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Abstract—Service migration plays a vital role in continuous
service delivery in Internet of Things (IoT) systems. This pa-
per presents a mobility-aware container migration algorithm
for Cloudlet-enabled IoT systems. The proposed algorithm is
based on an integrated multicriteria decision making (MCDM)
approach. It has been implemented using a specialized simulation
tool and compared to other existing migration algorithms. Simu-
lation results demonstrate the ability of the proposed algorithm
to achieve up to 48%, 48%, 20% and 36% improvement
in migration time, service downtime, migration reliability and
service loss rate, respectively as compared to other migration
algorithms. The proposed algorithm is capable of perceiving the
run-time dynamics of IoT systems and appropriately manage the
process of container migration.
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I. INTRODUCTION

Nowadays, the tremendous growth of commodity-available
smart objects has resulted in the ubiquity of Internet of Things
(IoT) applications. These objects can be either fixed or mobile
and generate streams of big data with immense processing
and memory requirements that surpass the capabilities of user
devices. Therefore, IoT applications urged the use of Cloud
Computing as a processing back-end that fulfills the processing
requirements of such applications [1].

Following the expansion in IoT applications and the el-
evation of their processing requirements and the urgency of
their latency constraints, the inseparable relation between the
IoT applications and the Cloud has been hindered due to the
quasi-central nature of the Cloud-based services and resources
[2]. In order to cope with the processing and timing require-
ments of IoT applications and overcome the limitations of the
Cloud-based IoT platforms, several edge computing models
[3] such as Multi-access Edge Computing [4], Fog Computing
[5] and Cloudlet Computing [6] have been proposed. For
instance, Cloudlet Computing is considered as a middle-way
between Fog Computing and Cloud Computing models. It
places computing clusters with sufficient network bandwidth
and processing capabilities in proximity to the IoT devices.
A Cloudlet is basically a small data center, which is usually
instantiated at few hops away from IoT devices and employ
virtualization at either virtual machine or container levels [7].

According to the Cloudlet Computing paradigm, IoT ap-
plication modules and services are placed on close tiny data
centers aiming at satisfying the stringent timing requirements

of the requests generated from IoT devices. Computing re-
quests - generated from IoT devices are offloaded to such
nearby tiny data centers which in turn perform the required
functionality as dictated by the received requests. Once the
received request is executed, execution results are sent back
to the source IoT device [7]. In order to efficiently utilize
the Fog/Cloudlet resources and minimize any potential per-
formance overheads, a lightweight virtualization technique is
employed, in which application modules and user data are
encapsulated in containers [8, 9].

While Cloudlet Computing provides Cloud-like services in
proximity to IoT devices and offers low-latency services to
these devices, its advantages could be diminished in case of
mobile or non-stationary IoT devices, where the access point
that connects the IoT device to the Cloudlet may change [10].
In such scenario, user or IoT device mobility will increase the
number of hops between the IoT device the Cloudlet hosting
the associated container and, in turn, negatively impact the
latency requirements of IoT devices. In other words, as the
number of hops between the IoT device and its associated
Cloudlet increases, the latency of IoT service requests will
increase in a manner that resembles that of Cloud-based plat-
forms, which shrinks the expected performance of Cloudlet-
based platforms. Therefore, as the mobile IoT devices move
away from their associated Cloudlets, both processing and
control of their application modules should be handed over to
the Cloudlet in proximity to the access point to which the IoT
device is currently connected. This process can be performed
by migrating the container, associated with the mobile IoT
device, to a new Cloudlet that is placed near to the IoT
device and respects that device’s functional and non-functional
requirements [11].

Apparently, IoT devices requesting services from nearby
Cloudlets may be mobile and require continuity of service de-
livery across different locations. However, maintaining service
delivery for mobile users and IoT devices is a challenging
process. The study in [12] has proposed a framework for a Fog
Computing architecture in which virtual machine migration is
supported. They have assumed that each user has a virtual
machine running on a particular Cloudlet. This Cloudlet is con-
sidered as an endpoint that provides services to the associated
user. A virtual machine could be migrated to another Cloudlet
based on user location, direction of movement, running ap-
plications, computing capacity of the destination Cloudlet
and the network capacity. However, the proposed framework
has not been evaluated and its suitability to existing Fog
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environments has not been verified. On the other hand, [13] has
proposed a genetic algorithm-based model for virtual machine
migration in Mobile Cloud Computing (MCC) environments
considering both user mobility and the current workload of the
potential destination Cloudlet in order to reduce the number
of virtual machine migrations. In addition, [14] has proposed
a simulation framework based on the iFogSim tool [15] to
support user mobility by migrating virtual machines across
Fog nodes. Furthermore, [16] has proposed a Fog computing
architecture that supports user mobility by implementing a
route optimization algorithm that improves the performance
of the handover mechanisms. Similarly, [17] has proposed a
framework for Mobile Edge Computing (MEC) environments
in which service migration is implemented. Their goal was
to ensure service continuity for mobile users and reduce
both service downtime and overall migration time. Although
previous research efforts have tackled service migration in
various edge computing environments, their efforts have either
supported migration at the virtual machine level or ignored
important factors such as user location and mobility patterns.

More recently, the work in [18] has proposed an autonomic
container migration approach for Fog computing environments.
Their approach seeks to ensure continuous service delivery by
migrating application modules to Fog nodes that are deemed
to respect service delivery deadlines. The efficacy of their
approach has been quantified in terms of network usage,
execution cost and service execution delays. However, they did
not consider other important factors such as service downtime,
migration time, service loss and the reliability of the migration
process. On the other hand, the work in [19] is the most
recent effort that models container migration in Fog/Cloudlet
computing environments. It models container-based migration
and supports realistic user mobility patterns based on the
SUMO urban simulation tool [20, 21]. In addition, they have
proposed several baseline container migration algorithms that
are categorized as: lowest latency (LL) in which containers are
migrated to the Cloudlet that is expected to deliver the lowest
service latency, closest access point (CAP) where containers
are migrated to the Cloudlet connected to the closest access
point to current user location and closest server Cloudlet (CSC)
in which containers are migrated to the closest server Cloudlet
to current user location. However, none of these migration
algorithms has considered migration reliability, service down-
time and overall migration time when making the migration
decision.

This work proposes a container migration algorithm for
Cloudlet computing environments based on an integrated mul-
ticriteria decision making (MCDM) approach that integrates
the Entropy [22] and Technique of Order Preference Similarity
to the Ideal Solution (TOPSIS) [23] methods. The proposed
approach seeks to migrate a container associated with a partic-
ular mobile IoT device to a nearby server Cloudlet considering
user location, mobility pattern, migration time and migration
reliability. While MCDM has been used in related disciplines
such as cloud service selection [24, 25] and task scheduling
in Cloud Computing [26, 27], no prior attempts have been
made to apply MCDM for container migration in Cloudlet
computing environments. The main contributions of this work
can be summarized as follows:

• Proposing an MCDM-based algorithm for container mi-

gration in Cloudlet-enabled IoT systems.
• Implementing the proposed algorithm using a specialized

simulation tool with realistic migration models and user
mobility patterns.

• Performing a series of experiments to assess the perfor-
mance of the proposed migration algorithm and compare
it against that of existing algorithms.

The rest of this paper is organized as follows. Section II
explains the research methodology. Section III presents and
discusses the obtained results and Section IV summarizes and
concludes this paper.

II. RESEARCH METHODOLOGY

This section explains the research methodology followed
in order to implement the proposed migration algorithm in-
cluding the system model, mathematical formulation of the
MCDM techniques and the algorithmic design of the proposed
algorithm.

A. System Model

In this paper, a hierarchical Cloudlet-enabled IoT system
is assumed as shown in Fig. 1. Service requests generated
from IoT devices are sent to the nearby Cloudlet which in
turn performs the required task and communicate the results
back to the IoT devices. If a task required by a particular IoT
device can not be performed by the Cloudlet or requires further
processing, the Cloudlet will forward the received request to
the Cloud. Each Cloudlet supports a lightweight virtualization
technique in which user’s data and application modules are
encapsulated in containers.

Fig. 1. IoT System Model.

On the other hand, IoT devices are assumed to be mobile
i.e. change their locations over time. At any time instant, each
IoT device will be connected to the Cloudlet hosting its associ-
ated container and can access that Cloudlet’s services through a
particular access point. In order to prevent service interruption
and guarantee low-latency service delivery, container migration
(from a source to a destination Cloudlet) should be performed
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in a timely manner. Determining the time instant at which the
migration process should be initiated and choosing the most
appropriate Cloudlet to host the migrating container are two
major issues in container migration. In this work, each Cloudlet
is considered as the decision maker responsible for addressing
the two aforementioned issues. In other words, each Cloudlet
is assumed to monitor the current location of its associated
IoT devices and decide if a migration should be performed
and what is the most suitable Cloudlet to host the migrating
container considering both migration reliability and expected
migration time.

The Cloudlets layer considered in this work consists
of a set of Cloudlet nodes C = {SC1, SC2, .., SCN}.
The total number of cloudlets in the environment is de-
noted as N . In addition, each Cloudlet node is characterized
by a triplet 〈Cni(cpu)cap, Cni(mem)cap, Cni(bw)cap〉 where
Cni(cpu)cap is the number of CPU cores available on Cloudlet
i, Cni(mem)cap is the amount of memory available on node
i and Cni(bw)cap is the available bandwidth. The mobile IoT
devices receive services from their associated containers which
are deployed on various Cloudlet nodes available in the IoT
environment. Each container (conj) is allocated to a suitable
Cloudlet that satisfies its resource requirements. The resource
requirements of a particulare container can be denoted as a
triplet 〈Conj(cpu)req, Conj(mem)req, Conj(bw)req〉 where
Conj(cpu)req is the number of CPU cores required by
container j, Conj(mem)req is the required memory and
Conj(bw)req is the required bandwidth.

On the other hand, Fig. 2 shows the migration model as-
sumed in this work. This migration model is based on [14, 19].
This model defines both the migration zone and the migration
point on the map. Whereas the migration zone defines the
area in which migration decisions are always computed and
evaluated, the migration point represents the point on the map
at which container migration should be initiated. The decision
on whether to migrate a container associated with a particular
user (or IoT device) should be made by the Cloudlet to which
that IoT device is currently connected. For instance, Fig. 2
shows two users (user-1 and user-2) moving on the map with
different speeds, directions and geographical positions. Their
attributes should be continuously monitored by their current
Cloudlet that is responsible for making the right decision for
each user. As shown, user-1 is moving towards the access point
(AP) that connects it to its current Cloudlet while user-2 is
moving away from the AP. Hence, no migration should be
performed for the container associated with user-1 while a
migration for the container associated with user-2 should be
initiated once it reaches the migration point. The migration
point can be set either statically based on the coverage area
of the AP or dynamically based on some dynamic attributes
such as the user speed. For instance, Fig. 2 shows an example
of a fixed migration point that is set at a distance that is 70%
of the radius of the coverage area of the AP.

Once a Cloudlet decides to migrate the container associated
with a particular IoT device, it must consult its migration
algorithm to select the most suitable destination Cloudlet from
a set of potential Cloudlets confined within the migration cone.
The migration cone is defined in terms of the two adjacent
directions to the current direction of the user and an angle that
defines the relative region between the user and the AP. For

Fig. 2. Migration Model [19].

example, the cone associated with user-2 is confined between
the Northeast and the Southeast directions. The value of the
cone’s angle could be a fixed value or a dynamic value that is
changed at run-time subject to some optimization constraints.

B. MCDM-Based Migration Algorithm

This section explains the proposed MCDM-based migra-
tion algorithm. Fig. 3 highlights the main steps followed by
the proposed migration algorithm in order to select the most
appropriate destination Cloudlet for a migrating container.
As mentioned in Section II-A, each Cloudlet continuously
monitors the movement of its associated IoT devices. Once
a Cloudlet observes that an associated mobile IoT device is
moving away from its associated AP, it must prepare and
initiate the migration process by performing a number of steps
based on an integrated Entropy-TOPSIS multicriteria decision
making approach. First, the migration cone defined by the
migration model must be constructed. Second, if the migration
cone is not empty (i.e. it contains at least two possible
destination Cloudlets that can satisfy all processing, memory
and bandwidth requirements of the migrating container), the
source Cloudlet will construct a decision matrix Dij based
on two criteria , namely, migration time (mtij) and migration
reliability (mrij).

Apparently, migration time represents the expected time
required to complete transferring the migrating container from
source Cloudlet i to destination Cloudlet j. The total time
required to migrate a container from Cloudlet i to Cloudlet j
is computed as shown in equation 1.

mtij =
Mconi

bwij
+ TUi

+ TDij
(1)

Where mtij is the total migration time, Mconi
is the

memory size of the container migrating from Cloudlet i, bwij
is the available network bandwidth between Cloudlets i and j,
TUi

is the uplink latency of Cloudlet i and TDij
is the latency

by distance between Cloudlets i and j.
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Fig. 3. Migration Algorithm Flow-chart.

On the other hand, migration reliability (mrij) quantifies
the probability that the migration process (from Cloudlet i
to Cloudlet j) will be completed successfully during the
anticipated migration time. In this work, migration reliability
is calculated based on the reliability of the communication link
between Cloudlets i and j and the reliability of the destination
Cloudlet j. In general, the reliability of a particular subsystem
s can be computed as shown in equation 2 [28].

Rs(t) = e
−
∫ t

0
h(τ)dτ (2)

Where h(t) is the hazard rate function associated with sub-
system s. Assuming that both the communication link, between
Cloudlets i and j, and destination Cloudlet j have constant
hazard functions, their reliability values can be computed as
as shown in equation 3.

Rlink(i,j)(t) = e−λijt

RCj
(t) = e−λCj

t
(3)

Where Rlink(i,j) is the reliability of the communication
link between Cloudlets i and j, RCj is the reliability of

Cloudlet j, λij is the constant hazard rate of the communi-
cation link and λCj

is the constant hazard rate of Cloudlet
j. Since the communication link and the destination Cloudlet
constitute a serial reliability model, the reliability of the
migration process (from Cloudlet i to Cloudlet j) can be
computed by multiplying these individual reliability values
[29], as shown in equation 4.

mrij(t) = Rlink(i,j)(t) ∗RCj
(t) = e−(λij+λCj

)t (4)

Where mrij is the reliability of migrating a container
from Cloudlet i to Cloudlet j. Intuitively, by setting the value
of t to mtij , the reliability of a migration process whose
expected finish time is mtij can be computed. Having obtained
the migration time and migration reliability of each possible
destination Cloudlet j, the source Cloudlet will construct the
decision matrix as shown in equation 5.

Dij =


mti1 mri1
mti2 mri2
mti3 mri3
. .
. .

mtinc mrinc

 (5)
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Where nc is the number of Cloudlets available within the
constructed migration cone. Third, once the decision matrix is
obtained, the proposed migration algorithm will employ an
Entropy-based method to assign a weight to each decision
criterion as weight calculation is an essential step towards
MCDM-based alternative (Cloudlet) selection approaches. The
computed weight signifies the importance given to each crite-
rion when making the migration decision. The computation
of criteria weights based on the Entropy method can be
summarized as follows:

Step 1: Computation of normalized feature weight (Pij)
for the ith alternative and the jth criterion.

Pij =
dij∑nc

i=1(dij)
, (1 ≤ i ≤ nc, 1 ≤ j ≤ m) (6)

Where dij is the value of jth criterion under the
ith alternative, nc is the number of possible alternatives (i.e.
Cloudlets) and m is the number of criteria.

Step 2: Calculation of the output entropy (ej) for each
criterion j.

ej = −K ∗
nc∑
i=1

(Pij ∗ ln(Pij)), (1 ≤ j ≤ m)

K =
1

ln(nc)

(7)

Step 3: Calculation of the degree of diversification (gj) for
each criterion j.

gj = |1− ej |, 1 ≤ j ≤ m (8)

Step 4: Computation of the weight (wj) of each criterion.

wj =
gj∑m

j=1(gj)
, (1 ≤ j ≤ m) (9)

Fourth, having obtained the criteria weights using the
Entropy method, the migration algorithm proceeds to select
the most suitable destination Cloudlet to receive the migrating
container using the TOPSIS method. The rationale behind the
TOPSIS method is to choose the alternative with the shortest
euclidean distance from the ideal solution and the farthest
distance from the negative-ideal solution. The TOPSIS method
employed to select the ideal alternative (Cloudlet) proceeds as
follows:

Step1: The decision matrix (Dij) is normalized using
vector normalization technique and then weighted using the
criteria weights - computed using the Entropy method to obtain
the weighted normalized performance matrix.

d̄ij =
dij√∑nc

i=1(dij)2
, (1 ≤ i ≤ nc, 1 ≤ j ≤ m)

d̄ij = wj ∗ d̄ij , (1 ≤ j ≤ m)

(10)

Step 2: Determine the best condition (A+
j ) and the worst

condition (A−
j ) with respect to each criterion (j) and construct

the best conditions vector (Ab) and the worst conditions vector
(Aw).

A+
j =

{
maxi(d̄ij) j ∈ J+ , (1 ≤ i ≤ nc)
mini(d̄ij) j ∈ J− , (1 ≤ i ≤ nc)

(11)

A−
j =

{
mini(d̄ij) j ∈ J+ , (1 ≤ i ≤ nc)
maxi(d̄ij) j ∈ J− , (1 ≤ i ≤ nc)

(12)

Where J+ indicates beneficiary criteria i.e. criteria with
positive impact (e.g. migration reliability) while J− represents
non-beneficiary criteria i.e. criteria with negative impact on the
migration process (e.g. migration time). The best and worst
conditions vectors are then constructed as:

Ab = {A+
j | (1 ≤ j ≤ m)}

Aw = {A−
j | (1 ≤ j ≤ m)}

(13)

Step 3 Calculate the Euclidean distance between each
alternative i and each of the best condition vector (Ab) and
the worst condition vector (Aw).

Lib =

√√√√ m∑
j=1

(d̄ij −Ab[j])2, (1 ≤ i ≤ nc)

Liw =

√√√√ m∑
j=1

(d̄ij −Aw[j])2, (1 ≤ i ≤ nc)

(14)

Where Lib and Liw are the distances from the target
alternative (Cloudlet) i to the best and worst condition vectors,
respectively.

Step 4 Calculate the performance score (Pi) assigned to
each alternative.

Pi =
Liw

Liw + Lib
, (1 ≤ i ≤ nc) (15)

Step 5 Rank alternatives (Cloudlets) according to their
performance scores (Pi).

After performing the steps dictated by the TOPSIS method,
the Cloudlet with the highest performance score is chosen as
the most suitable destination Cloudlet to receive the migrating
container and the migration process will be initiated upon
device’s arrival at the migration point. If the chosen Cloudlet is
a public Cloudlet, its service level agreement (SLA) parameters
will be compared against the requirements of the IoT device
(user) whose container is involved in the migration process. If
the chosen Cloudlet satisfies the requirements of the associated
IoT device, the migration process will be initiated once that
device reaches the predefined migration point. On the other
hand, if the chosen Cloudlet is not guaranteed to fulfil the re-
quirements of the associated IoT device, the migration process
will be aborted and the associated container will remain on its
original Cloudlet.
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III. RESULTS AND DISCUSSION

In order to evaluate the performance of the proposed migra-
tion algorithm, it has been implemented using the MobFogSim
simulation tool [19]. MobFogSim is a recently developed tool
that allows development and evaluation of container migration
in Fog and Cloudlet computing environments with concrete
support for realistic user mobility patterns. The proposed
algorithm has been validated and compared against other mi-
gration algorithms that are originally implemented within the
MobFogSim tool. Table I summarizes the most important input
simulation parameters. Whereas some simulation parameters
were given fixed values, other parameters such as network
bandwidth and the constant hazard rates were randomly picked
from the designated ranges. Hence, the results presented in
this section represent the arithmetic mean of the results of 20
different simulation runs.

TABLE I. SIMULATION SETTINGS.

Parameter Value
Size of container’s execution state 12.8 MB
Number of Cloudlets 144
Number of Cloudlets per access point 1
Radius of access point coverage(r) 500 m
Migration point policy fixed (r-40 m)
IoT device speed 20 Kmph
Network bandwidth (between Cloudlets) [2,8] MB/s
Hazard rate [1 ∗ 10−7, 15 ∗ 10−7]

Fig. 4 depicts the total migration time achieved under
the proposed policy along with the migration time achieved
under existing algorithms, namely, lowest latency (LL), closest
access point (CAP) and closest server Cloudlet (CSC) [19].
The results are annotated with their 95% confidence interval.
In order to reasonably assess the performance of different
migration algorithms, they were simulated under different
migration techniques: clod migration (Cold) and live migration
(Live). In cold migration: first, the container to be migrated is
frozen/stopped to make sure that it no longer modifies its state.
Second, the whole execution state of that container is check-
pointed and then transferred while being stopped. Third, the
container is resumed at the destination once all its execution
state is available there. On the other hand, live migration
first halts container on the source Cloudlet and copies its
minimal and kernel execution state to the destination Cloudlet
so that the container can resume its execution there. Only after
that and while the container is running, it transfers all the
remaining state including the memory pages, which represent
the major portion of the whole state. As shown in Fig. 4, the
proposed algorithm has achieved the lowest migration time
as compared to other migration algorithms under both the
Cold and Live migration techniques; the employed Entropy-
TOPSIS decison making approach has allowed the proposed
algorithm to observe the degree of diversification available
among the considered potential destination Cloudlets (i.e. those
available within the migration cone) and choose the Cloudlet
that would yield the lowest migration time as compared to
other algorithms. In addition, the Cold migration technique
has lower migration time when compared to the Live migration
technique under all possible migration algorithms. On average,
the proposed algorithm has achieved 48%, 42% and 43%
improvement in the migration time as compared to the LL,
CAP and CSC algorithms, respectively.

Proposed LL CAP CSC

0

100

200

300

400

Migration Strategy

M
ig

ra
ti

o
n
 T

im
e 

(s
)

Cold

Live

Fig. 4. Migration Time.

On the other hand, Fig. 5 illustrates the total downtime ob-
served under the proposed and existing migration algorithms.
The downtime is the time interval during which the service
required by the mobile IoT devices will not be available due
to the migration process. As shown, the proposed algorithm has
resulted in lower downtime as compared to other algorithms
under both migration techniques. It can be observed that
the downtime is equal to the migration time when the Cold
migration technique is employed. On the other hand, the
downtime is much lower than the migration time when the
Live migration technique is used; under the Live migration
technique, the migrating container keeps on running while the
majority of its state is being moved to the chosen destination
Cloudlet. The container is stopped only for the transfer of a
minimal amount of its overall state, after which the container
runs at the destination Cloudlet. Nevertheless, the proposed
algorithm can still achieve lower downtime as compared to
other migration algorithms due to its ability to select the
most appropriate destination Cloudlet with sufficient network
bandwidth to handle the migration process. The amount of
improvement the proposed algorithm has achieved in downtime
- as compared to other algorithms is equivalent to that observed
in migration time.
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Fig. 5. Service Downtime.

Fig. 6 shows migration reliability obtained by the proposed
and the existing migration algorithms under Cold and Live
migration techniques. As shown, the proposed algorithm was
able to surpass other migration algorithms in terms of mi-
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gration reliability. Apparently, migration reliability decreases
when moving from Cold to Live migration technique due
to the increase in migration time - under the same hazard
rate. This can be explained by the exponential relationship
shown in equation 4. However, the proposed algorithm can
still outperform other algorithms and pick the most suitable
destination Cloudlet considering the reliability factor. Overall,
the proposed algorithm has achieved 17%, 20% and 20%
average improvement in migration reliability as compared to
LL, CAP and CSC algorithms, respectively. On the other hand,
Fig. 7 portrays the service loss rate under the considered
migration algorithms. Service loss rate is the percent of service
requests that could not be handled due to the migration process.
This rate is clearly dependent on the downtime. As shown,
the proposed algorithm was able to yield the lowest service
loss rate as compared to other algorithms under both Cold
and Live migration techniques. The proposed algorithm has
achieved 36%, 27% and 28% reduction in service loss rate
when compared to LL, CAP and CSC, respectively.
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Fig. 6. Migration Reliability.

The presented results prove the ability of the proposed
migration algorithm to perceive the run-time dynamics of the
Cloudlet-enabled IoT environment and choose the most appro-
priate destination Cloudlet that would optimize the considered
performance metrics. This is due to the fact that the proposed
MCDM-based migration algorithm is able to observe the
degree of variation - with respect to each migration criterion
within the considered destination Cloudlets, reasonably assign
criteria weights (using the Entropy method) and appropriately
assign performance scores to the considered Cloudlets (using
TOPSIS) when making a migration decision. This fact is
confirmed by the results shown in Tables II and III which
represent two sample migration scenarios. As shown, migration
time has been assigned higher weight than migration reliability
in the first scenario (Table II) while the opposite is observed
in the second scenario (Table III).

On the other hand, Fig. 8 illustrates how criteria weights
were assigned during the simulation process for 12 consec-
utive migration events. These results prove the ability of the
proposed migration algorithm to sense the dynamic changes
in the decision variables (criteria) which, in turn, steers the
decisions making process i.e. destination Cloudlet selection
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Fig. 7. Service Loss Rate.

TABLE II. MIGRATION SCENARIO 1.

Alternative ID Migration Time (s) Migration Reliability Performance Score
A 128.6 0.85 0.97
B 128.7 0.82 0.95
C 128.7 0.73 0.91
D 144.4 0.80 0.82
E 163.6 0.91 0.62
F 167.7 0.72 0.56
G 219.5 0.89 0.13
H 220.8 0.85 0.11
I 219.2 0.62 0.02

Criteria Weight 0.81 0.19

TABLE III. MIGRATION SCENARIO 2.

Alternative ID Migration Time (s) Migration Reliability Performance Score
A 177.1 0.86 0.99
B 177.2 0.79 0.76
C 186.9 0.80 0.73
D 177.1 0.78 0.71
E 177.1 0.76 0.63
F 177.1 0.75 0.61
G 177.0 0.69 0.45
H 177.2 0.63 0.35
I 223.9 0.64 0.02

Criteria Weight 0.39 0.61

towards the most appropriate alternative taking into account
the current status of the IoT environment.
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Fig. 8. Criteria Weights for Different Migration Decisions.

IV. CONCLUSION

In this paper, a mobility-aware container migration algo-
rithm for Cloudlet-enabled IoT systems has been presented and
evaluated. The proposed algorithm has employed an Entropy-
TOPSIS integrated multicriteria decision making approach to
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select the most appropriate destination Cloudlet for a migrating
container. It has been implemented using a specialized simu-
lation tool and compared against exiting migration algorithms.
Simulation results have proved the ability of the proposed
algorithm to outperform other algorithms in terms of migration
time , service downtime, migration reliability and service loss
rate. They have also confirmed the ability of the proposed
algorithm to perceive the run-time dynamics of the IoT envi-
ronment and accurately steer the destination Cloudlet selection
process.
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