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Abstract—Accurate identification and counting of White Blood
Cells (WBCs) from microscopy blood cell images are vital for
several blood-related disease diagnoses such as leukemia. The
inevitability of automated cell image analysis in medical diagnosis
results in a plethora of research for the last few decades.
Microscopic blood cell image analysis involves three major steps:
cell segmentation, classification, and counting. Several techniques
have been employed separately to solve these three problems.
In this paper, a simple unified model is proposed for White
Blood Cell segmentation, feature extraction for classification, and
counting with connected mathematical morphological operators
implemented using the max-tree data structure. Max-tree creates
a hierarchical representation of connected components of all
possible gray levels present in an image in such a way that the
root holds the connected components comprise of pixels with the
lowest intensity value and the connected components comprise
of pixels with the highest intensity value are in the leaves. Any
associated attributes such as the size or shape of each connected
component can be efficiently calculated on the fly and stored in
this data structure. Utilizing this knowledge-rich data structure,
we obtain a better segmentation of the cells that preserves the
morphology of the cells and consequently obtain better accuracy
in cell counting.

Keywords—Segmentation; feature extraction; White Blood Cell
(WBC); mathematical morphology; max-tree

I. INTRODUCTION

Microscopic blood cell image analysis is crucial for the
diagnosis of several blood-related diseases. It may require
complete blood count (CBC) where a complete count of red
blood cells, white blood cells, and platelets is investigated. In
some cases, differential blood count (DBC) may be required
where five different types of white blood cells: eosinophils,
basophils, monocytes, lymphocytes, and neutrophils need to
be separated and counted. Blood image analysis is also crucial
in the diagnosis of leukemia where lymphoblasts are needed
to be separated from the healthy WBCs and counted. Manual
analysis by the human experts is time-consuming, the accuracy
of the result vastly depends on the expert’s capability, and
varying results may be obtained even if the procedure is
repeated by the same expert. Thus, image-based analysis of
blood cells gained much popularity in the past decades.

Image-based automated blood cell analysis poses three
major challenges: segmentation, feature extraction for classifi-
cation, and counting of cells from very complex blood smear
images. To solve the challenging problem of cell segmenta-

tion, several approaches have been utilized in the literature.
Clustering-based approaches such as expectation maximiza-
tion (EM) [1], [2], K-means method [3], [4], the fuzzy C-
means method [5], type-2 fuzzy logic [6], thresholding-based
approach [7], edge detection based method [8], shape-based
matching method [9], machine learning [10], or energy mini-
mization [11], Gram-Schmidt orthogonalization [12], combin-
ing several image processing techniques such as thresholding,
k-means clustering, and modified watershed algorithm [13],
morphological operators [14], etc. to mention a few.

For classification different features such as morphological
and textural features have been used [15]–[17]. Few others
used genetic features extracted with the genetic algorithm
[18]–[20].

Finally, different types of classified cells need to be
counted. For counting, some methods that require prior cell
segmentation and detection [21], few others approximated the
number of cells from estimated density obtained from user
annotation by compromising accuracy over speed [22], [23].
A method of cell counting based on morphological image
analysis of blood cell images without requiring user annotation
is reported in [24].

From segmentation to the counting of the cells widely
varying techniques have been utilized in the literature. There
is no unified approach that can facilitate in all three analysis
steps of segmentation, feature extraction for classification, and
counting. Inspired by the work in [24], this paper tries to
use the full potential of Max-tree data structure which is
an efficient structure for morphological connected operators.
Morphological connected operators work on connected com-
ponents of a gray level image known as flat zones and preserve
only those flat zones that satisfy given criteria removing the
rest of the flat zones [25], [26]. The criteria can be based on
one or more attributes computed from the flat zones. Max-tree
data structure enables the processing steps of these operators
efficiently. Max-tree is a structured representation of an image
where connected components with the highest intensity are
in the leaves of the tree, the connected component with the
lowest intensity is in the root, and the rest of the nodes hold
the connected components for all threshold levels present in
the image. Besides, the nodes of the tree are capable of storing
a plethora of knowledge such as size and shape granulometry,
texture, moment, or motion-oriented attributes. In this paper,
the capability of this knowledge-rich data structure has been
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utilized for cell segmentation, feature extraction, and counting.
The cell counting part of the work is also reported in a confer-
ence paper [24]. In [24] only the structured representation of
the image by the tree is utilized where the number of leaves
in the tree is reported as the number of cells present in the
image.

Piuri and Scotti proposed a system for leukocytes detection
and classification based on the morphological operators in [27].
However, they used the structuring element based morpho-
logical operators for the identification of the cells. They only
reported observational performance instead of any quantitative
performance measure of their work. They also did not solve the
cell counting problem. Besides, the structuring element based
filtering is known to distort the original shape of the object. On
the other hand, shape of the object is preserved in our method
and thus yield better segmentation.

Moshavash et al. proposed a color-based cell segmentation
technique where they converted the RGB images into CMYK
color space and separate the background and red blood cells
using the M-channel [28]. After the background and red blood
cells are separated remaining are considered as the candidate
for the WBCs.

On the other hand, this paper utilized connected mor-
phological operators that filters without using any structuring
element; rather it uses the structure of the input signal itself for
filtering. Connected operators do not introduce any distortion
or new structures to the resultant image. In this paper, a
Max-tree data structure is used where connected components
of the image are hierarchically stored thus every connected
component is reachable for further processing. The main
strengths of the proposed model are

• The method obtain a better segmentation of the cells
that preserves the morphology of the different types
of WBCs and their nuclei.

• The Method achieve better accuracy in counting cells.

• Feature extraction can be done on the fly.

• Segmentation, feature calculation, and counting are
done in a unified model where Maxtree data structure
plays the central role.

• Maxtree representation can be utilized in other appli-
cations such as cell tracking, cell visualization, etc.

• It is conceptually simple.

• Computationally efficient.

The rest of the paper is organized as follows: in Section
2, the concept of mathematical morphology and connected
attribute filters are described. In Section 3, the basic idea,
implementation detail of max-tree data structure, and attribute
estimation methods are discussed. Section 4 contains a detailed
discussion of the proposed method. A brief description of the
data set can be found in Section 5. In Section 6, experiments
and results are reported. Section 7 concludes the paper with a
few directions for future work.

II. MATHEMATICAL MORPHOLOGY AND CONNECTED
ATTRIBUTE FILTERS

Mathematical Morphology [29] is popularly used in digital
image analysis consists of several operators based on topologi-
cal and geometrical concepts such as size, shape, contrast, etc.
In mathematical morphology, grayscale images are considered
in a form f(x) : Z → R where Z ⊆ E mapping Euclidean
space or grid, E into R. Image, f(x) is interacted with a small
set called structuring elements, s(x) utilizing the order relation
on R. Connected attribute filters are morphological operators
that can eliminate or merge the connected components or flat
zones of an image where the image signal is constant [30]. Its
power of simplifying images without distorting the contours
makes it popular for various applications.

The notion of connectivity in digital images can be defined
as the local neighborhood of pixels. If a 2D image, I , is
mapped into m× n grid and the position of a pixel, p in the
grid is defined as row and column pair (i, j). The four pairs
of pixels positioned in (i± 1, j) and (i, j± 1) are 4-neighbors
of p. A common choice of the local neighborhood of a pixel
in the case of 2D images is 4 or 8 adjacency; and in the case
of 3D is 6, 18, or 26 adjacency.

Connected operators act as a filtering tool on gray-level
images that eliminates some of the connected components
leaving other components unchanged. If I is the original image
and Sk is the structuring element of size k, the opening of I
can be defined using equation 1 which is erosion (ε) followed
by dilation (δ):

J0 = δSk(εSk(I) (1)

Jk = δc(J(k − 1)) ∩ I (2)

where c = structuring element that defines the connectivity

The operation in equation 1 will mark the connected
components that need to be preserved and iterating equa-
tion 2 until idempotence will provide the desired result.
Different types of connected operators can be obtained by
the composition of any family of openings and closings by
reconstruction. Connected attribute operators such as attribute
openings, closing, thickenings, and thinnings can be utilized
to filter connected components based on their attributes such
as size, shape, contrast, etc. Simplest size oriented connected
operators can be obtained by area opening and closing which
is idempotent, anti-extensive, and increasing [31]. A large
number of connected operators based on size attributes such
as the moment of inertia, diagonal length of smallest enclosing
box, etc. can be obtained for image filtering. The binary area
opening,Γ of a binary image, I at point x with threshold
parameter, λ obtains the connected component with an area
greater or equal to λ and to which x belongs:

Γλ(I) = x ∈ I|A(Γx(I)) ≥ λ (3)

Apart from filtering images using size-based connected
operators, shape-based filtering can be implemented using
attribute thinning and thickening which is antiextensive, idem-
potent, and scale-invariant [32]. Being scale-invariant shape-
based operators are insensitive to the size of the structures.
Several shape-based attributes such as elongation [33], com-
plexity or simplicity, motion estimation, entropy, etc. [34] can
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be derived using these connected operators. Binary attribute
thinning can be defined in terms of binary connected openings.
The trivial thinning TC with criterion C of a connected set S
is the set that satisfies C, or empty otherwise. Thus TC of set
x with criterion C can be obtained by

TC(I) =
⋃
x∈I

TC(Γx(X)) (4)

To decompose an image, I , according to size or shape,
the image needs to be filtered using Γλ(I) or TC(I) and
after filtering the resulting image, Ir will contain structures
that meet the criteria λ or C. The difference image, I − Ir
should contain the structures that fail to meet the desired
criteria. Derivation of these size and shape based operators
for grayscale images is straightforward and can be obtained
from their binary counterpart.

III. IMPLEMENTATION OF CONNECTED OPERATORS

Implementing connected operators using a structuring el-
ement for more than one dimension is difficult [35]. There
are several algorithms proposed for attribute opening and
closing such as the Pixel-Queue algorithm [32], the Union-Find
algorithm [36], Max-Tree algorithm [34]. In [37] Meijster and
Wilkinson discussed the pros and cons of these algorithms.
The method proposed in this paper considered the findings
of [37] and uses the Max-Tree algorithm because it requires
liner time in both the number of pixels and connectivity for
processing and pruning the tree and also for creating output
images. Additionally, it also can be used for thinning and
thickening.

A. Max-Tree

Max-Tree is a proficient data structure introduced by
Salembier et al. in [34] for connected attribute filtering of
the images. Max-tree being a rooted tree provides a hierarchy
of flat zones with ordering relationships for extracting and
filtering of the connected components by the operators. To
describe the Max-Tree description of a few related terms is
required. A connected component or flat zone, Fli at gray level
l of an image I constitutes a set of pixels p ∈ E|I(p) = l; a
regional maxima, Rlj corresponds to a flat zone at level l of
which gray values of neighboring pixels are smaller than l; a
peak component, Plk is a flat zone of the thresholded image,
Tl(I) at level l. In these definitions, i, j, k indicate the index
of several such components. In the max-tree representation of
an image, each node Nlk holds only those pixels of the peak
component Plk which have a gray value of l. The node Nlk
also contains attributes such as area of Plk . The node N00
is the root node of the tree and contains the flat zones with
the lowest gray value and the hierarchical structure of the tree
ensures that all of the flat zones of the highest gray value can
be found in the leaf-nodes. After the max-tree representation
of an image is obtained filtering of the image based on any
attribute can be done by pruning the tree in an appropriate
branch where all nodes have attributes such as area smaller
than the threshold.

Fig. 1 depicts a pictorial description of the max-tree
representation of an image containing six cells. The image
has been binarized first then a Gaussian kernel is applied to

obtain a smoothed image that will produce flat zones with
various gray levels such as G0, G1, G2, G3, G4 where
G0 < G1 < G2 < G3 < G4 (figure 1(c)). In Fig. 1(d)
max-tree representation of the flat zones is shown where the
root A0 represents the background of the image which is the
flat zone at gray level G0. B1, C1, and D1 are the three
children of the root that correspond to the three flat-zones
at gray level G1. Among them, B1 has three flat zones as
its children and D1 has two flat zones as its children. All
the flat zones are stored in the tree preserving the parent-child
hierarchy and the leaves B04, B14, B24, C04, D04,, and D14
holds the connected components of the highest gray level G4.

1) Max Tree Creation: The process of Maxtree creation
can be described using the original work of Salembier et al.
[25] where recursive flooding is utilized to build the tree. A
hierarchical FIFO (first in first out) queue is implemented
for each gray level value for the appropriate scanning and
processing order of the pixels. The nodes, NGi

(represents all
nodes at gray level, G for all available gray levels, G) and the
links between parent and child nodes are established by storing
all local background pixels of gray level, G, to the parent node
and the child nodes get the pixels at each connected component
with a gray level higher than G.

2) Attribute Estimation and Filtering Approaches: Differ-
ent attributes such as size, shape, the moment of inertia, etc. of
each node of max-tree can be calculated on the fly. During the
max-tree creation required attributes of each node (for each
connected component) is also calculated.

In max-tree implementation whenever a pixel is added to a
node, an associated variable is increased to obtain the area of
the component in terms of the number of pixels. Similarly, the
ratio of the moment of inertia, MI to the square of the area,
A i.e., MI/A

2 is easily and accurately calculated as a shape
attribute.

Later, during the filtering phase based on the threshold
value of a specific attribute the algorithm decides to remove
or keep the node. Different decision criteria for filtering are
described in [25] such as Min, Max, Viterbi, Direct, etc.
Urbac et al. proposed another decision criterion: the subtractive
decision rule in [33]. According to Min decision rule, a node,
Nli is removed if the criterion value such as area, perimeter,
or moment of inertia, etc., of that node, is less than the set
threshold value or any of the ancestors of Nli is removed. Max
decision rule removes a node, Nli along with its descendants if
the criterion value is less than the set threshold value. Viterbi
solves the filtering process as an optimization problem. The
direct rule removes a node, Nli if its criterion value does
not meet the threshold value and assigns the pixels of that
node to a gray value of its highest ancestor which meets the
threshold value while keeping the descendants unchanged. The
subtractive decision rule is the same as the direct rule but it
changes the gray value of the descendants by the same amount
as the node, Nli .

IV. PROPOSED METHOD

This paper proposed a method of blood cell image seg-
mentation, feature extraction, and counting using connected
morphological operators implemented using the max-tree data
structure. The work is based on the principle of mathematical
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Fig. 1. (a) Cropped Region from a Microscopic Cell Image, (b) Thresholded image, (c) Different Gray Levels in Smoothed Image of (b), (d) Max-Tree
Representation of the Image on (c)
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(a) (b) (c) (d)

Fig. 2. (a) Stained Microscopic Cell Image, (b) Thresholded Image, (c)
Cropped Region of (b), (d) Smoothed Image after Applying a Gaussian

Kernel

morphology and connected attribute filters described in the
previous section. Segmentation of the WBCs in the blood
smear images has been done by pruning the max-tree that has
been created as a representation of the image, based on area
as a size attribute taking advantage of the distinct size of the
RBCs and WBCs. Other attributes such as shape, moments,
etc. that are computed on the fly during max-tree creation
contributed to the feature vector to be used for the classification
of the cells.

A. Morphology of the Blood Cells

The morphology of the blood cells plays a vital role in
different steps of this work. There are three different major
cells present in blood namely Red Blood Cell (RBC) or
Erythrocytes, White Blood Cell (WBC) or Leukocytes, and
Platelets (Thrombocytes). RBCs are generally smaller in size
approximately 7µm−8µm and has a very thin cell membrane
that allows easy oxygen diffusion. The morphology of an RBC
is similar to a torus without a whole inside and does not contain
any nucleus. On the other hand, WBCs are larger in size of
approximately 15µm−20µm and contain a large nucleus that
occupies most of the cell area. The platelets are the smallest
in size approximately 2µm − 3µm in diameter with a very
irregular shape. In this work, the separation of RBCs and
WBCs is discussed where the platelets are considered to the
RBC group.

B. Preprocessing

Microscopic blood-stained image datasets are usually with
high-quality images because of their exclusive and careful
acquisition processes. Due to this assumption, there are no
noise removal steps involve in this work. However, this step
can be introduced if needed and several filtering approaches
can be utilized.

The preprocessing step of our work is greatly influenced by
the staining process of peripheral blood smear images. Staining
blood cells with different colorants is a common practice in
peripheral blood smear images so that various components
especially the white and red blood cells can be examined
microscopically. Typical components of the stains are oxidized
methylene blue, azure B, and eosin Y colorants [38]. The
methylene blue and azure B stains the nucleus of cells with
different shades of blue to purple color and eosin Y colorants
stains the cytoplasm of cells an orange to pink shades [39].
Thus, after staining torus like part of an RBC get a nonuniform
shade of pink where intense pink in some areas and pale shade
in some other areas. The central part of the cell gets brighter
intensity. The nucleus of the WBC is intensely stained with

blue color and the cytoplasm is stained with different shades
of blue.

To separate the WBCs from other blood cells the intense
staining of its nucleus is utilized. Otsu’s [40] method for
thresholding is applied to the images and the nucleus of the
WBC being intensely stained resulted into larger connected
components and the RBC turned in to a combination of several
small connected components almost the size of the dot because
of the non-uniform staining [see Fig. 2(c)]. After binarization,
a Gaussian kernel is applied to obtain a smoothed image
[Fig. 2(d)]. This is done to minimize the noise introduced by
the binarization process and to obtain a continuous grayscale
image.

C. Cell and Nucleus Segmentation through Attribute Filtering

The block diagram in Fig. 3 summarizes the proposed
method. The proposed method concentrates on segmenting
WBCs, calculating features for the feature vector to be used in
the classification of different WBCs, and counting the WBCs.

RBCs and WBCs can be distinctly identified by their size
and presence of the nucleus. In the preprocessing step, WBCs
due to the presence of a nucleus and its intense staining
resulted in connected components with the largest area, the
second-largest area is the area between the nucleus and the
cell membrane i.e., the cytoplasm, and rest of the blood
components resulted in much smaller connected components
due to the binarization process. Therefore, filtering based on
size (area) attribute results in the removal of those connected
components with an area smaller than the threshold value. Fil-
tering based on area attributes separate the candidates of WBCs
but there remain several abnormal components that need to
be removed. These abnormal components are not WBCs but
stained similarly as a WBC. However, these components are
irregularly shaped, unlike the WBCs which are mostly circular.
Thus, shape-based attributes such as Eccentricity, Solidity,
Compactness, etc. can be utilized to remove such abnormal
components. However, in this work, the ratio of the moment
of inertia to the square of the area (as described in Section
III-A2), is used where the value of MI/A

2 increases as the
shape deviates from the circular shape. This attribute is used
for the filtering of the abnormal components.

In Fig. 4, cell and nucleus segmentation for a sample
image from the ALL-IDB dataset is shown. The shape of
the segmented region is the shape of the original cell or
nucleus unlike structuring element based filtering where the
shape of the segmented region is influenced by the shape of
the structuring element. The proposed method faces difficulty
if the cell boundary becomes hard to identify after the bina-
rization process (see Fig. 5b). In that case, only the nucleus
is segmented. However, in the Maxtree implementation, we
also preserve the centroids of each nucleus which can be
used to obtain the sub-image containing one WBC (Fig. 5d).
Later using gray-level thresholding followed by hole filling
and erosion resulted in cell segmentation (Fig. 5f).

D. Feature Extraction

Pattern spectra based on size, shape, or any other attribute
or a combination can also be computed from the max-tree
representation to obtain the feature vector for classification of
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Fig. 3. Block Diagram of the Proposed Method
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Fig. 4. (a) Image Sample from ALL-IDB 1 Dataset [41], (b) Cell Segmentation, and (c) Nuclues Segmentation by Area and Shape Attribute Filtering using
Maxtree Representation.

(a) (b) (c)

(d) (e) (f)

Fig. 5. Segmentation of Cells with Ill Defined Cell Boundary (a) Microscopic Image Containing Neutrophil WBC, (b) Binarized (Zoomed) Image of (a), (c)
Nuclues Segmentation by Our Method, (d) Extracted Sub Image of (a) using Centroids of the Segmented Nucleus, (e) After Applying Gray Level

Thresholding on (d), (f) Segmented WBC Cell.
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the WBCs. Size and/or shape distribution, used for generating
pattern spectra, comprises an ordered set of operators each
of which removes features smaller than a particular size or
shape from the image. Different sizes and shape-based features
such as Area, Entropy, Moment of Inertia, Elongation, Mean
x-position, Mean y-position, Eccentricity, Solidity, etc. can be
calculated incrementally during the Maxtree creation. Besides,
the number of lobes in the nucleus which is an important
feature for the classification of WBCs can also be calculated
from the Max-tree using the same technique used to count the
number of cells [24]. Similarly, elongation of the connected
components can be used as a shape measure. After obtaining
the feature vector various state of the art classifiers can be
explored for classification. In this paper, we did not explore the
classifiers since a plethora of work achieved the state of the art
classification performance with these features but the method
of extracting the features was different than our approach.
Nevertheless, we will also explore different classifiers with
the features extracted using our approach in our future work.

E. Cell Counting

In [24] we have reported the process of counting and
annotation of cells using Max-tree representation of the cell
images. In segmented cell images with a dark background,
cells are represented with bright intensity. Therefore, in Max-
tree representation cells being the extremal intensity can be
found in the leaves of the tree (see Fig. 1) and thus the number
of cells can be approximated by the number of leaves. The
proposed method is conceptually easy, does not require any
prior training or annotation on the contrary to the other state
of the art approaches. Rather the proposed method provides
the annotation of the cells for further use. Our Maxtree based
cell counting approach is robust in case of partial overlapping
of cells. Segmentation of such cells will result in a single
connected component. However, filtering the binary image
with a Gaussian kernel creates a region in the center of each
cell which is brighter than its surrounding (see Fig. 6(c)). In
Maxtree representation these regions will be in three leaves
and thus counted as three different cells. However, if the cells
are fully overlapped, it is not possible to identify them with
our method and will be counted as one cell.

 

(a) (b) (c)

Fig. 6. (a) Partially Overlapped Cells, (b) Segmented as One Connected
Component, (c) Identified as Three Different Cells in Proposed Method.

V. DATASETS

In this work, we have tested the proposed method with two
datasets: Leukocyte Images for Segmentation and Classifica-
tion (LISC) database [42] and Acute Lymphoblastic Leukemia
Image Database I (ALL-IDB I) [41].

A. LISC Database

LISC Database 1 includes peripheral blood samples from
healthy people. The Gismo-Right technique is used for smear-
ing and staining the slides for obtaining microscopic images.
The microscopic images are then digitized in BMP format with
a size of (720×576) pixels. There are 250 images with ground
truth provided with the freely distributed database. Ground
truth for segmentation along with the classification of the
WBCs into five classes of normal WBCs is done by the expert.
There are 53 images with basophil, 39 images with eosinophil,
52 images with lymphocyte, 48 images with monocyte, and 50
images with neutrophil WBCs in this dataset.

B. ALL-IDB I Database

The ALL-IDB I Database 2 includes blood samples from
both Healthy Non-ALL subjects and probable ALL patients.
There are 108 images in JPG format with 24-bit color depth
and resolution of (2592 × 1944) pixels. It also includes the
ground truth positions of the WBC cells in the images that are
labeled by the experts.

VI. EXPERIMENTS AND RESULTS

The performance of the WBC cell segmentation follows
the performance of the nucleus segmentation. Segmentation of
the nucleus uniquely identifies a WBC from other blood cells
since other cells do not have a nucleus. Therefore, we report
the performance of the nucleus segmentation and compare the
performance with the performance of the method proposed by
Moshavash et al. in [28]. In [28] Moshavash et al. used a
similarity measure defined as in equation 5 for measuring the
performance of nucleus segmentation:

Similarity = 100× (Aalgorithm ∩Aexpert)
max(Aalgorithm, Aexpert)

(5)

LISC database contains five classes of WBCs, each of the
classes has nuclei with a distinct morphology. For example,
nuclei of Neutrophil are mostly multilobed, nuclei of Basophil
and Eosinophil are bilobed, nuclei of Lymphocyte are ec-
centric, whereas the nucleus of Monocyte is almost kidney-
shaped. The performance of WBC Classification is immensely
influenced by the proper segmentation of the different types
of the nucleus. Moshavash et al. reported that their method
obtained 76% of the average similarity measure for the LISC
database which is much better than other methods. However,
there is no discussion of the segmentation performance of their
method in different classes of WBCs. The similarity measure
used in performance measurement is based on the assumption
that the true segmentation is the manual segmentation done
by an expert. However, in our experiments, we have observed
that the segmentation made by the expert fails to achieve the
complex morphology of nuclei properly in most of the cases.
In Fig. 7 it is visible that the proposed method achieved better
segmentation of nuclei where lobes of the nucleus are properly
segmented. The number of lobes present in the nucleus is

1available at http://users.cecs.anu.edu.au/ hrezatofighi/Data/
Leukocyte%20Data.htm

2available at https://homes.di.unimi.it/scotti/all/
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(a) (b) (c)

Fig. 7. (a) Microscopic Cell Image with Neutrophil WBC, (b) Segmentation of Nucleus by Expert, (c) Nucleus Segmentation by the Proposed Method where
Multi-Lobed Morphology is better achieved compared to the Expert Segmentation

(a) (b)

Fig. 8. (a) Performance of Proposed Method in Nucleus Segmentation of Different Types of WBCs of LISC Dataset, (b) Performance comparison of Proposed
Method and Method Proposed by Moshavash et al. in [28]

one of the important features in classifying different types
of WBCs. The proposed method will able to obtain this
information more accurately because of its better segmentation
of the lobes. Therefore, similarity measure obtained using
equation 5 may not able to perform proper justice to the
proposed method and the actual performance of the proposed
method would excel.

Even though, the proposed method obtained significant
improvement compared to the state-of-the-art method proposed
by Moshavash et al. in [28] in segmenting nucleus (as seen
in Fig. 8) where the proposed method achieved 89.912%
average similarity measure. The segmentation performance
of the proposed method varies among different types of the
nucleus. This varied performance is mainly due to the quality
of the staining of the nucleus. Cells with the properly stained
nucleus are segmented more accurately since proper staining
resulted in larger connected components.

In the ALL-IDB1 dataset, only the positions of the lym-
phoblasts are identified by the experts. However, there are lots
of other healthy WBCs along with several abnormal compo-
nents present in the images. Due to the absence of ground

truth position of all WBCs and ground truth segmentation
of the cells, it is not possible to measure the segmentation
performance using the equation 5. Therefore, the performance
of this dataset is evaluated visually (Moshavash et al., also do
not report any similarity measure for this data set). Few results
are shown in Fig. 9.

The performance of the cell counting algorithm proposed
in [24] by the author of this paper mostly depends on the
performance of the segmentation. If the cells are segmented
properly the performance of the proposed counting algorithm
also improves. In Fig. 10 the performance of the counting
algorithm on the LISC dataset can be observed.

VII. CONCLUSION

The task of automated microscopic cell image analysis to
identify the WBCs is very complex. Numerous researches have
been done to solve this problem. However, to overcome the
challenges of different stages such as segmentation, feature
extraction, classification, and counting different techniques are
utilized. In this paper, a system based on connected mathemat-
ical morphological operators implemented using Maxtree data
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Fig. 9. ALL-IDB 1 Dataset: (Top Row) Original Image (Bottom Row) Segmented by the Proposed Method

Fig. 10. Performance of the Cell Counting Algorithm on LISC Data Set

structure is proposed to solve the problem of segmentation,
feature calculation, counting of the WBCs. In the proposed
system Maxtree data structure plays the central role that facil-
itates the analysis of the cell images. It stores the connected
components of every gray level present in the image along
with their different attributes/features calculated on the fly
during max-tree creation. These attributes are used in the
segmentation stage and also can be used as a feature vector
in the classification stage. Besides, the hierarchical structure
of the tree enables the counting of the number of WBCs
present in the image. The proposed system is conceptually
easy, computationally efficient, and performs better than a state
of the art method.

VIII. FUTURE WORK

In the future, the performance of the classifiers will be
explored using the features obtained from Maxtree. An inter-
active platform for ALL cell detection will be developed using
the proposed technique.

REFERENCES

[1] C. Carson, S. Belongie, H. Greenspan, and J. Malik, “Blobworld:
Image segmentation using expectation-maximization and its application
to image querying,” IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 24, no. 8, p. 1026–1038, Aug. 2002. [Online]. Available:
https://doi.org/10.1109/TPAMI.2002.1023800

[2] S. Chen, L. Cao, Y. Wang, J. Liu, and X. Tang, “Image segmentation by
map-ml estimations,” IEEE Transactions on Image Processing, vol. 19,
no. 9, pp. 2254–2264, Sep. 2010.

[3] M. Mignotte, “A de-texturing and spatially constrained k-means
approach for image segmentation,” Pattern Recogn. Lett., vol. 32,
no. 2, p. 359–367, Jan. 2011. [Online]. Available: https://doi.org/10.
1016/j.patrec.2010.09.016

[4] B. J. Ferdosi, S. Nowshin, F. A. Sabera, and Habiba, “White blood cell
detection and segmentation from fluorescent images with an improved
algorithm using k-means clustering and morphological operators,” 2018
4th International Conference on Electrical Engineering and Information
& Communication Technology (iCEEiCT), pp. 566–570, 2018.

[5] R. Saha, M. Bajger, and G. Lee, “Spatial shape constrained fuzzy c-
means (fcm) clustering for nucleus segmentation in pap smear images,”
in 2016 International Conference on Digital Image Computing: Tech-
niques and Applications (DICTA), Nov 2016, pp. 1–8.

[6] Z. Wang and Y. Yang, “A non-iterative clustering based soft
segmentation approach for a class of fuzzy images,” Applied Soft
Computing, vol. 70, pp. 988 – 999, 2018. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S1568494617302788

[7] X. Chen, X. Zhou, and S. T. C. Wong, “Automated segmentation, clas-
sification, and tracking of cancer cell nuclei in time-lapse microscopy,”
IEEE Transactions on Biomedical Engineering, vol. 53, no. 4, pp. 762–
766, April 2006.
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