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Abstract—In this paper, the criteria of Tom Mitchell based at
the philosophy of Machine Learning have been used to interpret
data of new cases per week of infections by Covid-19 at Perú.
For this, it was constructed a mathematical scheme that encloses
the Mitchell’s criteria as well as the idea of propagation as
commonly used in modern physics to attack complex problems
of interactions. With this, both the 2009 season of AH1N1 flu
outbreak and the ongoing Covid-19 data were analyzed in terms
of task, performance and experience. In contrast with the AH1N1
case, the Covid-19 data do not exhibit any performance in terms
of minimize infections at the first weeks of the beginning of the
outbreak, suggesting that precise actions to reduce infections have
not been taken appropriately.
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I. INTRODUCTION

Recently, the unexpected apparition of Corona Virus Dis-
ease (Covid-19 in short) [1] has reconfigured the current
policies of public health of global operators, forcing them to
apply the more robust schemes of recovering and surveillance
in the shortest times without an optimal usage of resources:
Times, materials anf human resources. Although to date, the
first wave of pandemic is in most countries reaching its end,
it is rather natural to ask about what we have learned from
world-wide datasets.

In fact, as seen at all surveillance systems in all countries
that are carrying out schemes of care, the understanding of
data would exhibit imminent differences among them because
the multicultural manifestations of societies as to face from the
first moment the arrival of strain. It is also relevant the level of
resilience of them for recovering as soon the conditions have
shown a certain improvement.

This paper tries to answer the question: To what extent
the schemes of machine learning seen as an universal
computational tool can be useful to understand recent data
of data from infections by Covid-19?

In order to answer that question, this paper has selected
the Peruvian case that exhibits a remarked difference between
current Covid-19 data and that of the 2009 AH1N1 season.
Current data between March and July exhibit peaks and
fluctuations, facts that would reinforce the hypothesis that in
more cases (countries) the dynamics of spread and subsequent
infections by Covid-19 appears to be strongly related to
randomness. In this manner, this paper has assumed to priori
that the time evolution of rate of infections is to some extent
dictated by the rules that govern the propagation as commonly
seen in physics and that was developed by Feynman [2]. In

consequence one can postulate that the action of spread and
infection by virus follows the mathematical structure of a
propagator integral than can be written down as:

P1→2(t2) =

∫
G(t2 − t1)H(t1)dt1 (1)

with G(t2 − t1) the causal Green’s functions in the sense that
t2 > t1 and that plays the role as mathematical mechanism
supporting the transition from the state 1 to 2. In addition
H(t1) the input function. Although in its original formulation,
the physical propagation contains dependence on the space-
time, at a first instance one can test this integration as a
mathematical rule that engages the time evolution of current
infections in large cities. Under the assumption that it is
actually the tool that dictates the strain spread then any
variation of kernel might be advantageous as to manage the rate
of infections. Thus, under the scenario of Eq.(1) is applicable
to the ongoing problem intercontinental infection, then the
human intervention for alleviating the outbreak by Corona
virus can be modeled through the kernel’s free parameters.
Once the problem of spread and infection is modeled through
the propagator theory, this work has opted by the philosophy of
Machine Learning in order to translate the language of dataset
in terms of the view of Tom Mitchell [3] that states that all
system can be universally described by actions, (i) task, (ii)
performance, and (iii) experience. In this manner one can use
this methodology to extract information from any statistical
dataset, such as the ones recently have been taken due to
the Covid-19 pandemic. The robustness of Machine Learning
can also be used to carry out comparisons with previous
pandemics such as the 2009 AH1N1[4] in order to find
similarities or discrepancies as to the employed schemes that
have been applied to optimize the actions taken by the public
health systems. Although in principle one can claim that both
AH1N1 and Covid-19 might no be associated each other from
any angle of analysis, from the applied methodology in this
paper, a noteworthy association between AH1N1 and Covid-19
suggests a possible link between the rate of infections and the
public health policies that would determine the success about
the management of a city or country in periods of crisis created
by pandemic. In second section, the theoretical proposal based
in the implementation of Green’s functions and the possibility
of a kind of entropy is presented. Here, the Mitchell’s criteria
are introduced in a mathematical manner. In third section, once
the theory is build, then the applications of it projected onto the
AH1N1 2009 Peruvian season and subsequently in the current
2020 Covid-19 Peruvian data is done. Therefore, the Machine
Learning interpretation is done. Finally the conclusion of paper
is presented.
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II. THE THEORETICAL PROPOSAL

A. The Concept of Propagator and Green Function

In physics, the propagation between two space-time points
is dictated by evolution operators that entirely depends on the
dynamics and physical observables of system [5][6]. There-
fore the action of propagation must have a tangible cause,
any action that produce changes to the system. For example
Eq. (1) can extended from the time t1 to t3 as:

P1→3(t3) =

∫
G(t3 − t2)G(t2 − t1)H(t2)H(t1)dt2dt1 (2)

by which the Green’s functions G(t3 − t2) and G(t2 − t1)
make possible the time propagation along the times from t1
to t3 passing through t2 by which in that time it was caused
the last propagation. From this one can generalize for a large
number L of propagations as written below:

P1→L(tL) =

L∏
`=1

∫
G(t`+1 − t`)H(t`)dt`. (3)

While P1→L(tL) encloses a chain of time propagation, it is
perceived as a probability of a system undergoing a transition
between the times t1 to tL. Indeed one can assign to H(t`) the
role of input function that is convoluted with the propagators.
Actually, one has L−2 input function. It should be noted that
the case of L = 3 gives Eq.(2).

Consider for example a Gaussian profile that models the
time propagation and its respective input function depending
on the constant τ`, so that one can write down that:

P1→L(tL) =
L∏
`=1

H(τ`)

∫ ∞
0

Exp

[
−
(
t`+1 − t`

τ`

)2
]
dt` =

L∏
`=1

H(τ`)
√
τ`π (4)

where the change u = t`+1 − t` and dt = dt` was used. With
the definition for example the input function can be written as:

H(τ`) =
h`

1 + τ2`
(5)

for the sake of simplicity one opts the assumption that all
h` = h and τ = τ` have same value, that also means that the
interactions of system have not effect along a complete cycle
of interactions, so that the system has same chance to keep its
initial state along the subsequent interactions. Thus one can
write down:

P1→L(τL) =
hL(τπ)L/2

(1 + τ2)L
. (6)

This naive result is illustrated in Fig. 1 up to for 4 values of L.
Due to the Lorentzian nature, all peaks are centered in a same
value. The amplitudes have been varied with the incorporation
of the constant (1.5)L that multiplies Eq. (6).

The combination of the Gaussian and Lorentzian pro-
files can be combined in the sense that both can yield an
approximated quantitative description of the evolution of a
limited period of pandemic [7][8][9][10]. In this manner with

Fig. 1. Illustration of Eq. (6), the probability of propagation versus time. In
this simple case all peaks are around of a same time

τ2 → 0.1(τ − 2.5 ∗ L)2 and hL → 0.85 ∗ (0.2)L, Eq. (6) is
rewritten as:

P1→L(τL) =
0.85 ∗ (0.2)L(τπ)L/2

(1 + 0.1(τ − 2.5 ∗ L)2)L
, (7)

yielding the distributions as shown in Fig. 2. The color blacks
arrows are indicating the decreasing of peaks in time. The fact
that all peaks lost their initial value as indicated by the blue
arrow in the first peak, is due to any action that in this case is
due to the inclusion of term 0.85*(0.2)L that is associated to
the term hL as given in Eq. (5) describes the deterioration of its
amplitude along the different times where system experiences
interaction.

For instance, one can assume that the curves denote the
probability of having a certain number of infections or known
as the rate of infection by time units. Thus, in this toy
theory: the incorporation of 0.85 ∗ (0.2)L can be interpreted
as the decreasing of rate of infections imposed by the initial
conditions of system. In fact, the positions where the arrows
have been located would denote that of the times by which a
decision has been imposed such as quarantine, curfew or social
distance.

Therefore, the model yielding peaked distributions has
emerged as one that can be seen a methodology to describe
for example rate of infections once an outbreak has been con-
firmed. Thus, it is possible to define the number of infections as
the product N = n0P with n0 the initial number of identified
infections. So that the task is to reduce this number through
concrete actions in according to the available technology that
each public health operator manages in the affected countries.
In praxis, N would depend on a set of free parameters that
features the intensity of pandemic such as population, human
behavior and capacity to carry out the social rules after lethality
of strain is identified.

B. Pandemic as Entropy

From Eq. (3) the chain of propagators that introduce the
concept of risk of pandemic can also be seen as a kind of
Shannon’s entropy. In fact, consider that

I =

L∏
`=1

G(t`+1 − t`)H(t`) =

L∏
`=1

G(∆t)H(t`) (8)

= GL(∆t)HL(t`) = [G(∆t)H(t`)]
L (9)

www.ijacsa.thesai.org 718 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 9, 2020

Fig. 2. Illustration of Eq. (7), Probability of Propagation. Arrows are
indicating the times where actions have been established to minimize the

Probabilities.

under the assumption that the time differences are same and
equals to ∆t for all the propagation in the sense that G(tL+1−
tL) = G(tL − tL−1) = G(t3 − t2) ... = G(t2 − t1), as well as
H(t1) = H(t2) = H(t3) = ...H(tL−1) = H(tL) (that can be
perceived as a fast propagation of strain once the outbreak has
initialized). In this manner Eq.(9) can be rewritten as:

P1→L(tL) =

∫
[G(∆t)H(t`)]

L
dt` = (10)

GL(∆t)

∫
[H(t`)]

L
dt` (11)

and by applying the logarithm, then the Shannon’s entropy is
given by:

S = LogP = LLogG(∆t) + Log

[∫
[H(t`)]

`
dt`

]
(12)

indicating that the entropy is only contributed by the prop-
agators whereas the logarithm of integration over the input
functions turns out to be δS = Log[

∫
[H(t`)]

`
dt`] the error

of entropy. In the side of Epidemiology, Eq. (12) can also be
interpreted as the disorder of the transportation mechanism of
strain [11] that is dictated by nonlinearities [12] that leads to
a kind of anarchy of system that actually would exhibit any
city or place that faces the arrival of a virus causing the social
[13] and economic disorder to some extent [14]. In order to
go through Eq. (12) the input function is assumed to be a
polynomial distribution so that a power series is applied, thus
one gets with t` → u, the entropy error is given by:

δS =

∫
[H(u)]

L
du =

∫ [ M∑
m

Cm
um

m!

]L
du ≈

M∑
m

(
Cm
m!

)L ∫ u

0

umLdu ≈
M∑
m

(
Cm
m!

)L
umL+1

mL+ 1
. (13)

From this one can verify if this error is also an entropy. The
Shannon’s entropy associated to this is then written down as:

Log(δS) ≈
M∑
m

L

[
Log

(
Cm
m!

)]

+

M∑
m

[(mL+ 1)Log(u)− Log (mL+ 1)] , (14)

exhibiting that the two first terms of right side of Eq. (14)
follows the structure of a Shannon’s entropy. It should be noted
that the term (Cm

m! ) can be perceived as a kind of probability.
For large values of integer m this probability turns out to be
null. In this way there is a set of values for mL and u that
cancels the term

∑M
m L

[
Log

(
Cm

m!

)]
so that one obtains an

entropy to be null. Clearly it demands to find the best values
of Cm, M , L, and u, by which it would be the task of Machine
Learning algorithm.

C. Theoretical Formulation of Mitchell’s Criteria

As mentioned above, the philosophy of Machine Learning
action [14], [15] can be resumed in the criteria postulated
by Tom Mitchell [16] by which is assumed that the system
has a (i) task to be done, such task demands to apply a (ii)
performance that targets to optimize the system’s parameters.
After of carrying out the performance, the system acquires (iii)
experience as to the obtained results.

Here one states the main argument of this paper by which is
claimed that the probabilistic character of rate of infections as
written in Eq.(3) can be translated in terms of the Mitchell’s
criteria. In fact from Eq. (3), it is feasible to formulate the
following algorithm based on the Mitchell’s criteria [17].
Consider the number of infections at the `th time as N (tL+1)
= n0N(tL+1), so that Eq. (3) can be modified to:

N (tL+1) = n0

L∏
`=1

∫
G(t`+1 − t`)N(t`)dt`. (15)

Clearly it was assumed that N(tL+1) =
∫
G(t`+1−t`)N(t`)dt`

in where N experiences a variation from the time t` to tL+1,
through L interactions producing the subsequent propagation.

Thus, the task consists in to reduce the number of infec-
tions through L different periods of pandemic evolution. It is
noteworthy that artificial intervention to the outbreak evolution
can be applied in order to counteract the progress of pandemic,
and therefore to minimize the infections.

In this manner, the minimization of N (tL+1) is a genuine
obligation of system [18][19][20]. To accomplish this, one
requires the best strategy that in the picture of Tom Mitchell
is known as the performance.

It requires to postulate the best representation of Green’s
function as seen in Eq. (3). It implies to find the best value
for the integer number L. Once that this number have been
determined, for example L′ < L the one proceeds with the in-
tegrations. It is suitable to implement the Monte Carlo step that
makes the decision of obtain an optimal and reduced number
of infections. Thus, in the case that it is not in accordance to
the desired number of infections i.e: N (tL′) < N (tL′−1) then
it is opted that L′ → L′ + 1 to verify that there is a reduced
number of infections. Thus, the action is considered as long
as N (tL′+1) > N (tL′). In this manner, the process is stopped
when it is verified the condition given an integer number n
that verifies L′ − n < n < L+ 1 then:

N (tL′)

N (tL+1)
<< 1, (16)

for example if for tL+1 a pandemics yields 100 infections for
a period of 10 days, then one expects 1000 for 100 days. Then,
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under the usage of Mitchell’s criteria one might to obtain a rate
of 20 infections for 90 days. Then it implies approximately
that 20/1000 = 0.02 that is fulfilling the condition of Eq. (16).
Of course, for times > tL+1 one might to expect a certain
nonlinearity since the rate of infections is partially governed
by randomness more than deterministic laws [21].

Thus, once the path have been identified, the one can
reconstruct the Green’s functions of system, the one that the
system has opted to yield a certain number of infections.
Clearly, this reconstruction demands to know the involved
free parameters and other unknown quantities that could not
have been visible at the beginning of a pandemic. A crude
estimate to reconstruct the Green’s functions is done through
the confrontation of data that displays the number of infections
per unit of time. Thus one can write below the relations
between data and the Green’s function of system as:

1

n0N(t`)

d2N (t3)

dt1dt2
= G(t3 − t2)G(t2 − t1), (17)

where one can apply a fitting to the acquired data that is in
essence the left side of this equation. Thus, the reconstruction
of the product of propagators would depend entirely on the
quality of fitting expressed in terms of χ2/d.o.f . One should
note that after the fitting is done the Green’s function can be
written as: G ≈

√
1

n0N(t`)
d2N (t3)
dt1dt2

.

III. APPLICATIONS

A. The Peruvian 2009 AH1N1 Season

The so-called pig-flu strain [22][23][24] had its apparition
in Perú [25] along the first week of May being through a
people whom have been abroad. The infections started over
Lima city being this the main place of strong spreading as seen
in Fig. 3. In effect, infections reached its peak on June 20th
at Lima city. Due to the outbreak, social measurements were
imposed on people in order to block the strain mobility to avoid
spreading in vulnerable population. Such social restrictions had
an interesting effect as noted at the apparition of a secondary
peak on July 2th. Clearly from this date the Lima’s infections
shown a descent behavior that can be associated to the social
regulations. On the other side, data also exhibits for the rest
of Provinces a first peak ion July 10th. Clearly one can ask
about the why both distributions are not superimposed each
other. Clearly data reveals us that the fast up of infections in
Provinces is not in phase with Lima city due to human mobility
that might be nonlinear. The why Lima city exhibit more
infections might be entirely related to the total population.
Thus, there is certain probability of a conjunction of external
variables that would give the rise to the gap of the peaks of
cases between Lima city and provinces.

Fig. 3. The Time Evolution of Infections by 2009 Season AH1N1
[25] Outbreak at Lima City (Blue Line) and remaining Provinces

(Black Line).

B. The Machine Learning Parameters

Eq. (7) is used to validate the Mitchell’s parameters on
the data of Fig. 3. Thus, it is assumed that Lima data of
AH1N1 is a sum of up two different distributions. Therefore
the law that models th infections is given N = nP1→2.
To accomplish this, it was applied the change given by
0.85(0.2)L → 850×(0.07)L. The denominator has passed of
(1 + 0.1(τ − 2.5×L)2)L to (1 + 0.7× (x− (4 + 3×L))2)L.
Thus, in the scenario of Machine Learning the quantity 850
denotes the expected number for a period of 10 weeks. By
using the Mitchell’s criteria the task consists in to reduce the
first peak [26] that in turn it is equivalent to impose social
restrictions that minimize the human contact . The performance
is then focused on the different methods that would reduce the
infections. It should be noted that during the AH1N1 pandemic
in Perú, not any quarantine neither curfew was applied. Instead
of that the closing of social activities was done. Mathematically
speaking while the task is modeled by a Lorentzian distribution
under a dependence on the term (x−(4+3×L))2 that exhibits
the first two peaks indicating that after any action the second
peak becomes reduced in its height, in conjunction to this, one
expects the effect of the numerator in Eq.(7) to minimize the
infections. In addition it should be noted that the term (0.2)L

plays a critic role. A slight variation of value 0.2+δ with δ a
small number << 1 yields abrupt changes at the morphology
of spectrum. Thus for the present study (0.07)L governs the
behavior of Fig. 3. One can see that it is strongly correlated
to the resulting integration of Gauss profiles. In fact the term
(0.07)L affects directly the value of xL/2 encompassing the
role of propagators whose role here is that of minimize the
first peak. In this manner, being the task modeled a Lorentzian
distribution then one can anticipate available dates by which
one expects the decreasing of infections.

In this way the experience is given by the second peak, after
a period of decisions by the local public health operators.

Fig. 4 indicates the experience on the 9th week after im-
plementation of Mitchell’s criteria between 5th and 8th week.
The arrow between the task and experience would denote the
performance that is translated in the social restrictions to avoid
the strain propagation in people. In this way, the management
of AH1N1 pandemic in Lima city might be seen as efficient as
well as sustainable to minimize the effects of the strain arrival.
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Fig. 4. Reconstructed curve of cases by using the 3 actions in
according to the Mitchell’s criteria.

C. The Peruvian Covid-19 Pandemic

The current Covid-19 have assaulted in an unexpected
manner the world-wide public health schemes, being to date
Perú (date of submitting this paper) [28][29][30] as one of
the more affected as to the number of new cases per day.
In fact, in Fig. 5, the morphological composition displays up
to phases being the first between the 1th and 13th week,
and a second phase for the remaining data. While country
government has dictated social restriction such as quarantine
and curfew, even under this, the number of cases has been
increasing in an unstoppable manner as seen at histogram.
In fact, despite of the fact that social distancing and face
protection were imposed, one can see that the new cases per
week have shown a rapid growth of up to a 61% approximately
(with respect to the 27686 cases of week 12th) as seen the
jump from the 12th to the 13th week. It is noteworthy that
it is perceived as the peak of first wave. Beyond of this, data
exhibits a morphology that can be understood as the beginning
of a a second distribution as the consequence of all actions that
were imposed before or after 13th week. Under the assumption
that first peak has a substantial contribution from Lima city
as reported by official data, then is feasible to state that a
second distribution is due to cases from provinces. Under this
view and by comparing to AH1N1 2009 season data then one
can see that human mobility might be the main cause of the
formation of second distribution. Thus, one can argue that
infections were transported from Lima to provinces through
actions of mobility as seen in the opening dates of the travels:
July 1th (terrestrial) and July 15th (aerial). One can anticipate
in a scenario of Mitchell’s criteria that the performance to
contain the infections could has been to some extent inaccurate.

Fig. 5. Histogram showing new cases per week between 5th and
22th week at the ongoing Covid-19 outbreak in Perú [28][29][30].

D. The Machine Learning Interpretation

Again, the Mitchell’s criteria are applied to interpret the
histogram of Fig. 5. Because the imminent presence of two
well-define distributions having a similarity among them, one
can see that the entire system do not exhibits not any flatness
as require to claim the end of a first wave. Thus, it is fair
to claim that while a possible first wave was ending on Lima
city, the formation of a second one essentially due to new cases
coming from provinces have been manifesting before the peak
at the 13th week. In this way, the first peak is perceived as
the task of system to reduce it. However it is clear the the
superposition from provinces might add a kind of bias to data.
Once the task has been identified one can pass to apply a
strategy or performance whose target is to decrease the peak
on the subsequent weeks. The performance as modeled by
a Gaussian profile appears to be rather limited as to provoke
a fast decreasing of the number of new infections. In fact, in
Fig. 6 the Machine Learning reconstruction of Fig. 5 is plotted.
The task and performance are indicating the possible dates by
which can be matched with the official data. For this end,
the equation NCOVID =

∑2
L=1

n(5/2+0.05∗L)
50+(x−(3+12∗L))2 was used,

with N the new cases per week and n the expected number of
infections. In this manner, the new infections n becomes a free
parameter of system. Although performance is not identified
in data, from Fig. 5 one can see that the performance is
not visible as a tangible action that has caused variations on
the curve. An argument of the why performance cannot be
identified on the data is because the superposition of Lima and
provinces data that would generate a kind of unrecognizable
noise that would affect the national data. Because of this,
performance turns out to be a constant and are modeled
by a Gaussian profile containing a width that is randomly
fixed. It implies that τ` → β a constant. Thus, one has that∫∞
0

Exp

[
−
(
t`+1−t`
τ`

)2]
dt`=
√
βπ. Thus experience acquires

same morphological shapes from task. This is seen in Fig.
6 where task and experience are modeled by two Lorentzian
shapes separated by a gap of 18 weeks approximately.

Fig. 6. Reconstructed Curve of Cases by using the Mitchell’s
Criteria without the Identification of Performance.

IV. DISCUSSION AND CONCLUSION

The fact that NCOVID does not exhibits the Mitchell’s
performance but encompasses to some extent to Fig. 5, then it
is interpreted as follows: Performance was applied before the
first peak of 13th week, so that it could has been broken as
effect of the end of national quarantine as well as the stopping
of curfew at the noon. On the other side, while the apparition
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of peaks can also be seen as the resulting outputs after the
implementation of imposed actions on the subsequent weeks
once the strain was recognized, at the language of Mitchell’s
criteria, task as a focused fact is not reflected from data. In this
manner, inputs Lorentzian distributions were not affected by
a constant propagation in contrast to the AH1N1 by which
the Mitchell’s criteria fits well to data. Indeed a constant
performance in terms of Feynman propagator is interpreted
as the system has not any scheme (or strategy) to experience
variation in time. Thus, one can argue that for the ongoing
Covid-19 pandemic in Perú, its translation in terms of Machine
Learning could not involve the action of performance, a crucial
step to manage the system evolution. While the mathematical
probability as given by Eq. (7) was calculated through the
usage of a Gaussian profile that models the propagation, then
with this one can conclude that the apparition of a second
peak is due to a very limited and almost invisible performance.
Here, one can ask about the usage of a different propagator
distribution. However, it would demand to introduce a set of
free parameters that might not be fitted to data, so that it put
apart the Mitchell’s criteria far from realistic interpretation that
must be adjusted to the ongoing acquired data.
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