets up the stage for
a banking theft. A knowledgeable and alert employee or a
software aiding in detecting such an attack would have helped
immensely in this event [3].

Machine learning algorithms are widely used to detect
hidden patterns in the dataset. The most common algorithms
are K-nearest neighbor, decision trees, random forest, and
support vector machine [4]. In addition, belief rule-based
expert system can mine rules from the dataset [5] [6].

In this paper, we focus on training machine learning models
that can detect phishing web pages apart from real web pages.
We analyze each of these models and state our findings and
research in this paper to allow for others to have a clear
understanding of the performance of these models when
trained for this purpose. Of course, data preprocessing is very
crucial for the models to work as they did in our case, and that
is an essential part of the procedure. Papers from other
researchers contributed immensely to our research, and we
hope our paper will do the same by providing a collection of
our findings regarding Phishing Detection using Machine
Learning in this paper.

*Corresponding Author

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 9, 2020

379 | P a g e

www.ijacsa.thesai.org

The remaining of the paper is organized as follows. In
Section II, we reviewed the literature, followed by presenting
the proposed methodology in Section III. The empirical results
of the proposed approach are explained in Section IV, followed
by Section V where a conclusion and further research scopes
are discussed.

II. LITERATURE REVIEW

A. Types of Phishing Attacks

1) Algorithm-Based phishing: Attackers access sensitive

information from a website's database by employing different

algorithms V. Shreeram, M. Suban, P. Shanthi, K. Manjula

proposed an anti-phishing detection method that would detect

phishing hyperlinks with the help of the rule-based system that

is formulated from the genetic algorithm (GA). A phishing

link is detected if it matches the ruleset that is created by GA,

which is stored in a database [7].

2) Deceptive phishing: This technique involves supplying

clients with malicious links via emails and redirecting them to

malicious websites where they are likely to enter sensitive

information. Huajun Huang, Junshan Tan, Lingxi Liu gives a

thorough overview of a deceptive phishing attack and different

anti-phishing techniques. They present the different methods

used by phishers and the advantages and disadvantages of the

different countermeasures used [8].

3) URL phishing: Hackers can inject hidden links that

redirect to malicious pages into the URL, where one may not

expect to find one. Mohammed Nazim Feroz, Susan Mengel,

proposes a method to detect URL phishing with URL ranking.

They classify the URLs by their lexical and host-based

features and categorizes and rank the URLs using the online

URL reputation services [9].

4) Hosts file poisoning: Replacing hostnames in the host

records can override the usual process of DNS servers trying

to retrieve actual IP addresses from beyond the network. This

technique can poison the records and allow valid URLs that

are meant to lead to secure sites lead to malicious pages

instead, due to compromised IP associations in the server.

Saeed Abu-Nimeh, Suku Nair, proposes a new attack that can

bypass security toolbars and phishing filters by using DNS

poisoning. They use spoofed DNS cache entries to create fake

results and successfully attack four renowned security toolbars

and the phishing filters of three popular browsers without

being detected [10].

5) Content injection phishing: Data collection is achieved

in this technique by concatenation of malicious sections within

a real website. Jussi-Pekka Erkkil presents the different

methods by which phishing techniques can trick a person. A

list of several strategies is listed that can detect phishing. The

paper proposes that the company adapt effective protocols to

keep their security features up to date [11].

6) Clone phishing: Duplicating already sent emails and

attaching a malicious link into it can allow for a successful

attack on an unsuspecting user. Ahmad Alamgir Khan

proposed a new method where websites use One Time

Password and User-machine Identification system to combat

phishing attacks. Webservers will send a one time password to

a user by SMS or email and create an encrypted token for the

device after the user inputs the password [12].

B. Phishing Website Detection Techniques

1) Blacklist filter: Blacklists can be maintained to block

recorded unwanted sites from reaching the client's machine.

These filters can be applied in different security measures like

DNS servers, firewalls, email servers, etc. A blacklist filter

maintains a list of elements like IP addresses, domains, IP

netblocks that are commonly used by phishers. Adam Oest,

Yeganeh Safaei, Adam Doupé, Gail-Joon Ahn, Brad

Wardman, Kevin Tyers uses a scalable framework to test the

effectiveness of browser blacklist filters. Their study

concluded that most blacklist filters in mobile browsers failed

to combat phishing attacks and are more vulnerable [13].

Mohsen Sharifi, Seyed Hossein Siadati, proposes a new

method that will create a blacklist generator and keep a timely

track of phishing website blacklists. Their techniques yield an

accuracy of 91% and 100% in detecting real pages and

phishing websites, respectively [14].

2) Whitelist filter: Unlike a Blacklist, Whitelist filters

allow recorded website URLs, schemes, or domains to make it

through to the client machine and block all other unrecorded

sites. A whitelist, contrary to a blacklist, maintains a list of all

legitimate websites. A. Belabed, E. Aïmeur, A. Chikh

proposes a method that combines the whitelist approach with

machine learning. A support vector classifier is used to filter

further the websites that are not blocked by the whitelist filter

[15]. Linfeng Li, Marko Helenius, and Eleni Berki conducted

tests that compared the effectiveness of blacklist and whitelist

anti-phishing toolbars. Their study did not find a significant

difference in performance between both toolbars but

encourages that toolbars be more instructive in helping users

identify phishing websites [16].

3) Pattern matching filter: Checks whether or not

individual tokens or sequences of data is contained within a

given list of data by using a pattern matching technique.

Rahamathunnisa Usuff, N. Manikandan, U.S. Kumaran, and

C. Niveditha propose a method that uses pattern matching to

detect phishing websites. A database of blacklist and whitelist

that contains malicious URL patterns and original URL

patterns is used to match with the user requested URL [17].

C. Machine Learning-Based Methods

1) Malicious domain detection: Machine Learning models

are being trained to optimize their capabilities of detecting

Phishing pages, one of the most common forms of

cyberattacks. Nitay Hason, Amit Dvir, and Chen Hajaj

propose a robust feature selection mechanism that creates

better malicious domain detection models. All of the data are

collected from 5000 legitimate URLs and 1350 harmful

URLs. The models created are robust to different malicious

abnormalities and show the effectiveness of models trained on

features [18]. Hossein Shirazi, Bruhadeshwar Bezawada,

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 9, 2020

380 | P a g e

www.ijacsa.thesai.org

Indrakshi Ray shows concern about the large number of

training features and types of datasets used and suggests that

the domain name is much better and useful detecting phishing

websites. Their learning model detects unknown live phishing

URLs with an accuracy of 99.7% [19]. Krzysztof Lasota,

Adam Kozakiewicz proposes a study that shows the similarity

of different malicious domain name creations. The main task

for detecting malicious behaviors was to detect similarity

based on sets of domain names, URL names, and hostnames

[20].

2) Email spam filtering: Emails are screened through

various scoring techniques based on thousands of rules set to

predict their probability of being an actual spam email. If the

evaluated probability is beyond the acceptable range, then the

email is blocked via the spam filter. Phishers use spam emails

to direct a client to their malicious webpage and steal data.

Andronicus A. Akinyelu1 and Aderemi O. Adewumi research

about the effectiveness and use of random forest classifier in

developing a phishing email classifier by extracting pertinent

phishing email features from a dataset of 2000 phishing and

ham emails. The proposed machine learning models shows a

classification accuracy of 99.7% with low false positives and

negatives [21]. Tushaar Gangavaraapu, C.D. Jaidhar, and

Bhabesh Chanduka focus on the proper ways of extracting

features from spam email content and behavior-based features,

the features necessary in detecting spam emails, and on the

selection of an important feature set. Their proposed machine

learning model based on their selected features yields a

constant accuracy of 99% in spam emails [22]. Table I

illustrate the advantages and limitations of existing phishing

detection researches. In Table I, we observed that most of the

researches consider a small number of features and datasets. In

this research, we try to overcome the limitations observed

from Table I by increasing the number of features and dataset

volume.

TABLE I. COMPARISON OF MACHINE LEARNING BASED PHISHING DETECTION SYSTEMS

Description Pros Cons Ref.

Detects phishing attacks by using a
whitelist filter.

* Pages that bypass the whitelist filter are filtered

again by Support Vector Machines.
* Maintains accuracy of whitelist filter by using a

personalized whitelist.

* Limited dataset of 850 pages.

* Unable to detect the attachment of DNS
spoofs to legitimate web pages.

* High False positive rate.

 [23]

Implement a comment spam detection

mechanism that can be used as a browser
plugin and remove spam comments.

* Balances dataset by applying WEKA filters to get
the best suitable features.

* Spam detection classifier can accommodate new

features and detect new classes of spam content.

* Does not do well with a random dataset

without applying a supervised resample
filter.

 [24]

Proposes a machine learning-based
method that can detect whether a web

page exhibits phishing attacks.

* Proposed method is based on an easy to acquire
feature vector that does not require additional

computation.

* Only uses 10 features for detection.

* Limited dataset of 1353 instances.
 [25]

Uses feature selection to identify
important features that categorize

phishing and legitimate websites.

* Feature selection highly improves the accuracy

score after implementation.

* Use of feature selection reduces computational
time.

* 14 features.
* limited dataset (200 legitimate URL and

1400 phishing URL)

* May not work properly with datasets of
equal URLs of legitimate and phishing web

pages.

 [26]

Builds a system using machine learning

that can classify websites using URLs.

* Can be used to build a rule-based system with

associative rules to classify URLs.

* 9 features for each URL

* All features are discrete.
* Limited dataset (1353 URLs)

[27]

Proposes a learning-based aggregation

analysis mechanism to decide page layout
similarity, which is used to detect

phishing pages.

* Automatically trains classifiers to determine web

page similarity from CSS layout features, which does

not require human expertise.

* Method is lightweight as it only takes one

class of features, CSS structure.
* Limited by the size of the dataset and

distribution of samples.

[28]

This research uses a new attribute called
the "domain top page similarity" to

improve the efficiency of a machine

learning-based phishing detection model.

* Increases f-measure and reduces the error rate.

* Proves that with better features, the detection rate is
much higher and can be implemented in future works.

* The model is highly dependent on the

accuracy of the features.
 [29]

This paper proposes a real-time anti-

phishing system that uses seven
classification algorithms and natural

language processing-based features (NLP)

* Independence from language and third party
services.

* Huge dataset of legitimate and phishing data.

*Real-time execution.
* Can detect new websites because of NLP features.

* Machine learning-based systems cannot
correctly utilize such a vast dataset.

 [30]

Performs an extensive measurement of
squatting phishing, where the phishing

pages impersonate target brands at both

the domain and content level.

* Uses features from visual analysis and optical

character recognition.

* Open sourced tool.
* Uses evasive behaviors of phishing pages to build

classifiers.

* Unable to detect phishing pages that use

cloaking.
* Only focuses on popular brands.

* The classifier cannot be compared with

other phishing tools like CANTINA and
CANTINA+.

 [31]

Uses features from HTML content,

JavaScript code and URLs to build a

classifier that can detect malicious web
pages and threat types.

* Diverse features.
* High accuracy score.

* Highlights features that are necessary to extract.

* Limited dataset (2500 URLs)
* Classifier may not do well with large

datasets.

 [32]

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 9, 2020

381 | P a g e

www.ijacsa.thesai.org

III. PHISHING WEBSITE DETECTION

In this section, we explain our proposed data-driven
phishing website detection system—the dataset obtained from
the online repository of Mendeley. Parallel coordinates,
pearson and shapiro ranking, and principal component analysis
are used for feature extraction. We use KNN, decision trees,
random forest, SVM, and logistic regression to detect phishing
websites.

A. Dataset

The phishing webpage dataset contains 48 features that are
obtained from the online repository of Mendeley. The total
number of websites is 1000, where 5000 phishing and 5000
legitimate websites. The class label 0 indicates a phishing
website and 1 a legitimate website.

B. Feature Extraction and uses

For feature extraction, we used parallel coordinates,
pearson and shapiro ranking, and principal component analysis.
We used parallel coordinates to visualize and analyze our
dataset and PCA to reduce the dimensionality of our dataset.
We have explained our features in Table I, Table III, and Table
IV. In Table II, a total number of 27 lexical features are
descrived like NumDots, SubdomainLevel, PathLevel, and so
on. A total number of 15 host-based features are explained in

Table III. In Table IV, a set of 8 correlation features are shown
with data types and description.

C. Classifiers

We deploy KNN, decision tree, random forest, extra trees,
SVM, and logistic regression in our system.

1) K-Nearest Neighbors (KNN): We calculated the

distance using the Euclidean method from equation (1),

 () √()
 () (1)

Our KNN model is based on equation (2),

 (|)

∑ (()) (2)

Our dataset has 48 features and a Class label where 0
indicates a phishing website, and 1 indicates a legitimate
website. When given an unknown sample, KNN will first
measure the distance of the unknown sample with its neighbors
by using Euclidean distance. The number of neighbors that it
will check will be the value of K that can be chosen by setting
the value of "n_neighbors." The distances will be measured by
taking in the features of the samples that are in the dataset. The
majority class of the neighbors that are the closest will be then
assigned to the unknown sample.

TABLE II. LIST OF URL FEATURES IN LEXICAL FEATURE GROUP

Feature Data Type Description

NumDots Numeric The number of dots In the URL.

SubdomainLevel Numeric Determines the number of subdomain levels.

PathLevel Numeric Determining the level of the path in the URL.

UrlLength Numeric
Length of each URL used in the dataset. The length contains the number of letters or

symbols used to create the URL.

NumDash Numeric Total number of dash in a URL.

NumDashInHostname Numeric The number of dashes in a hostname

AtSymbol Boolean Total number of '@' symbol in the URL.

TildeSymbol Boolean Total number of tilde '~' symbol in the URL.

NumUnderscore Numeric Number of underscores'_' used in the URL.

NumPercent Numeric Total number of percent symbol present in the URL.

NumQueryComponents Numeric Total number of query components.

NumAmpersand Numeric Total number of '&' character.

NumHash Numeric Total number of '#' character.

NumNumericChars Numeric The total number of numeric characters.

NoHttps Boolean Check if there is a HTTPS in the URL.

RandomString String Set of Characters that are random.

IPAddress Boolean Check if the hostname of the URL uses the IP address.

DomainsInSubDomains Boolean Determines if TLD or CCTLD is in the subdomain of URL.

DomainsInPaths Boolean Determines if the website link has used TLD or CCTLD.

HttpsInHostname Boolean Determines if HTTPS is disorderly in the hostname of the URL.

HostnameLength Numeric Length of hostname which includes all the characters and symbols.

PathLength Numeric Length of all paths in each URL.

QueryLength Numeric Length of query in the URL.

DoubleSlashInPath Boolean Checks if there is a double slash in the path.

NumSensitiveWords Numeric Checks if there are any sensitive words like secure, sign in, login, etc.

EmbeddedBrandName Boolean Checks if there is the name of a brand in the domain.

PctExtHyperLinks Float Checks the percentage of external hyperlinks in the source code.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 9, 2020

382 | P a g e

www.ijacsa.thesai.org

TABLE III. LIST OF URL FEATURE IN THE HOST-BASED FEATURE GROUP

Feature Data Type Description

PctExtResourceUrls Float Checks the percentage of URL external resources in the source code.

ExtFavicon Boolean Checks if the favicon is installed from a different hostname.

InsecureForms Boolean Will see if the action in forms follow the HTTPS protocol.

RelativeFormAction Boolean Checks if the action form contains a relative URL.

ExtFormAction Boolean Checks if the action form contains an external URL.

AbnormalFormAction Boolean Checks if the action form contains an abnormal URL.

PctNullSelfRedirectHyperlinks Float
Check the percentage of hyperlinks that have an empty value and also if it has an auto

directing value.

FrequentDomainNameMismatch Boolean Checks if the URL, when accessed, shows a mismatch in the frequent domain name.

FakeLinkInStatusBar Boolean Checks if there are any fake link in status bar that lures the user towards unsafe websites.

RightClickDisabled Boolean Check if the right-click option has been disabled in the URL.

PopUpWindow Boolean Checks if the URL contains any pop up windows when opened or accessed.

SubmitInfoToEmail Boolean Checks whether a URL requires you to submit your information to email.

IframeOrFrame Boolean Check if the given URL has used iframes or frames.

MissingTitle Boolean Check if there are any missing title.

ImagesOnlyInForm Boolean Checks if there are only images in the action form.

TABLE IV. LIST OF URL FEATURES IN CORRELATED FEATURE GROUP

Feature Data Type Description

SubdomainLevelRT -1, 0, 1 Checks if the subdomain levels are correlated.

UrlLengthRT -1, 0, 1 Checks if the URL lengths are correlated.

PctExtResourceUrlsRT -1, 0, 1 Checks if the percentage of external URL is correlated.

AbnormalExtFormActionR -1, 0, 1 Checks the relationship of different abnormal action forms in the URL.

ExtMetaScriptLinkRT -1, 0, 1 Checks the correlation of meta script links

PxtExtNullSelfRedirectHyperlinksRT -1, 0, 1 Checks the correlation of the percentage of self-directed hyperlinks.

Class_label 0, 1 Identifying the 2 classes of Phishing and Real Website.

2) Random forest: We used Gini importance to calculate a

node's importance for each decision tree. This was based

under the assumption that the tree is binary, and so each node

has at most two children. For the elimination of branches in

the tree, we used the equation (3),

 () () () () (3)

For calculating the importance of each feature on a decision
tree, we used the equation (4),

∑

∑
 (4)

These can be normalized afterward to a value between 0
and 1 by the equation (5),

∑
 (5)

And the sum of the feature's importance value on each tree
is calculated by the equation (6) and divided by the total
number of trees.

∑

 (6)

A random forest classifier consists of a large number of
decision trees that work as an ensemble. At first, it will create a
bootstrap dataset of size "N" that will randomly take samples
from our dataset. A random forest can then use these bootstrap
samples to create a tree. For example, if our training data was
[a, b, c, d, e, f], we might give one of our trees the following
list [a, b, b, c, f, f]. It should be noticed that both samples are of
the same size, and "b" and "f" are repeated in the bootstrap
dataset because we sample with replacement. After taking in
the samples from the bootstrap dataset, it begins to build trees
by first choosing a root node. Random forest differs from
decision trees because it uses a method called Feature
Randomness. This means that when it comes to choosing a root
node for a random tree forest will only allow the trees to
choose a root node from a subset of features. The Gini impurity
is measured among these subsets of features, and the lowest
score will be used as the root node, and the different
subsequent nodes are chosen in the same way. After creating
the trees, the random forest classifier is ready to make
predictions. It will take an unknown sample from our test
dataset and run the sample among all of the trees. All of the
individual trees give a class prediction, and the class that has
the most votes will be the class of the unknown sample. One of
the main reasons random forest classifier does well with large

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 9, 2020

383 | P a g e

www.ijacsa.thesai.org

datasets is because it maintains diversity between models by
using bootstrap aggregation and feature randomness.

3) Support vector machines: We used the equation (7) to

calculate the loss function for our support vector machine,

 || ||

 ∑ (

〈 〉)

 (7)

For calculating gradients, we used the equation (8),

 || ||

(〈 〉) {

 〈 〉

 (8)

By using SVM, we plot each data item as a point in n-
dimensional space (where n is the number of features and in
our dataset it is 48) with the value of each feature being a value
of a specific coordinate. After that SVM finds a hyperplane or
a decision boundary that can properly differentiate between the
classes. An optimal hyperplane is one where it has equal and
maximum distance between two data points, which are
considered as support vectors. SVM is very easy to apply when
the data points can be easily divided by a linear line, but it is
rare to find such datasets in the real world. This is where the
kernel trick of SVM comes to work. One of the reasons why
SVM works well with our large dataset is that it can work in
infinite dimensions. The best part is that the kernel does not
necessarily generate the infinite dimensions but simulates the
lower dimension data so as if they are working in infinite
dimensions. The kernel is very useful here because it can make
a non-separable problem into a separable problem by adding
more dimensions to it, and the number of dimensions depends
on the number of features each sample has; some of the kernels
that we found compelling are Linear Kernel, Polynomial
Kernel, and the Radial Basis Function (RBF) kernel.

4) Logistic regression: Logistic regression is based on the

linear regression, where a line is plotted its axes for a given

dataset.

The conditional probability function we used gives a binary
output for the variable Y as a function of X. Any unknown
parameters in the function are estimated by maximum
likelihood. The conditional probability is calculated by using
equation (9).

 (|)
 ()

 ()
 (9)

We also used equation (10) for the sigmoid function,

 ()

 (10)

Equation (11) is the cost function,

 ∑ () (

()) (()) ((
()))

 (11)

We calculate the gradient by using the equations (12), (13),
(14), and (15).

 ∑ ()

 (12)

 ∑

 (13)

 ∑

 () () (14)

 ∑

 (15)

IV. RESULT ANALYSIS

A. ROC Curve

Now let us look at our ROC curves of different models.

Fig. 1 shows the ROC curve of the support vector machine.
The X-axis indicates the false positive rate, and the Y-axis
indicates the True positive rate. The AUC value for this is 0.97.

Fig. 2 shows the ROC curve of the non-uniform support
vector machine. The X-axis indicates the false positive rate,
and the Y-axis indicates the True positive rate. The AUC value
for this is 0.96.

Fig. 3 shows are the ROC curve of the linear support vector
machine. The X-axis indicates the False Positive rate, and the
Y-axis indicates the True positive rate. The AUC value for this
is 0.98. This is the highest and best one so far. We can see the
steepness in the curve is much closer to the top-left position of
the plot.

Fig. 1. Curves for SVC.

Fig. 2. ROC Curves for NuSVC.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 9, 2020

384 | P a g e

www.ijacsa.thesai.org

Fig. 3. ROC Curves for LinearSVC.

Fig. 4 shows the ROC curve of KNN. The X-axis indicates
the false positive rate, and the Y-axis indicates the True
positive rate. Here the AUC of class 0 (phishing website) is
0.94, and class 1 (real website) is 0.94. The AUC of the macro
and micro average of the ROC curve is also 0.94.

Fig. 5 shows the ROC curve of Logistic Regression. The X-
axis indicates the False Positive rate, and the Y-axis indicates
the True positive rate. Here the AUC of class 0 (phishing
website) is 0.96, and class 1 (real website) is 0.96. The AUC of
the macro and micro average of the ROC curve is also 0.96.

Fig. 4. ROC Curves for KNeighborsClassifier.

Fig. 5. ROC Curves for LogisticRegression.

Fig. 6 shows the ROC curve of stochastic gradient descent
(SGD). The X-axis indicates the false positive rate, and the Y-
axis indicates the True positive rate. The AUC value for this is
0.97.

Fig. 7 shows the ROC curve of logistic regressionCV. The
X-axis indicates the false positive rate, and the Y-axis indicates
the True positive rate. Here the AUC of class 0 (phishing
website) is 0.98, and class 1 (real website) is 0.98. The AUC of
the macro and micro average of the ROC curve is also 0.98.

Fig. 8 shows the ROC curve of the bagging classifier. The
X-axis indicates the false positive rate, and the Y-axis indicates
the True positive rate. Here the AUC of class 0 (phishing
website) is 0.99, and class 1 (real website) is 0.99. The AUC of
the macro and micro average of the ROC curve is also 0.99.
This is the best ROC curve so far.

Fig. 6. ROC Curves for SGD Classifier.

Fig. 7. ROC Curves for Logistic Regression CV.

Fig. 8. ROC Curves for Bagging Classifier.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 9, 2020

385 | P a g e

www.ijacsa.thesai.org

Fig. 9 shows the ROC curve of the extra trees classifier.
The X-axis indicates the False Positive rate, and the Y-axis
indicates the True positive rate. Here the AUC of class 0
(phishing website) is 1.00, and class 1 (real website) is 1.00.
The AUC of the macro and micro average of the ROC curve is
also 1.00. This is the best ROC curve so far. We can see that
the steepness of the curve is at the most top left corner.

Fig. 10 shows the ROC curve of the random forest
classifier. The X-axis indicates the False Positive rate, and the
Y-axis indicates the True positive rate. Here the AUC of class
0 (phishing website) is 1.00, and class 1 (real website) is 1.00.
The AUC of the macro and micro average of the ROC curve is
also 1.00. This is the same as the Extra Trees classifier. We can
see that the steepness of the curve is at the most top left corner.
Hence it can be said that the extra trees classifier and random
trees classifier has the best ROC curve.

B. Discrimination Threshold

Let us look at the discrimination threshold of our models.

Fig. 11 shows the threshold plot for the support vector
machine. On the X-axis, we have the discrimination threshold,
and on the Y-axis, we have the score. Here we see that the
discrimination threshold for this is 0.03. For this threshold, we
see that the precision, recall, and f1 score are approximately
around 0.89.

Fig. 9. ROC Curves for ExtraTrees Classifier.

Fig. 10. ROC Curves for Random Forest Classifier.

Fig. 11. Threshold Plot for SVC.

Fig. 12 shows the threshold plot for the non-uniform
support vector machine. On the X-axis, we have the
discrimination threshold, and on the Y-axis, we have the score.
Here we see that the discrimination threshold for this is 0.00.
For this threshold, we see that the precision, recall, and f1 score
are approximately around 0.86.

Fig. 13 shows the threshold plot for the linear support
vector machine. On the X-axis, we have the discrimination
threshold, and on the Y-axis, we have the score. Here we see
that the discrimination threshold for this is 0.05. For this
threshold, we see that the precision, recall, and f1 score are
approximately around 0.9.

Fig. 12. Threshold Plot for NuSVC.

Fig. 13. Threshold Plot for Linear SVC.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 9, 2020

386 | P a g e

www.ijacsa.thesai.org

Fig. 14 shows the threshold plot for KNN. On the X-axis,
we have the discrimination threshold, and on the Y-axis, we
have the score. Here we see that the discrimination threshold
for this is 0.50. For this threshold, we see that the precision,
recall, and f1 score are approximately 0.82 to 0.89.

Fig. 15 shows the threshold plot for logistic regression. On
the X-axis, we have the discrimination threshold, and on the Y-
axis, we have the score. Here we see that the discrimination
threshold for this is 0.46. For this threshold, we see that the
precision, recall, and f1 score are approximately 0.85 to 0.9.

Fig. 14. Threshold Plot for KNeighbors Classifier.

Fig. 15. Threshold Plot for Logistic Regression.

Fig. 16. Threshold Plot for SGD Classifier.

Fig. 16 shows the threshold plot for stochastic gradient
descent (SGD). On the X-axis, we have the discrimination
threshold, and on the Y-axis, we have the score. Here we see
that the discrimination threshold for this is 0.00. For this
threshold, we see that the precision, recall, and f1 score are
approximately 0.8 to 0.9.

Fig. 17 shows the threshold plot for logistic regressionCV.
On the X-axis, we have the discrimination threshold, and on
the Y-axis, we have the score. Here we see that the
discrimination threshold for this is 0.58. For this threshold, we
see that the precision, recall, and f1 score are approximately
around 0.95.

Fig. 18 shows the threshold plot for Bagging Classifier. On
the X-axis, we have the discrimination threshold, and on the Y-
axis, we have the score. Here we see that the discrimination
threshold for this is 0.56. For this threshold, we see that the
precision, recall, and f1 score are approximately around 0.98.

Fig. 19 shows the threshold plot for random forest
classifier. On the X-axis, we have the discrimination threshold,
and on the Y-axis, we have the score. Here we see that the
discrimination threshold for this is 0.48. For this threshold, we
see that the precision, recall, and f1 score are approximately
around 0.99.

Fig. 17. Threshold Plot for Logistic Regression CV.

Fig. 18. Threshold Plot for Bagging Classifier.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 9, 2020

387 | P a g e

www.ijacsa.thesai.org

Fig. 19. Threshold Plot for Random Forest Classifier.

V. CONCLUSION

Our work analyses different machine learning techniques
when implemented over a dataset of features regarding
websites and their corresponding details that may prove useful
to detect a possible phishing website. This document aims to be
useful to its readers to provide a conclusive analysis of these
methods and to verify our observations regarding the random
forest classifier's optimal performance. F1 score for the random
forest is 0.99, which indicate that both false positive and false
negative rate are in the satisfactory level. The graphs and
details we have added to the document aim to help others carry
out further experimentation to conclude our work. And we,
ourselves, also intend to carry on our work with further
modifications to the dataset and applying other machine
learning techniques with modified parameters to hopefully
open more possibilities in the hopes of improving the world's
defenses against the cyber attackers out there. The internet is
both fantastic and dangerous. And our work's main objective is
to help minimize the danger by addressing a pervasive security
issue of the modern world. In this paper, we apply basic
machine learning algorithms. In the future, we will deploy deep
learning techniques like multilayer perception and artificial
neural networks to improve the performance of the detection
system.

REFERENCES

[1] H. Alqahtani et al., "Cyber Intrusion Detection Using Machine Learning
Classification Techniques," in Computing Science, Communication and
Security, Singapore, 2020, pp. 121-131: Springer Singapore.

[2] T. Bukth and S. S. Huda, The soft threat: The story of the Bangladesh
bank reserve heist. SAGE Publications: SAGE Business Cases
Originals, 2017.

[3] P. Black, I. Gondal, R. J. C. Layton, and Security, "A survey of
similarities in banking malware behaviours," vol. 77, pp. 756-772, 2018.

[4] S. Hossain, A. Abtahee, I. Kashem, M. M. Hoque, and I. H. Sarker,
"Crime Prediction Using Spatio-Temporal Data," in Computing Science,
Communication and Security, Singapore, 2020, pp. 277-289: Springer
Singapore.

[5] S. Hossain, et al., "A Belief Rule Based Expert System to Predict
Student Performance under Uncertainty," in 2019 22nd International
Conference on Computer and Information Technology (ICCIT), 2019,
pp. 1-6.

[6] S. Hossain, D. Sarma, R. J. Chakma, W. Alam, M. M. Hoque, and I. H.
Sarker, "A Rule-Based Expert System to Assess Coronary Artery

Disease Under Uncertainty," in Computing Science, Communication
and Security, Singapore, 2020, pp. 143-159: Springer Singapore.

[7] V. Shreeram, M. Suban, P. Shanthi and K. Manjula, "Anti-phishing
detection of phishing attacks using genetic algorithm," 2010
International Conference on Communication Control and Computing
Technologies, Ramanathapuram, 2010, pp. 447-450, doi:
10.1109/ICCCCT.2010.5670593.

[8] H. Huang, J. Tan and L. Liu, "Countermeasure Techniques for
Deceptive Phishing Attack," 2009 International Conference on New
Trends in Information and Service Science, Beijing, 2009, pp. 636-641,
doi: 10.1109/NISS.2009.80.

[9] M. N. Feroz and S. Mengel, "Phishing URL Detection Using URL
Ranking," 2015 IEEE International Congress on Big Data, New York,
NY, 2015, pp. 635-638, doi: 10.1109/BigDataCongress.2015.97.

[10] S. Abu-Nimeh and S. Nair, "Bypassing Security Toolbars and Phishing
Filters via DNS Poisoning," IEEE GLOBECOM 2008 - 2008 IEEE
Global Telecommunications Conference, New Orleans, LO, 2008, pp. 1-
6, doi: 10.1109/GLOCOM.2008.ECP.386.

[11] Erkkila, J. "Why we fall for phishing." Proceedings of the SIGCHI
conference on Human Factors in Computing Systems CHI 2011. ACM,
2011.

[12] Khan, Ahmad Alamgir. "Preventing phishing attacks using one time
password and user machine identification." arXiv preprint
arXiv:1305.2704 (2013).

[13] A. Oest, Y. Safaei, A. Doupé, G. Ahn, B. Wardman and K. Tyers,
"PhishFarm: A Scalable Framework for Measuring the Effectiveness of
Evasion Techniques against Browser Phishing Blacklists," 2019 IEEE
Symposium on Security and Privacy (SP), San Francisco, CA, USA,
2019, pp. 1344-1361, doi: 10.1109/SP.2019.00049.

[14] M. Sharifi and S. H. Siadati, "A phishing sites blacklist generator," 2008
IEEE/ACS International Conference on Computer Systems and
Applications, Doha, 2008, pp. 840-843, doi: 10.1109/AICCSA.
2008.4493625.

[15] A. Belabed, E. Aïmeur and A. Chikh, "A Personalized Whitelist
Approach for Phishing Webpage Detection," 2012 Seventh International
Conference on Availability, Reliability and Security, Prague, 2012, pp.
249-254, doi: 10.1109/ARES.2012.54.

[16] Li, Linfeng, Marko Helenius, and Eleni Berki. "A usability test of
whitelist and blacklist-based anti-phishing application." Proceeding of
the 16th International Academic MindTrek Conference. 2012.

[17] Usuff, Rahamathunnisa & Manikandan, N. & Kumaran, US &
Niveditha, C.. (2017). Preventing from phishing attack by implementing
url pattern matching technique in web. International Journal of Civil
Engineering and Technology. 8. 1200-1208.

[18] Hason N., Dvir A., Hajaj C. (2020) Robust Malicious Domain
Detection. In: Dolev S., Kolesnikov V., Lodha S., Weiss G. (eds) Cyber
Security Cryptography and Machine Learning. CSCML 2020. Lecture
Notes in Computer Science, vol 12161. Springer, Cham.
https://doi.org/10.1007/978-3-030-49785-9_4.

[19] Hossein Shirazi, Bruhadeshwar Bezawada, and Indrakshi Ray. 2018.
"Kn0w Thy Doma1n Name": Unbiased Phishing Detection Using
Domain Name Based Features. In Proceedings of the 23nd ACM on
Symposium on Access Control Models and Technologies (SACMAT
'18). Association for Computing Machinery, New York, NY, USA, 69–
75. DOI:https://doi.org/10.1145/3205977.3205992.

[20] Lasota K., Kozakiewicz A. (2011) Analysis of the Similarities in
Malicious DNS Domain Names. In: Lee C., Seigneur JM., Park J.J.,
Wagner R.R. (eds) Secure and Trust Computing, Data Management, and
Applications. STA 2011. Communications in Computer and Information
Science, vol 187. Springer, Berlin, Heidelberg. https://doi.org/10.1007/
978-3-642-22365-5_1.

[21] Akinyelu, Andronicus A., and Aderemi O. Adewumi. "Classification of
phishing email using random forest machine learning technique."
Journal of Applied Mathematics 2014 (2014).

[22] Gangavarapu, T., Jaidhar, C.D. & Chanduka, B. Applicability of
machine learning in spam and phishing email filtering: review and
approaches. Artif Intell Rev (2020). https://doi.org/10.1007/s10462-020-
09814-9.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 9, 2020

388 | P a g e

www.ijacsa.thesai.org

[23] A. Belabed, E. Aïmeur and A. Chikh, "A Personalized Whitelist
Approach for Phishing Webpage Detection," 2012 Seventh International
Conference on Availability, Reliability and Security, Prague, 2012, pp.
249-254, doi: 10.1109/ARES.2012.54.

[24] Alsaleh, M., Alarifi, A., Al-Quayed, F., & Al-Salman, A. (2015).
Combating Comment Spam with Machine Learning Approaches. 2015
IEEE 14th International Conference on Machine Learning and
Applications (ICMLA). doi:10.1109/icmla.2015.192.

[25] Cuzzocrea, A., Martinelli, F., & Mercaldo, F. (2018). Applying Machine
Learning Techniques to Detect and Analyze Web Phishing Attacks.
Proceedings of the 20th International Conference on Information
Integration and Web-Based Applications & Services - iiWAS2018.
doi:10.1145/3282373.3282422.

[26] Jeeva, S. Carolin, and Elijah Blessing Rajsingh. "Phishing URL
detection-based feature selection to classifiers." International Journal of
Electronic Security and Digital Forensics 9.2 (2017): 116-131.

[27] Kulkarni, Arun D., and Leonard L. Brown III. "Phishing websites
detection using machine learning." (2019).

[28] Mao, Jian, et al. "Phishing page detection via learning classifiers from
page layout feature." EURASIP Journal on Wireless Communications
and Networking 2019.1 (2019): 43.

[29] N. Sanglerdsinlapachai and A. Rungsawang, "Using Domain Top-page
Similarity Feature in Machine Learning-Based Web Phishing
Detection," 2010 Third International Conference on Knowledge
Discovery and Data Mining, Phuket, 2010, pp. 187-190, doi:
10.1109/WKDD.2010.108.

[30] Sahingoz, Ozgur Koray, et al. "Machine learning based phishing
detection from URLs." Expert Systems with Applications 117 (2019):
345-357.

[31] Ke Tian, Steve T. K. Jan, Hang Hu, Danfeng Yao, and Gang Wang.
2018. Needle in a Haystack: Tracking Down Elite Phishing Domains in
the Wild. In Proceedings of the Internet Measurement Conference 2018
(IMC '18). Association for Computing Machinery, New York, NY,
USA, 429–442. DOI: https://doi.org/10.1145/3278532.3278569.

[32] T. Yue, J. Sun and H. Chen, "Fine-Grained Mining and Classification of
Malicious Web Pages," 2013 Fourth International Conference on Digital
Manufacturing & Automation, Qingdao, 2013, pp. 616-619, doi:
10.1109/ICDMA.2013.145.

