
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 9, 2020

529 | P a g e

www.ijacsa.thesai.org

Implementing the Behavioral Semantics of

Diagrammatic Languages by Co-simulation

Daniel-Cristian Crăciunean
1

Computer Science and Electrical Engineering Department

Lucian Blaga University of Sibiu, Sibiu, Romania

Abstract—Due to the multidisciplinary nature of cyber-

physical systems, it is impossible for an existing modeling

language to be used effectively in all cases. For this reason, the

development of domain-specific modeling languages is beginning

to become an integral part of the modeling process. This

diversification of modeling languages often implies the need to

co-simulate subsystems in order to obtain the effect of a complete

system. This paper presents how behavioral semantics of a

diagrammatic DSML can be implemented by co-simulation. For

the formal specification of the language we used mechanisms

from the category theory. To specify behavioral semantics, we

introduced the notion of behavioral rule as an aggregation

between a graph transformation and a behavioral action. The

paper also contains a relevant example and demonstrates that the

implementation of behavioral semantics of a diagrammatic

model can be achieved by co-simulating standalone FMUs

associated to behavioral rules.

Keywords—DSML; cyber-physical systems; behavioral

semantics; standalone FMU; FMI; diagrammatic language

I. INTRODUCTION

In the context of moving the effort from writing code to
writing models, the development of modeling tools,
appropriate to the domain of modeling, becomes an essential
factor for increasing the efficiency of the modeling process.
The diagrammatic syntax of domain-specific modeling
languages (DSML) seems to be the most accessible for all
parties involved in the model specification, because it is
intuitive and can provide support in all phases of model
development, starting with the informal model and ending
with the executable model [1,2].

Models specified with these DSMLs must, in turn, interact
with other models specified in other languages. Often the
models specified with these DSMLs assemble heterogeneous
components, which must be modeled with other languages.
All these components can be specified in various modeling
languages. But there is a need for a specific language to
assemble the system components into a workflow [3] and
coordinate the behavior of these components. In our opinion,
these interaction problems can be solved elegantly by co-
simulation [4].

One of the main objectives of building a model is to study
the behavior of a system in order to analyze and optimize the
modeled system. Due to the complexity of the systems,
classical optimization methods cannot be used and therefore
must be replaced by methods based on simulation or genetic
algorithms. To achieve these objectives the model will have to

be executed by a simulator according to its behavioral rules to
mimic the behavior of the system.

Complex systems such as Cyber-Physical Production
Systems (CPPS) also have a high degree of heterogeneity and
therefore involve components with different behaviors that
cannot be efficiently specified in the same formalism. In these
cases, we need a co-simulation environment that combines
several simulators into one and that reproduces the behavior of
the global system [5].

In order for these heterogeneous models to be coupled in
the co-simulation process, they need to provide a common
standardized interface. This interface is called Functional
Mock-up Interface (FMI) [6] introduced in the European
MODELISAR project, carried out in the period 2008-2011.

To achieve the goal of co-simulation, modeling tools must
be able to generate co-simulation units with FMI interfaces,
which are called Functional Mock-up Units (FMU). The
orchestration of the components in order to obtain the
behavior of the composite system is done by an orchestrator
which is called master algorithm.

We believe that for the efficient implementation of a
DSML, co-simulation mechanisms must be an integral part in
the process of specifying and implementing a modeling tool.
In this paper we present the methodology for specifying and
implementing a DSML with FMU generation facility. To
formalize the model, we use mechanisms from category
theory. For co-simulation we used the INTO-CPS [7] tool
chain. INTO-CPS is an EU-funded project that integrates a
chain of tools for model-based CPS design and
implementation by co-simulating components with an FMI-
compatible interface.

In Section 2, we briefly specify the static metamodel of a
diagrammatic model. In Section 3, we specify the behavioral
syntax of the model and in Section 4, we deal with the
semantic mapping of a model. In Section 5, we briefly present
the mechanism for generating FMU components. Section 6
concludes the paper with original contributions and
conclusions. All the mechanisms presented are exemplified
with a simple model that was implemented on the ADOxx
metamodeling platform.

II. THE STATIC MODEL

In essence, a visual model of a system first defines the
syntax of the static and behavioral model that represents the
virtual and physical entities of the model and then the

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 9, 2020

530 | P a g e

www.ijacsa.thesai.org

semantics of the model represented by the significance of
static constructions and a set of behavioral rules that represent
the behavior of these entities.

Syntactically, a diagrammatic model is a graph with
several types of nodes that represent different concepts in the
domain of modeling and several types of arcs that represent
links between these concepts [8,9]. When we want to associate
models with a spatial representation, we can use a second
graph, as a spatial dimension of them and thus we reach the
notion of bigraph [10]. The models discussed in this paper
have as syntactic representation a single graph.

Example 1. We consider a modeling language SML
(Simple Modeling Language) that has the following concepts:

A buffer concept, which can store a single type of material,
which we denote by B1, and endow it with two attributes,
namely: the stock attribute which represents the current
quantity stored in the buffer and capacity which represents the
maximum quantity that can be stored in the buffer. We
associate to this concept the following graphic notation:

A buffer concept, which can store two types of materials,
which we denote by B2, and endow it with four attributes,
namely: the attributes stock1, stock2 which represents the
current quantity of each type stored in the buffer and
capacity1, capacity2 which represents the maximum quantity
of each type, which can be stored in the buffer. We associate
to this concept the following graphic notation:

A processing or transfer activity concept, which we denote
by W1, and which can process or transfer materials from a
type B1 buffer to a type B2 buffer, and endow it with three
attributes, namely, the StockIn attribute which represents the
quantity of material fed from buffer B1, and the attributes
Stock1Out, Stock2Out which represent the quantities of
material of each type deposited in buffer B2. We associate to
this concept the following graphic notation:

A processing or transfer activity concept, which we denote
by W2, and which can process or transfer materials from a
type B2 buffer to a type B1 buffer, and endow it with three
attributes, namely: the attributes Stock1In, Stock2In which
represents the quantities of material fed from each type and
the StockOut attribute which represents the quantity of
material deposited in buffer B1. We associate to this concept
the following graphic notation:

The SML model that we will specify is a graphical DSML
for describing simple models in conformity with the
requirements specified above.

SML models, therefore, are graphs with a set of syntactic
restrictions on their components [11]. In the categorical
model, the SML metamodel is a sketch that is composed of a
graph and a set of constraints on the graph nodes [2,12,13].

Example 2. We will define a SML model as a graph

G=(X,,,), on the components of which we introduce four
restrictions, namely:

1) The nodes of the graph are of two types and these types

determine a partition on X, i.e.: X=B1⊔B2;

2) The arcs of the graph are of two types and these types

determine a partition on , i.e.: =W1⊔W2;

3) Graph G has to be a connected graph;

4) There must be at most one arc between any two

components.

A categorical sketch is a tuple 𝓢=(𝓖,𝓒(𝓖)) where 𝓖 is a
graph and 𝓒(𝓖) is a set of constraints on the set of nodes and
arcs of the graph [2]. A model of the sketch 𝓢=(𝓖,𝓒(𝓖)) is the
image of this sketch through a functor in the Set category.

From the way of defining the SML model, from example 2
it results that the graph 𝓖 of the corresponding sketch
𝓢=(𝓖,𝓒(𝓖)) is the one from Fig. 1.

The categorical sketches are based on the observation that
a labeled diagram is an analogous construction of a logical
formula that is mapped to the components of a graph, i.e. to
the nodes and arcs of a graph [2,14].

We denote with Graph the category of graphs, i.e. the
category that has graphs as objects and as arcs the
homomorphisms between these graphs. We will also denote
with Graph0 the set of objects of the Graph category and with
Graph1 the set of arcs of the Graph category.

Constraints on the models specified by the categorical
sketch are defined by a predicate signature diagram, which is

composed of a set of predicates , and an application are:

Graph0, which maps the indeterminate predicates to the
nodes of a graph in Graph0 [2]. This predicate signature
diagram, allows the definition of constraints on the models
specified by a categorical sketch at the metamodel level.

Fig. 1. The Graph of the SMM Sketch.



w1

w2

12
b1

b2

x








 


1
 

2
 

2
 

1

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 9, 2020

531 | P a g e

www.ijacsa.thesai.org

For example, for the graph G to be connected we will put

the condition that the pushout of  with  to be a terminal
object in the Set category.

If we denote Span(x,y,z,rzx,rzy)=(x

← z

→ y) then the

pushout of  with , in the Set category, is the colimit of the

diagram d:Span(1,2,3,r31,r32)Set where d(1)=x, d(2)=x,

d(3)=, d(r31)=, d(a32)=. This constrains are imposed by the
predicate P(n1,n2,n3,r31,r32) with the shape graph arity of P3,
ar(P(n1,n2,n3,a31,a32))=Span(1,2,3,r31,r32) defined as: ar(n1)=1,
ar(n2)=2, ar(n3)=3, ar(a31)=r31, ar(a32)=r32. In these conditions
the predicate P(n1,n2,n3,a31,a32) is defined as follows:
P(n1,n2,n3,a31,a32)=|CoLim(d)|=1 where CoLim(d) is the
colimit of diagram d in the Set category.

Therefore, the categorical sketch of the SML model has
the following components: the graph of the sketch is the one

from Fig. 1, and the set of constraints 𝓢() is obtained by
mapping the shape graphs corresponding to the predicates

from  to the components of the sketch graph by means of

diagrams, i.e. 𝓢()={𝓢(Pi) | Pi, i1}. The categorical

sketch 𝓢 = (𝓖, ()) represents the abstract syntax of the SML
models and at the same time the SML metamodel.

Each model specified by the categorical sketch 𝓢, is the
image of the graph 𝓖 of the sketch 𝓢 through a functor M, in
the Set category, which respects the constraints imposed by

the predicates (). The predicates in the set () will be
mapped, at the level of each model M, from the Set category
to a set of predicates as follows: Set(Pi)={(Pi;M◦d◦ar(Pi)) | d is
a diagram}.

Thus, if we have the model M:𝓢Sets, where M(b1)=B1,
M(b2)=B2, M(w1)=W1 and M(w2)=W2, then the set of
instances B1, B2, W1, W2, will respect the constraints defined
by the set of predicates Set(Pi). We notice that the graph of the
categorical sketch contains besides the concepts from the
modeling domain, also auxiliary nodes useful for imposing
constraints.

If in the above model we have: B1={B11,B12,B13};
B2={B21,B22}; W1={W11,W12}; W2={W21, W22,W23} and

(W11)=B11; (W12)=B12; (W11) =B22; (W12) =B22; (W21)

=B21; (W22) =B21; (W23) =B22; (W21) =B11; (W22) =B12;

(W23) =B13 , then the SML model is like in Fig. 2.

We will consider that the nodes of the graph of the sketch
𝓢 are classes endowed with attributes. The graph nodes will be
mapped by the functor M to sets of objects of the
corresponding class type in the Set category, and the graph
arcs will be mapped to functions between these sets. The
semantics of such a static model is given by the significance
of the attributes, the significance of the values of these
attributes and the significance of the graph structure of the
model.

A class defines a concrete modeling concept that can be
used to specify a model in the modeling language. Therefore,
each concrete concept of a model created with a tool
implemented on the ADOxx platform is an instance of a class.
Each concrete class has a distinct name.

Fig. 2. Model Example.

III. BEHAVIORAL SYNTAX OF THE MODELING LANGUAGE

Model transformation is one of the key techniques in MDE
used especially for automating model management operations,
such as code generation, model optimization, translation from
one DSML to another, simulation, etc.

The transformation of diagrammatic models is based on,
most often, the graph transformations defined by graph rules,
also called productions. Such a production is a tuple p=(L, R),
consisting of two graphs; a left graph L, a right graph R and a
mechanism that specifies the conditions and how to replace L
with R.

In this paper we will use graph transformations to model
the behavior of a diagrammatic model. Graph transformation
rules are mechanisms that can express the local changes of a
graph in successive transformation steps ordered by a
relationship of causal dependence of actions and therefore can
accurately define the behavior of a diagrammatic model.

In the approaches of implementing the transformations, of
the left graph to the right graph, two distinct mechanisms are
distinguished, namely, the double pushout (DPO) and single
pushout (SPO) [15,16]. Graph transformations allow the
simultaneous transformation of the structure of the
diagrammatic model and of the attributes of the components.
In this paper we will use the DPO variant to specify the
behavioral dimension of a model.

The correct application of a production p is made under the
conditions in which the squares in Fig. 3 are pushout squares.
A set of productions related to each other form a graph
transformation system and can be used in the process of
transforming models without being integrated into a graph
grammar [15,17,18].

The behavior of SML models is not based on structural
transformations of the graph but only on changing attribute
values and therefore we will use graph transformations only to
specify the context necessary to locate the components
involved in a behavioral rule and to locate critical regions in
the simulation process.

We will define the graph transformations at the metamodel
level and they will be applied for any static model specified by
the sketch in the Set category.

In the case of our SML model we have two
transformations at the level of the sketch 𝓢 from Fig. 1,
namely, p1 (Fig. 4) and p2 (Fig. 5).

W21 W11 B11

B12

B13 B
21

W
22

 W
12

B
22

 W
23

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 9, 2020

532 | P a g e

www.ijacsa.thesai.org

Fig. 3. A Double-Pushout Production.

Fig. 4. Graph Transformation p1.

Fig. 5. Graph Transformation p2.

IV. SEMANTICS OF THE MODELING LANGUAGE

A diagrammatic model is characterized by two
dimensions: a static dimension, specified syntactically by the
categorical sketch, and a behavioral dimension, specified
syntactically by behavioral signatures. The two dimensions
have dependent but still distinct semantics. Defining the
semantics of the static dimension involves mapping the
attributes with which the components of the graph of the
categorical sketch are endowed to data domains and the graph
structures of the model to well defined semantically structures,
and defining behavioral semantics involves mapping the
behavioral signature to mathematical functions.

The semantics of a model involves mapping attributes to
their set of values, interpreting the graph structure of the
model, while behavioral semantics highlights the structural
and value transformations of the model.

The behavioral dimension of a SML model is defined by
states and transitions. The states of the model are represented,
in our approach, by the static models of the categorical sketch,
and the transitions are represented by a set of mathematical
functions associated with the behavioral rules. A behavioral
rule can be applied only in the context in which a set of
conditions are realized, represented by logical predicates that
verify the state of the model. Therefore, a behavioral rule is
defined as an association between a graph transformation and
an action.

We will define the behavioral rules at the metamodel level
by behavioral signatures represented by predefined actions

with formal parameters, which will be evaluated at the
moment of execution of a model, when they will receive
current parameters corresponding to the respective concrete
model.

Let the sets Y1,...,Yn, U1,...,Um. Then an action is an

application Act:U1...UmY1…Yn defined as follows:

(y1,...,ym):=Act(u1,...,un)=(1(u1,...,un), …,m(u1,...,un)) where

i is an operation that calculates the value of yi, i=1,m
depending on the values of the variables u1,...,un.

We denote with AGraph the category of graphs with
attributes, i.e. the category that has as objects graphs with
attributes and as arcs the homomophisms between these

graphs. Also, if GAGraph0, we will denote with attr(G) the
set of attributes associated with the nodes and arcs of the
graph G.

A diagram actions signature is a tuple =(𝓐, ar) where 𝓐

is a set of actions and ar is a function ar:𝓐Graph0 which

maps each action Act𝓐 to two objects in the AGraph
category as follows: if (y1,...,ym):=Act(u1,...,un) then the
outputs y1,...,ym will be mapped to the attributes of the graph R
and the inputs u1, ...,un will be mapped to the attributes of the
graph L. The pair (L, R) of graphs is called shape graph arity
of Act, ar(Act)=(L, R). We will sometimes denote the image
of Act through ar in the category AGraph with Act(L, R).

The behavioral signature is a tuple =(𝓣,CL,,CR) where

𝓣 is a set of graph transformation rules; CL=(L,arL) is a

diagram predicate signature such that arL:LAGraph0,

which we call the precondition signature; CR=(R,arR) is a

diagram predicate signature such that arR:RAGraph0,

which we call the postcondition signature and  is a diagram

actions signature, with the property that for any Act there

is p𝓣, p=L

←K

→R with ar(Act)=(L, R), that specifies how

to transform the attributes of graph L which is the domain of
action into the components of graph R which composes the
codomain of the action.

We now denote the graph in Fig. 7 with G1(x1, x2, x3) and
the graph with a single node in Fig. 8 we denote it with G2(x1).
The shape graphs represent the local structures of a model and
represent the areas of action of the behavioral rules in the
context of a concrete model.

These shape graphs represent the local structure of the
model, and the context in which a behavioral rule evolves.
Behavioral signatures defined on the components of these
shape graphs are mapped to behavioral transformations on the
component elements of a model.

The behavior of the SML model can be specified by a
behavioral signature that contains two behavioral rule

signatures 1 and 2. Since the set of behavioral rule
signatures is equivalent to the behavioral signature, we will

use the same notation  for the set of behavioral rule
signatures.

So ={1,2} where:

1=(L
1

←K

1

→R

1
,

 ,Act
1
,

); 2=(L
2

←K

2

→R

2
,

 ,Act
2
,

);

 K L

G

p
L

m

D

 R

 H

p
R

mD m
H

l
1
 r

1

K
1

 w
1

L
1



b
1

b
2

w
1

 

R
1



b
1

b
2



 w
1

l
2
 r

2

K
2

 w
2

L
2



b
2

b
1

w
2

 

R
2



b
2

b
1



 W2

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 9, 2020

533 | P a g e

www.ijacsa.thesai.org

L1= R1= L2= R2= G1(1,2,3) ; K1 = K2 = G2(1);

 =(

 ;

 ={
 (u1,…,un)};

 (ui)=ai, i=1,n and

aiattr(L
1
);

 =(

 ,
);

 ={
 (y1,…,ym)};

 (ui)=bi, i=1,m and

biattr(R
1
);

L2= R2=G1(1,2,3) ; K2 = G2(1);

 =(

 ,
); 

 ={
 (u1,…,un)};

 (ui)=ai, i=1,n and

aiattr(L
2
);

 =(

 ,
); 

 ={
 (y1,…,ym)};

 (ui)=bi, i=1,m and

biattr(R
2
);

The behavioral signatures thus defined will be transformed
into behavioral rules at the level of the metamodel, by
mapping them to the components of the sketch 𝓢, and will
represent the behavioral model at the level of the metamodel,
i.e. the abstract behavioral semantics of the models. The
behavioral rules at the level of the sketch 𝓢 will then be
mapped by matches at the level of the models.

The behavioral rule signatures must be mapped to the
components of the graph 𝓖 of the sketch 𝓢 by sets of three
diagrams, one for each of the graph forms L, R and K. These
will be defined by three functors dL, dK and dR, where dK is the
restriction of the functors dL and dR at domain K;
dk=dl/K=dr/K, ls and rs are monomorphisms that inject the
graph K into L and R, respectively.

We will therefore define the diagrams corresponding to the

signature of the behavioral rule 1:

 :G1(1,2,3)G1(12, w1, w2) defined as

 (1)=12;
 (2)=w1;

 (3)=w2 ;

 =

 ; and
 :G2(1)G2(12) defined as restriction

 =
 /K

1
;

 (1)=12.

And for the signature of rule p2 we have the diagrams:

 :G1(1,2,3)G1(21, w2, w1) defined as

 (1)=21;
 (2)=w2;

 (3)=w1;

 =

 ; and
 :G2(1)G2(21) defined as restriction

 =

 /K
2
;

 (1)= 21.

Diagrams are functors that map the formal parameters
defined by graph shapes to the concepts specified by the nodes
of the sketch graph. The same graph shapes are, on the other
hand, mapped to the components of a concrete model through
matching applications.

A behavioral rule of the sketch 𝓢 is a tuple t=(L

←K

→R,

dL(CL),Act(dL(L);dR(R)),dR(CR)) where =(L

← K

→ R,CL,

Act(L;R),CR) is a signature of a behavioral rule. We used the

following notations: dL(CL)=(L,dL(arL));

dR(CR)=(R,dR(arR)).

Thus, starting from a behavioral signature, we generate a
set of behavioral rules at the level of the metamodel, i.e. at the
level of the components of the graph of the sketch.

If we denote with (), the set of behavioral rules induced

by the behavioral signature , then a behavioral metamodel is

a tuple (𝓖, 𝓢()) where 𝓖 is the graph of the sketch 𝓢=(𝓖,
𝓒(𝓖)).

In our approach each of these behavioral rules will be
implemented as an FMU component. The behavioral
metamodel corresponding to the SML language is defined by

two behavioral rules ()={𝓢(1), 𝓢(2)} where:

(1)=(L
1

←K

1

→R

1
,{

 (
 (L

1
))},Act

1
(

 (L
1
);

 (R
1
)),

 (

 (R
1
)));

(2)=(L
2

←K

2

→R

2
,{

 (
 (L

2
))},Act

2
(

 (L
2
);

 (R
2
)),

 (

 (R
2
)));

Thus, for our SML metamodel we will implement two
FMU components corresponding to the two behavioral rules

(1) and (2).

In order for the behavioral rules specified in the

metamodel () to be applied at the level of a concrete model
we will have to find the matches of each behavioral rule from

() in a model from Mod(𝓢,Set).

A match of a graph 𝓖=(N, A, s, t) in the image of a functor

:𝓖Set is a total monomorphism of graphs m:𝓖(𝓖)
which maps the graph 𝓖 to the graph 𝓖m=(m(N), m(A), m(s),

m(t)) so that yim(N) xiN with yi(xi) and

aim(A) riN with ai(ri) respecting the conditions of
homomorphism m(s(ri))=m(s)(m(ri)) and m(t(ri))=m(t)(m(ri))

for all riA. We will denote the set of graph matches 𝓖 in

(𝓖) with m(,𝓖).

In this way the graph transformations and the actions on
the attributes will be executed on a concrete model.

Under these conditions, a behavioral model, in the Set
category, contains all the behavioral rules induced by the

behavioral signature , in the Set category. We notice that the
set of behavioral rules is specific to each concrete model, but
they can be implemented generically at the metamodel level.

As we can see each behavioral rule  in Set, defines an

application :MLMR, where ML,MR:𝓢Set are functors

which represents the domain and codomain of the rule  and

all these behavioral applications together, maps the set 𝓢() of
behavioral rules of the sketch into a set of behavioral rules

Set() in Set.

In the case of the SML language the atomic behavioral

rules in Set,  are of the form =(t, , ML, MR)𝓢() where

t𝓢() is a behavioral rule t=(L

←K

→R, dL(CL),Act(dL(L);

dR(R)), dR(CR)), ML, MR:𝓢Mod(𝓢, Set) there are two

functors, and  is a tuple of match =(mL,mK,mR),

mLm(ML,L), mRm(MR,R), and mK is the restriction of mL
to K, so that the diagram in Fig. 6 is a double pushout.

For the model from Fig. 2 we have 5 behavioral rules in

Set(), two for 𝓢(1) and three for 𝓢(2): Set()={11, 12, 21,

22, 23}.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 9, 2020

534 | P a g e

www.ijacsa.thesai.org

Fig. 6. A Double-Pushout Diagram.

Fig. 7. Graph G1(x1, x2, x3).

Fig. 8. Graph G2(x1
).

In our approach, behavioral rules are approached in two
distinct phases. In the first phase, these rules are defined, at
the metamodel level, by behavioral signatures, and in the
second phase, these rules are applied at the level of each
concrete model. If the behavioral rules of the model are
faithful to the modeled system, then their successive
application mimics the behavior of the modeled system.

V. IMPLEMENTATION OF THE FMU GENERATOR

From the formalization presented in this paper results the
fact that a diagrammatic metamodel has two dimensions, a
static dimension represented by the categorical sketch and a
behavioral dimension represented by the behavioral rules. A
behavioral rule, as we have defined it, is an aggregation
between a graph transformation on the structure of a model
and a local action on the attributes of the model. If the
functionalities of a metamodeling platform are designed to
specify the graph structure of a metamodel and can be
endowed with graph transformation facilities, behavioral
actions are often performed by complex systems with a high
degree of heterogeneity which implies the need for modeling
on various modeling platforms. A solution to this problem is
the assembly through co-simulation of n+1 independent
components where n is the number of behavioral rules. In
other words, you can build an FMU component that manages
the static dimension of the model together with the graph
transformations on it and an FMU component for each
behavioral rule that models the action corresponding to the
behavioral rule.

Applying a transformation rule specified by a behavioral

signature =(L

←K

→R,CL,Act,CR) is done as follows:

1) We first consider the diagrams dL and dR which maps

the behavioral signature  to the model sketch. In this way the

components of the diagrams receive the types of components

of the sketch.

When we are going to apply a behavioral rule =(t,

,M
L
,M

R
)𝓢() we have the first component ML, which

represents the current state of the behavioral model, and we
are going to determine the MR component which represents
the state in which the transition is made. Therefore we can

find the matches mLm(ML,L) and mKm(MK,K)=m(ML,L)
which are the first two components of a match.

=(mL,mK,mR) (Fig. 11).

2) The preconditions are verified, i.e. the fulfillment of

the predicates defined by the CL signatures, among which is

the gluing condition. If the CL conditions are met the graph

transformation defined by the cospan L

←K

→R is executed in

two steps, 1 and 2.

a) We calculate the complement ML(𝓢)\((mL(L)\mK(k))

of the pushout of ls with mk, from Fig. 9.

b) Now we can calculate the pushout of r with mk, from

Fig. 10 and therefore the functor MR and the component

mRm(MR,R) of the match .

All these transformations are executed temporarily, i.e.
with the possibility of being canceled.

3) In this phase, the Act action is temporarily executed.

4) If the postconditions are also verified then the

transformations described at points 2 and 3 are permanently

executed, otherwise they are canceled by a rollback operation.

Obviously, independent behavioral rules can be applied
simultaneously, and also the same behavioral rule can be
applied simultaneously to several areas of the model if these
areas do not contain common elements.

The model was implemented on the ADOxx metamodeling
platform (see Fig. 12). In the case of the SML metamodel we
defined, as it results from the analysis of the graph 𝓖 of the
sketch 𝓢, two classes, corresponding to nodes b1 and b2 and
two classes’ relations corresponding to nodes w1 and w2.
Defining classes in ADOxx is done visually, but the
metamodel can be exported in ADL language or XML format.
We used the ADL language to generate from classes, C
structure types for standalone FMU.

Fig. 9. The Complement of a Pushout.

Fig. 10. A Pushout Diagram.

K L

ML(𝓢)

ls

mL

ML(𝓢)\((mL(L)\mK(k)))

R

MR(𝓢)

r
s

mK m
R

 x
2

 x
1

x
3

 x
1

 K
L

ML(𝓢)

ls

mL

ML(𝓢)\((mL(L)\mK(k)))

mK

 K

ML(𝓢)\((mL(L)\mK(k)))

 R

 MR(𝓢)

r
s

mK m

R

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 9, 2020

535 | P a g e

www.ijacsa.thesai.org

Fig. 11. Matching Three Diagrams.

The ADOxx metamodeling platform does not include
behavior in classes and therefore we generated these classes as
types of C structures. If the metamodeling platform would also
include behavior this problem can be solved by function
pointers. These structures were generated in a
<ModelName>_fmu_types.h file, in our case
SML_fmu_types.h. This type file is easy to write even
manually, because it is written once and can then be used for
all models specified with the implemented modeling tool.

We exported from ADOxx the model in ADL format from
which we generated the FMU component corresponding to the
static model, i.e. a graph structure corresponding to the
specified model and with nodes that have corresponding types
from the file <ModelName>_fmu_types.h and the name
specified in the model. We put this graph structure in a file
named <ModelName>_fmu_structure.h, in the case of the
SML metamodel, SML_FMU_structure.h. Generating this
graph structure is important because it is used in all specified
models with the implemented modeling tool.

The behavioral part of the FMU component that manages
the static dimension of the model was implemented manually
in the C language. This is acceptable because it does not have
a high complexity and is written only once for a modeling
tool. The generation of this C code is possible but a translator
from the ADOScript language to C should be implemented.
To write this code we used FMU SDK [19] which can also be
used in the case of generation from ADOScript.

FMU components corresponding to behavioral rules are
usually written in another modeling tool. In the case of our
SML metamodel, we specified the two components
corresponding to the behavioral rules T1 and T2 in the VDM-
RT language and exported them as standalone FMU.

Therefore, for the SML metamodel, we have 3 FMU
components (Fig. 13) Which we briefly describe using the

notations from [20]. In this sense an FMU is defined as a tuple
T1=<Sc,Uc,Yc,setc,getc,doStepc>; where: Sc is the space of
states; Uc is the set of input variables; Yc, is the set of output

variables; setc:ScUcSc and getc:ScYc are the input

and output functions and doStepc:ScR+Sc is a function that
calculates the state after a given step.

T1=<S1 ,U1 ,Y1 ,set1 ,get1 ,doStep1> ;

S1=Nx|xN,0xcapacity1}{(x,y)|x,yN,0xcapacity

1 and 0ycapacity2}; U1=T1u={ initial_id, initial_stock,
initial_stock1, initial_stock2}; Y1=T1y={ final_id,
final_stock, final_stock1, final_stock2}; The parameters PT1
of the component T1 are: PT1 ={ capacity, capacity1,
capacity2, stockIn, stock1Out, stock2Out }.

The doStep1 function implements only the action Act
1

because we do not have structural transformations of the
model. The precondition for the execution of the action Act

1

is: initial_stockstockIn and capacity1-

initial_stock1stock1Out and capacity2-stock2stock2Out.

The action (final_stock, final_stock1, final_stock2)=
Act1(final_stock, final_stock1, final_stock2) defines the
operations; final_stock=initial_stock-stockIn; final_stock1=
initial_stock1+stock1Out; final_Stock=initial_Stock2+
stock2Out. We will consider that we do not have
postconditions in the case of the SML model.

T2=<S2 ,U2 ,Y2 ,set2 ,get2 ,doStep2> ;

In the case of SML: S2=S1, U2=U1, Y2=Y1 and PT2=PT1.

The doStep2 function implements the Act
2
 action as

follows: The precondition for the execution of the Act
2
 action

is initial_stock1stock1In AND initial_stock2stock2In AND

capacity-initial_stockstockOut. The action (final_stock,
final_stock1, final_stock2)=Act

2
(final_stock, final_stock1,

final_stock2) defines the operations: final_stock1=
initial_stock1-initial_stock1In; final_stock2=initial_stock2-
initial_stock2In; final_stock=initial_stock+initial_stockOut.
Even in the case of this behavioral rule we do not have a
postcondition.

For component M we have the inputs and outputs identical
to the inputs and outputs of the other two components in the
case of the SML model. The doStepM function finds the
matches in the model and implements the distribution of
activities to the T1 and T2 components. Of course, for the T1
and T2 components there will be several instances, one for
each match. In the case of the example in Fig. 2 we have 2
instances of the T1 component and three instances of the T2
component. The distinction between the two types of instances
is made by the value of the variables initial_id and final_id.
For the co-simulation of the three components we used INTO-
CPS. We performed the co-simulation on an example of data
and we obtained the output from Fig. 14. The graphs show the
stocks resulting from the two instances of the T1 component
and three instances of the T2 component.

 K L

dL(L)

ls

mL

dK(K)

 R

 dR(R)

r
s

mK m
R

M
L
(dL(L)) M

K
(dK(K)) M

L
(dL(L))

m
L
(L) m

K
(K) m

R
(R)

d
L
 d

K
 d

R

M
L
 M

K
 M

R

Three diagrams

Sketch

Model

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 9, 2020

536 | P a g e

www.ijacsa.thesai.org

Fig. 12. SML Tool.

Fig. 13. FMU Components.

Fig. 14. Screenshot of the Output from INTO-CPS.

VI. ORIGINAL CONTRIBUTIONS AND CONCLUSIONS

In this paper we used the mechanisms of category theory
to specify diagrammatic models with co-simulation facilities.
We introduced the concept of behavioral rule as an
aggregation between a graph transformation and a behavioral
action. We defined these behavioral rules by graph signatures
at the metamodel level. We also implemented a simple
example of diagrammatic language using the ADOxx [21]
metamodeling platform. In all the phases of specification and
implementation we highlighted the implementation of the
constituent components of such an FMU. We performed the
co-simulation of a concrete model specified with the SML
language on the INTO-CPS platform.

Model transformations, if any, must be implemented in
component M (Fig. 13), otherwise they could not be executed
in parallel. As a result, the preconditions and postconditions
should also be executed in component M. In principle, this is
acceptable.

As it results from the previous observations, there are
some important problems to be solved that we will deal with
in future work such as: the implementation of a more complex
model containing graphical transformations or the
implementation of the export facility of a tool-wrapper for
DSMLs implemented with ADOxx.

REFERENCES

[1] M. Fowler, R. Parsons, Domain Specific Languages, 1st ed. Addison-
Wesley Longman, Amsterdam, 2010.

[2] Uwe Wolter, Zinovy Diskin, The Next Hundred Diagrammatic
Specification Techniques, A Gentle Introduction to Generalized
Sketches, 02 September 2015 : https://www.researchgate.net/publication
/253963677.

[3] D.C. Crăciunean, D. Karagiannis, Categorical Modeling Method of
Intelligent WorkFlow. In: Groza A., Prasath R. (eds) Mining
Intelligence and Knowledge Exploration. MIKE Lecture Notes in
Computer Science, vol 11308. Springer, Cham (2018).

[4] D.C. Crăciunean, D. Karagiannis, A categorical model of process co-
simulation, Journal of Advanced Computer Science and
Applications(IJACSA), 10(2), (2019).

[5] C. Gomes, C. Thule, D. Broman, P.G. Larsen, H. Vangheluwe - Co-
simulation: State of the art, - ACM Computing Surveys, Vol. 1, No. 1,
Article 1. Publication date: January (2016).

[6] Functional Mock-up Interface for Model Exchange and Co-Simulation,
Document version: 2.0.1 October 2nd 2019, https://fmi-standard.org/.

[7] INTO-CPS Tool Chain User Manual, Deliverable Number: D4.3a
Version: 1.0 Date: December, 2017 Public Document, http://into-
cps.au.dk.

[8] D. Karagiannis, H.C. Mayr, J. Mylopoulos, Domain-Specific Conceptual
Modeling Concepts, Methods and Tools. Springer International
Publishing Switzerland (2016).

[9] Dominik Bork, Dimitris Karagiannis, Benedikt Pittl, A survey of
modeling language specification techniques, Information Systems 87
(2020) 101425, journal homepage: www.elsevier.com/locate/is.

[10] R. Milner, The Space and Motion of Communicating Agents,
Cambridge University Press, (2009).

[11] D.C. Crăciunean, Categorical Grammars for Processes Modeling,
International Journal of Advanced Computer Science and
Applications(IJACSA), 10(1), (2019).

[12] Michael Barr And Charles Wells, Category Theory For Computing
Science- Reprints in Theory and Applications of Categories, No. 22,
2012.

[13] Diskin Z., König H., Lawford M., 2018. Multiple Model
Synchronization with Multiary Delta Lenses. In: Russo A., Schürr A.
(eds) Fundamental Approaches to Software Engineering. FASE 2018.
Lecture Notes in Computer Science, vol 10802. Springer, Cham.

[14] Zinovy Diskin, Tom Maibaum- Category Theory and Model-Driven
Engineering: From Formal Semantics to Design Patterns and Beyond,
ACCAT 2012.

[15] D. Plump, ‘Checking graph-transformation systems for confluence’,
ECEASST, vol. 26, 2010. DOI: 10.14279/tuj.eceasst.26.367.

[16] Hartmut Ehrig, Claudia Ermel, Ulrike Golas, Frank Hermann, Graph
and Model Transformation General Framework and Applications,
Springer-Verlag Berlin Heidelberg 2015.

[17] D. Plump, ‘Computing by graph transformation: 2018/19’, Department
of Computer Science, University of York, UK, Lecture Slides, 2019.

[18] G. Campbell, B. Courtehoute and D. Plump, ‘Linear-time graph
algorithms in GP2’, Department of Computer Science, University of
York, UK, Submitted for publication, 2019. [Online]. Available:
https://cdn.gjcampbell.co.uk/2019/Linear-Time-GP2-Preprint.pdf.

[19] FMU SDK, https://github.com/qtronic/fmusdk.

[20] Claudio Gomes, Casper Thule, Levi Lucio, Hans Vangheluwe, and Peter
Gorm Larsen, Generation of Co-simulation Algorithms Subject to
Simulator Contracts, https://sites.google.com/view/cosimcps19.

[21] ADOxx, https://www.adoxx.org.

 T1

T1y

T1u
M

M1u

M1y

M2y

M2u
 T2

T2u

T2y

https://fmi-standard.org/

