
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 1, 2021

80 | P a g e
www.ijacsa.thesai.org

Validation of the Components and Elements of

Computational Thinking for Teaching and Learning

Programming using the Fuzzy Delphi Method

Karimah Mohd Yusoff1, Noraidah Sahari Ashaari2, Tengku Siti Meriam Tengku Wook3, Noorazean Mohd Ali4

Matriculation Division, Ministry of Education Malaysia, Putrajaya, Malaysia1

Software Technology and Management SystemUniversiti Kebangsaan Malaysia

Bangi, Selangor, Malaysia2, 3, 4

Abstract—Computational Thinking is a phrase employed to

explain the developing concentration on students' knowledge

development regarding designing computational clarifications to

problems, algorithmic Thinking, and coding. The difficulty of

learning computer programming is a challenge for students and

teachers. Students' ability in programming is closely related to

their problem-solving skills and their cognitive abilities. Even

though computational thinking is a problem-solving skill in the

21st century, its use for programming needs to be planned

systematically taken into account the appropriate components

and elements. Therefore, this study aims to validate the main

components and elements of computational thinking for solving

problems in programming. At the beginning of the study,

researchers conducted a literature review to determine the

components and the elements of computational thinking that

could be used in teaching and learning programming. This

validation involved the consensus of a group of experts using the

Fuzzy Delphi method. The data were analysed using the Fuzzy

Delphi technique, where the experts individually evaluated the

components and elements agreed upon prior discussion. A group

of experts consisting of 15 people validated 14 components and 35

elements. The results showed that all components and elements

reached a threshold (d) value of less than 0.2, a percentage of

agreement exceeded 75%, and the Fuzzy score (A) exceeded 0.5.

The finding indicates that the main components and elements of

the proposed computational thinking are suitable for problem-
solving approaches in programming.

Keywords—Expert consensus; focus group; problem-solving;

components; elements

I. INTRODUCTION

Teaching and learning methods have evolved globally,
where various advancements have introduced over the years.
Recently, computer programming is of growing interest in line
with the efforts to enhance Science, Technology, Engineering
and Mathematics (STEM) based education and career. Besides
government and non-governmental agencies, industries also
suggest learning institutions to prepare students who have
knowledge, understanding, and skills in programming and
problem-solving [1]. Indirectly, educators should continuously
enrich their experience and skills to provide effective teaching
and learning environment.

Programming is a subject that involves problem-solving
skills starting from problem formulation to complete program
development. Therefore, structured teaching and learning

methods for programming should be established by including
all steps to solve the problem. Amongst the steps are
formulating the problem, planning the solutions, designing the
solutions, translating the solutions into programming codes and
testing and evaluating the complete program. The main
challenge faced by novice programmers in learning
programming was related to the cognitive ability of an
individual [2][3][4][5]. Based on the cognitive load theory, the
teaching design is tailored to reduce the student's load during
the thinking process to achieve optimal learning outcomes [6].

Computational thinking is gaining attention among
educators, and it is often linked to problem-solving [7].
Computational thinking is considered as a 21st-century skill
[8][9] that can build the essential cognitive skills of students
[10]. Relationship between computational thinking
implementation and students' cognitive level was reported in
previous studies [11][12][13], for different purposes. A
blended learning model is developed for students to acquire
basic programming skills through activities tailored to students'
cognitive levels [11]. The activity is designed by considering
the three levels of computational thinking skills which is basic,
intermediate, and advanced that could be used on the Moodle
platform. In contrast, computational thinking is introduced in
the context of creative programming activities using Scratch
software [13]. Besides, a study to provide new instruments for
the measurement of computational thinking and prove the
nature of computational thinking through its relationship with
cognitive psychological constructs consist of spatial ability,
reasoning ability and problem-solving ability [12]. These
studies shows the potential of computational thinking in
education.

In this study, we proposed the components and elements of
computational thinking for problem solving in programming.
We believe that by involving appropriate components and
elements, computational thinking is potentially to develop
problem solving skills for programming. Hence, this article
reports the validation process systematically of the components
and elements of computational thinking for problem-solving
approach in programming. The validation in performed by a
group of experts through the Fuzzy Delphi Method (FDM).

The discussion of the following section as follows:
Section II is a literature review that leads to the components of
CT. Section III describes the validation process in this study.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 1, 2021

81 | P a g e
www.ijacsa.thesai.org

Section IV discussing about data analysis. Section V details
about findings and discussion. Section V conclude the study
and further work.

II. LITERATURE REVIEW

Computational thinking skills that derived from computer
science [14] is an approach to problem-based teaching and
learning that meets the needs of problem-solving skills in the
21st century that has gained the attention among researchers
and educators [15]. Computational thinking provides a set of
cognitive skills to solve problems that are appropriate for all
areas [16][17]. In 1980, Seymour Papert introduced the idea of
computational thinking. Later, computational thinking was
defined as the application of some basic concepts of Computer
Science to solve the problems, designing systems, and
understanding human behavior [18]. The computational
thinking definition was revised as a thought process for
formulating and solving problems in a form that information
processing agents can effectively execute [19]. Apart from that,
several definitions of computational thinking differ in meaning
but generally focused on solving problems [20][21]. Latest,
computational thinking is defined as the thinking skills and
also the practice to design computation that enable computers
to execute the instructions they receive. Computational
thinking also explains and interprets what happens in reality as
a complex processing of information that takes place in a
computer [22]. Based on the proposed definitions, in this study,
computational thinking is regarded as a thinking approach to
develop problem-solving skills through computing to find
solutions.

Computational thinking is the primary skills that are used in
the problem-solving process. Various computational thinking
skills have been suggested in previous studies [23-26]
[19][7][27-29] as shown in Table I. As a pioneer of
computational thinking, Jannette Wing proposed abstraction,
decomposition, generalisation, algorithm and automation skills.

The computational thinking skills proposed by the
researchers were almost similar with a few differences.
However, the concepts presented in all areas are practically
uniform [16]. Based on Table I, similar computational thinking
skills include abstraction, decomposition, generalisation
(pattern recognition) and algorithm incorporated in this study.

Computational thinking is a cognitive process that involves
logical thinking, including the ability to perform abstraction,
decomposition, identification of patterns through
generalisation, solving the problems sequentially, and
evaluation of the results. Therefore, logical reasoning identified
as a new component of computational thinking for problem-
solving [24]. In programming, programs need to be tested and
evaluated; thus, evaluation skills among the best talents in
programming [24][25]. As this study focuses on the use of
problem-solving skill in programming, computational thinking
skills should play a role in line with the problem-solving step
in programming. Table II shows the description of
computational thinking skills components identified for
problem-solving in programming.

To date, there is no consensus on the exact components of
computational thinking, but computational thinking can

involve multiple components and may not necessarily be
cognitive [15]. Therefore, other than skills, dimension and
approach were included in this study.

TABLE I. COMPUTATIONAL THINKING SKILLS SUGGESTED BY

RESEARCHERS

Computational Thinking Skills Reference

abstraction,

decomposition,

generalisation,

algorithm,

automation

Wing, 2006, 2008, 2011

abstraction,

decomposition,

generalisation (pattern recognition),

algorithm,

evaluation.

Selby & Wollard, 2013

logical reasoning,

abstraction,

decomposition,

generalisation (pattern recognition),

algorithm,

evaluation.

Csizmadia et al., 2015

abstraction,

decomposition,

generalisation,

algorithm,

debugging.

Angeli et al., 2016

abstraction,

decomposition,

pattern recognition,

algorithm

Shute, Sub & Asbell-Clarke, 2017

abstraction,

decomposition,

generalisation,

algorithm

Denning, 2017

abstraction,

decomposition,

data representation,

pattern recognition,

algorithmic thinking

Rodriguez et al., 2017

abstraction,

decomposition,

pattern recognition,

algorithm

Burbaite, Drasute & Stuikys, 2018

TABLE II. DESCRIPTION OF COMPUTATIONAL THINKING SKILLS

Skills Description

Abstraction
The skill to identify and retrieve relevant information to

determine key ideas and to remove unnecessary details.

Decomposition

The skill to breakdown the problem to a small section and

easy to manage for complex problems. The solution can be

implemented part by part until the whole problem is

solved.

Pattern

Recognition

Skills in observing patterns, tendencies and regularity of

data through similarities.

Algorithm Skill to perform tasks or solve problems step by step.

Logical

reasoning

Skill explain what happens by analysing and studying facts

by thinking clearly and accurately.

Evaluation
Skill determines whether the algorithm, system or process

is working correctly and following its purpose.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 1, 2021

82 | P a g e
www.ijacsa.thesai.org

Beside skills, dimensions of computational thinking
framework that consisted of computational concepts, practices
and perspectives [30] is proposed to ensure the delivery and
development of computational thinking skills as shown in
Table III. The efforts include teaching delivery, student
involvement practically and assessment of student
performance.

Apart from dimensions, it is essential to stimulate the
thinking processes that lead to computational thinking skills. In
this study investigates computational thinking approach, which
is a practice applied during teaching and learning session.
There are five approaches of computational thinking, which are
tinkering, creating, debugging, collaborating, and persevering
[24] as presented in Table IV.

The idea of tinkering emerged since [31] introduced the
concept of computational thinking in the 1980s. Tinkering is
trying something new through exploration, trying repeatedly
and making improvements. The problem-solving process
involves thinking and tinkering to obtain the best solution [32].
The tinkering approach for adult learning implemented through
exploring and building, which are carried out through trial
leading to improve solutions [33]. Tinkering activities which
are performed repeatedly can assist a novice in learning
programming [34].

Creating refers to the planning, designing and evaluating,
for example, a program [33]. Programming involves the
process of developing algorithms in the form of flow charts or
pseudo-codes and then followed by programs. One learning
programming should undergo these steps and procedures.
Therefore, the creating approach is in line with the learning of
programming.

Debugging is a component of computational thinking by
[23]. Debugging refers to the process of tracking and fixing
errors [35] either an algorithm or a program [33]. However,
debugging is usually related to improving programs because it
involves syntax and semantics. This activity performed after
testing programs as a programmer can identify the error and
know how to fix it [36]. Novices need to expose with
debugging approach to be on par with experienced
programmers [37]. Therefore, students need to practice in
debugging and evaluating programs while being monitored by
the instructors [38].

Meanwhile, collaborative learning allows the process of
knowledge acquisition, sharing, creation, and dissemination.
Collaborating is one of the computational thinking approaches
[24] to obtain the right solutions and motivate students to
complete misleading assignments [33]. When students work
together to solve problems or engage in activities, they also
have the opportunity to apply new concepts they have learned,
facilitates the application of concepts for the specific problem
through exploration, critical thinking and analysis. Indirectly,
collaborative learning can enhance assessment skills when
group members use different approaches [39]. The
collaborative approach is ideal for new programmers as they
can build an understanding of problems, plan alternative
solutions, learn with peers, build knowledge, and engage
actively in programming learning [15]. Other than face-to-face
collaboration approach in the classroom, this approach is also

implemented through different mediums such as online
learning systems [40], online training tools [41] and networks
such learning management system (moodles) [42]. Therefore,
students who learn programming course collaboratively can
develop computational thinking skills as reported by [15].
Besides that, opportunities to get ideas from their peers and
explain the knowledge gained to other friends can help students
develop logical skills and increase their perseverance [33].

Programming is difficult and challenging to produce
effective programs. In addition to problem-solving skills, using
computational thinking skills as a solution strategy and
mastering a programming language, programmers have to be
resilient. Persevering is a computational thinking approach
introduced by [24] defined as never giving up, determined,
resilient and persistent. For example, educators play a role to
avoid an environment that can cause students to give up or lose
motivation by interacting with them and always give feedback
to students if necessary [43]. Teaching strategy or teaching aids
should be able to motivate students and help them to learn
interestingly. There are teaching aids introduced by past
researchers to motivate students to learn programming such as
simulations, games, visualizations and robotics. However,
these teaching aids focuses on learning the concepts of
programming. Current studies concern about the strategy for
problem solving as well as program development. Hence, we
suggest the use of computational thinking to be implemented as
teaching strategy since it offers the components consisted of
skills, dimensions and approaches as listed in Tables I to III.
As the skill components play the primary role in problem-
solving, a detailed element is required to implement it. Hence,
35 elements were proposed representing abstraction,
decomposition, pattern recognition, algorithm, logical
reasoning and evaluation. These components and elements are
potentially integrated as teaching strategy. We believed that
when students are able to master in learning they will be more
motivated to learn and educators are considered effective if
they can help and motivate students in learning.

TABLE III. DESCRIPTION OF COMPUTATIONAL THINKING DIMENSIONS

Computational

Thinking Skills
Descriptions

Computational

concepts

The concept used by programmers during programming

activities.

Computational

practices.

Problem-solving in programming practice that focuses

on thinking and learning processes.

Computational

perspectives

Students' knowledge of themselves, their relationships

with others, and the ability to use technology around

them.

TABLE IV. DESCRIPTION OF COMPUTATIONAL THINKING APPROACHES

Approaches Descriptions

Tinkering
Trying something new through exploration,

experimentation, and improvement.

Creating
Creating is related to planning, designing, and evaluating

something like programs and animations.

Debugging The process of finding and identifying mistakes.

Collaborating Work with others to ensure the best results.

Persevering Never despair, determination, resilience, and perseverance.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 1, 2021

83 | P a g e
www.ijacsa.thesai.org

III. VALIDATION

This study used the Fuzzy Delphi method, a method
improved from the Delphi method using Fuzzy theory. This
method employed expert opinion and consensus to evaluate
and validate each component and element of computational
thinking for teaching and learning programming course as
illustrated in Fig. 1. The verification process employed a focus
group discussion involving 15 expert panels. Several steps
were taken before validation using the Fuzzy Delphi method,
to ensure that the components and elements are suitable for the
problem-solving in a programming course and meet the needs
of students. The processes involved were identifying the
components of computational thinking for solving problems in
programming, identification of components operational
definitions, pre-evaluation of the operational definition,
improvement of the operational definition and construction of
elements for each component.

Fig. 1. Validation Procedures of the Computational thinking Components.

A. Expert Selection

Experts in the field of study were selected for validation of
computational thinking components using the Fuzzy Delphi
method. There are several perspectives in determining the
number of experts. According to the Delphi method, the
number of experts should be between 10 to 50 people [44]. In
this study, 15 experts in the programming field were selected
as there was a uniformity among experts and is sufficient,
according to [45]. The panel of experts consisted of lecturers
from pre-university, public and private higher education
institutions, vocational college, and teachers. All the selected
experts have more than ten years of experience in teaching and

learning programming. Instructors can also be considered as an
expert if they have been in service for five to 10 years [44].
First, experts must give their consent to contribute their
opinions within their expertise to evaluate and improve the
proposed questionnaire that comprised of computational
thinking components and elements for problem-solving in
programming.

B. Development of Questionnaires

Based on the literature, 14 components of computational
thinking that represented computational skills, dimensions and
approaches as listed in Tables I to III were identified and
characterised as 14 questionnaire items in this study. As the
skill component plays a leading role in the problem-solving
process or activity, the skill components are detailed with
appropriate elements (Table V) to suit their use in the study
context and included as 35 questionnaire items.

The questionnaire used a 7-point Likert scale representing
strongly disagree to strongly agree.

TABLE V. DESCRIPTION OF ELEMENTS FOR EACH COMPUTATIONAL

THINKING (COMPUTATIONAL THINKING) SKILLS

Skill Components Elements Descriptions

Abstraction

There are five (5) elements related to the process of

understanding and formulating problems as well as

identifying relevant information.

Decomposition
There are five (5) elements related to the process of

decomposing the problem.

Pattern recognition

There are five (5) elements to integrate existing

knowledge and experience as a problem-solving

strategy.

Algorithm
There are seven (7) elements to develop an algorithm

and the consequences if the algorithm is not perfect.

Logical reasoning
There are seven (7) elements related to logic in

programming.

Evaluation

There are six (6) elements related to evaluation to

ensure that solutions are accurate, appropriate and

meet its purpose.

C. Validation of Components and Elements using the Fuzzy

Delphi Method

The validation of components and elements referring to the
questionnaire items were done using the Fuzzy Delphi method,
where focus group discussions took place involving expert
panels. There are several steps in a validation process including
validation of principal components and elements and
arrangement of elements based on expert opinions and
consensus; evaluation of components and elements by experts
individually; and finally data were collected and analysed
using the Fuzzy Delphi technique. The details of the processes
are explained as follows:

1) Expert consensus regarding main components: The

components and elements of computational thinking were

provided to the experts using Google sheets and shared via

email a week before the discussion to provide them with

research information, comfortable period to understand the

context of the study and to generate ideas to improve the

questionnaire. The statements and views were presented

during the discussion. During the discussion, each expert was

Expert consensus to the components

Expert consensus to the elements

Expert consensus to the arrangements of

elements

Expert evaluation individually

Expert selection

Developing

questionnaires

Validation of

components and

elements through

Fuzzy Delphi Method

Converting a Likert

scale to a fuzzy scale

Data interpretation

Data analysis
Data analysis (Triangular Fuzzy number)

- Average of fuzzy number

- Threshold (d) value
- Percentage of expert

Data analysis (Defuzzification)

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 1, 2021

84 | P a g e
www.ijacsa.thesai.org

provided again with the details of computational thinking

components. There were four worksheets used during the

discussion. The first, second, and third worksheets were the

tables for the first, second, and third groups, respectively as

shown in Fig. 2 while the fourth column is for list of

suggested elements for the component as shown in Fig. 3.

Fig. 2. Google Drive Templates for each Group.

Fig. 3. Google Drive Template for the Final Consensus.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 1, 2021

85 | P a g e
www.ijacsa.thesai.org

During the discussion, experts were divided into three
groups consisted of five people for each group. The component
verification process was carried out in two stages. In the first
stage, experts in each group evaluated and validated the
components of the research based on the definitions provided.
The opinions by experts were recorded in the Google Sheet
document accordingly. The facilitator then transferred the
consensus from each group to the fourth worksheet according
to the group column. The second stage of the component
verification process was a discussion for the consensus to
evaluate and validate the components based on the suggestions
from each group. The final consensus was filled in the fourth
column. The validated components were used for the
evaluation and validation of the proposed elements for the
component. The focus group discussion procedure used is
aimed at addressing the weakness of the iterative process
identified when using the Delphi method (DM) [46], but at the
same time retaining the features of Fuzzy Delphi method such
as research time frame compared to DM. Fig. 1 and Fig. 2
shows the Google drive document for the validation process.

D. Expert Consensus to the Arrangement of Elements

After validating the skill components, the expert evaluated
and validated the proposed element for each skill components.
The list of elements was displayed next to the component,
which was validated by the experts. The validation process
involved a discussion among the experts to improve the
suggested elements. Improvements included language structure
to be clear and in line with the skills' definition and according
to the context of the study; avoid repetitive, inappropriate, or
unnecessary elements and suggest new elements as necessary
to meet the skills' definition.

E. Expert Consensus to the Arrangement of Elements

According to Priority

Questionnaire items for components and elements were
transferred into Google forms for individual expert evaluation.

The use of Google forms allowed data to be transferred to
Microsoft Excel and facilitated data analysis.

The questionnaire was then distributed to experts via email
and Whatsapp using the Google form URL. The expert then
answered the questionnaires individually to evaluate the
components and elements by choosing the option on a 7-point
Likert scale that represents strongly disagree to strongly agree.
The answered questionnaire by all the experts through Google
forms was saved directly in Google sheets. Fig. 3 shows the
process of verifying components and elements.

The validated elements were then sorted in order of priority
to fit the problem-solving approach in programming. The
priority order considered the dimensions of their use during
delivery, student engagement practically, development and
evaluation of student performance. The arrangement process
was performed together by all the experts.

F. Expert Evaluation Individually

Questionnaire items for components and elements were
transferred into Google forms for individual expert evaluation.
The use of Google forms allowed data to be transferred to
Microsoft Excel and facilitated data analysis. The

questionnaire was then distributed to experts via email and
Whatsapp using the Google form URL. The expert then
answered the questionnaires individually to evaluate the
components and elements by choosing the option on a 7-point
Likert scale that represents strongly disagree to strongly agree.
The answered questionnaire by all the experts through Google
forms was saved directly in Google sheets. Fig. 4 shows the
process of verifying components and elements.

Fig. 4. Google Drive Template for the Final Consensus.

IV. DATA ANALYSIS

A. Converting Likert Scale to Fuzzy Scale

The Fuzzy scale was determined for each Likert scale, as
shown in Table VI. Data in the Likert scale were converted to
Fuzzy numbers through Microsoft Excel using the VLOOKUP
function to be analysed using the Fuzzy Delphi (FDM) method.
The Fuzzy set theory [47] allows the use of linguistic terms
such as the level of agreement in Table VI by converting them
to appropriate fuzzy sets and numbers. Respondents' answer on
the Likert scale was translated into the Fuzzy scale, which was
divided into three values: minimum value (m1), most
reasonable value (m2) and maximum value (m3).

B. Data Analysis using the Fuzzy Delphi Method

In analysing the Fuzzy Delphi method, importance is given
to the Triangular Fuzzy Number and the Defuzzification
process. Both analyses aimed to determine whether a
component or element is accepted or rejected based on the
expert consensus [48]. Element acceptance was determined by
the threshold (d) and per cent of consensus. The
Defuzzification process aimed to obtain a Fuzzy score (A) to
determine the acceptability of components and elements and its
priority.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 1, 2021

86 | P a g e
www.ijacsa.thesai.org

TABLE VI. QUESTIONNAIRE SCALE

Linguistic variables Likert scale Fuzzy scale (m1, m2,m3)

Extremely agree 7 0.9 1 1

Strongly agree 6 0.7 0.9 1

Agree 5 0.5 0.7 0.9

Moderately agree 4 0.3 0.5 0.7

Disagree 3 0.1 0.3 0.5

Strongly disagree 2 0 0.1 0.3

Extremely disagree 1 0 0 0.1

The Likert scale data from Google sheets were transferred
into Microsoft Excel worksheet template to analyse the Fuzzy
Delphi method by expert numbers (1 - 15). The Triangular
Fuzzy Number composed of minimum(m1), reasonable (m2),
and maximum (m3) values were used. Data analysis involved
the determination of (i) the average value of the Fuzzy scale
(m1, m2, m3), (ii) the threshold (d) value (iii) the percentages
of consensus on each component and element, and (iv) the
Fuzzy score to determine the acceptability and the ranking of
components and elements using defuzzification process. Data
were analysed using Microsoft Excel software.

1) Triangular fuzzy number: Average of Fuzzy Number

(m1, m2, m3).

Fig. 5 shows a triangular graph against triangular values.
All the values (m1, m2, m3) are in the range 0 to 1 which
refers to the Fuzzy number (0,1).

The average value of a Fuzzy number was determined
using the following Formula 1:

𝑚=∑ 𝑚𝑖𝑛
1

𝑛
 (1)

where n refers to the number of experts.

2) Triangular fuzzy number: Threshold (d) Value: The

threshold value (d) was calculated to obtain the level of expert

consensus for all questionnaire items [49]. Based on the Fuzzy

numbering (0,1), the threshold value (d) for both Fuzzy

numbers m (m1, m2, m3) and n = (n1, n2, n3) can be

determined using the following Formula 2;

𝑑(𝑚̃, 𝑛̃) = √
1

3
[(𝑚1 − 𝑛1)

2 + (𝑚2 − 𝑛2)
2 + (𝑚3 − 𝑛3)

2] (2)

Fig. 5. Triangular Graph against Triangular Values.

If the distance between the mean value and the expert
evaluation data is less than or equal to the threshold value (d) =
0.2, then all experts are considered to have reached an
agreement [50]. Table VII shows the interpretation of the data
based on the threshold value (d).

TABLE VII. INTERPRETATION OF THE DATA BASED ON THE THRESHOLD

VALUE (D)

Threshold (d)

value
Descriptions Interpretation

d ≤ 0.2
The threshold (d) value is

less than or equal to 0.2
Accepted

d ≥ 0.2
The threshold (d) value is

greater than 0.2

Rejected

OR

conduct the second cycle,

which involved only experts

who disagreed.

To meet the conditions of acceptance for each item agreed
upon by the experts, the percentage value of the expert's
consensus must be equal to or greater than 75%. If the expert's
consensus percentage is less than 75%, the item needs to be
removed or a second round is conducted against the non-
consenting expert.

C. Defuzzification: The Fuzzy Score

The Fuzzy score (A) obtained using the defuzzification
process indicates whether an item is accepted based on the
expert's consensus or not. An element is accepted when the
Fuzzy score (A) equals or exceeds the median (α - cut) value of
0.5 [42]. The Fuzzy (A) score was calculated using the
following Formula 3:

Fuzzy score (A) = (1/3) * (m1+m2+m3) (3)

Apart from that, the Fuzzy score value (A) can determine
the order and ranking of the questionnaire item. Since this
study is about the problem-solving approach in programming,
the arrangement of elements of each component based on the
experts' discussion was followed. If the priority of the element
is considered based on the defuzzification process, the results
may not comply with the approach of problem-solving in
programming. The expert will re-evaluate the order and
priority of the element if any element is rejected after the
analysis.

V. FINDINGS AND DISCUSSION

Focus group discussion was conducted, consisting of
experts to evaluate and validate computational thinking
components and elements. There are 14 main components of
computational thinking and 35 elements representing
computational thinking skill. All the components and elements
evaluated by the experts were accepted. Based on a 7-point
Likert scale, components and elements showed the average
scores within 6 and 7 for all items, which strongly agree and
extremely agree. For analysis, Likert scale scores were
converted to Fuzzy scales. The results showed that all main
components of computational thinking and skill elements of
computational thinking met the first prerequisite of threshold

(d) ≤ 0.2 based on the consensus of 15 experts. For the
second prerequisite, the 14 components and 35 elements
evaluated showed the percentage of consensus greater than

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 1, 2021

87 | P a g e
www.ijacsa.thesai.org

75%. Hundred percent consensus was achieved for the 14
components of computational thinking, while for the elements
of computational thinking skill, the consensus are in the range
from 86.6% to 100% was achieved. The third prerequisite was
to obtain a Fuzzy score (A) to determine the acceptability of
the questionnaire items. If the Fuzzy score (A) exceeds 0.5,
then the questionnaire item is accepted. The Fuzzy score (A) in
the range of 0.876 to 0.960 was obtained for all the
components and elements evaluated. The findings confirmed
the acceptance of all the components and elements of
computational thinking tested and are suitable for teaching and
learning programming.

Based on the analysis, FDM gives effective results in
validating the components and elements of computational
thinking. The results of the analysis in tandem with other
research using FDM analysis for item-based validation [52-54].
The FDM analysis supported the suitability of the components
and elements evaluated where all the questionnaires items were
accepted, and pre-requisites met based on the threshold value
(d), percentage of consensus and fuzzy score (A). The results
of the analysis were influenced by the discussion method. All
experts had the opportunity to give opinions and ideas to
validate questionnaire through open discussion. Expert
opinions were merged to get questionnaire items that fit the
context of the study. The panel experts consisted of instructors
who are curriculum developer and experienced programming
lecturers where eight of them have followed trainees of trainers
in computational thinking. The experts' evaluation was
analysed to determine either the questionnaire items were
accepted or rejected. The findings indicated similar responses
from experts from the same institution for the items related to
the program code. This similar view may be related to the
common practices and approaches of teaching and learning
used by the experts.

A. FDM Analysis Effectively

Generally, the focus group discussion method to get
consensus is an effective method where researchers do not
have to spend a lot of time to meet experts individually.
Uploading materials in Google Drive and sharing with the
experts involved in this study allowed retrieval of quick
feedback from experts. Besides, this method provides an open
discussion space and validated questionnaire items as a result
of expert consensus can be updated online. However, expert
group discussion requires a high level of commitment by the
researchers and experts. The researcher should survey the
available time of each expert, identify the appropriate date for
all the experts to meet and discuss, and remind them through
Google Calendar to ensure their attendance on the selected
date. Besides, there are other preparations before the
discussions such as preparation of expert invitation letters,
printed materials and Google drives, and Google forms
templates, a place with internet connections for discussions and
refreshments for the experts.

The Fuzzy Delphi (FDM) method can avoid
misinformation or loss of important information that can occur
when using the Delphi method [36]. However, there are some
limitations, even though FDM can give fast and reliable
feedback. Researchers must have existing knowledge in the
context of the study as relevant elements to be identified from

literature review besides the need to communicate with the
experts in the field of study who are willing to participate in the
study.

The FDM method can be applied in other studies that
require an expert's opinion and consensus. The FDM is not
only suitable to validate components and elements as used in
this study, but it can also be used to validate pre-construction to
determine components during the analysis and evaluation
phase which involved the development of models, modules,
frameworks and products. The data obtained in quantitative
form has higher reliability since it undergoes several
qualitatively implemented stages. Analysis through FDM can
determine the validity of computational thinking components
and elements for problem-solving in programming based on
expert consensus. The findings from this study can be used to
develop problem-solving models in programming as a guide
for teaching and learning.

VI. CONCLUSION

This study aimed to validate computational thinking
components and elements as a problem-solving approach in
programming by obtaining expert consensus using the Fuzzy
Delphi method (FDM). Analysis results showed that all
components and elements are accepted based on expert
consensus. Hence, these components and elements potentially
applied in teaching and learning programming as well as model
development as teachers’ guide. In the further work of this
study, a model as a teachers’ guide for teaching and learning
programming will be developed by applying the accepted
components and elements.

ACKNOWLEDGMENT

This study was funded by the UKM Research Grant (GUP-
2018-155). We would like to thank the fifteen experts and
Matriculation Division, Ministry of Education Malaysia for
their assistance and contribution to this study.

REFERENCES

[1] C. C. Selby, “Relationships: Computational Thinking, Pedagogy of
Programming, and Bloom’s Taxonomy,” Proc. Work. Prim. Second.

Comput. Educ., pp. 80–87, 2015.

[2] B. Du Boulay, “Some Difficulties of Learning to Program,” J. Educ.
Comput. Res., vol. 2, no. 1, pp. 57–73, 1986.

[3] Y. Qian and J. Lehman, “Students’ Misconceptions and Other Difficulties
in Introductory Programming,” ACM Trans. Comput. Educ., vol. 18, no.

1, pp. 1–24, 2017.

[4] A. Robins, J. Rountree, and N. Rountree, “Learning and Teaching
Prgramming : A Review and Discussion,” Comput. Sci. Educ., vol. 13,

no. 2, pp. 137–172, 2003.

[5] L. E. Winslow, “Programming Pedagogy --A Psychological Overview,”
ACM SIGCSE Bull., vol. 28, no. 3, pp. 17–22, 1996.

[6] F. Paas and P. Ayres, “Cognitive Load Theory: A Broader View on the

Role of Memory in Learning and Education,” Educ. Psychol. Rev., vol.
26, no. 2, pp. 191–195, 2014.

[7] V. J. Shute, C. Sub, and J. Asbell-Clarke, “Demystifying computational

thinking,” Educ. Res. Rev., vol. 22, no. September, pp. 142–158, 2017.

[8] S. Bocconi et al., Developing Computational Thinking : Approaches and
Orientations in K-12 Education, no. June. 2016.

[9] A. Yadav, H. Hong, and C. Stephenson, “Computational Thinking for
All: Pedagogical Approaches to Embedding 21st Century Problem

Solving in K-12 Classrooms,” TechTrends, vol. 60, no. 6, pp. 565–568,
2016.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 1, 2021

88 | P a g e
www.ijacsa.thesai.org

[10] A. D. F. Perez and G. M. Valladares, “Development and assessment of

computational thinking: A methodological proposal and a support tool,”
IEEE Glob. Eng. Educ. Conf. EDUCON, vol. 2018-April, pp. 787–795,

2018.

[11] A. R. Lopez and F. J. Garcia-Penalvo, “Personalized contents based on
cognitive level of student’s computational thinking for learning basic

competencies of programming using an environment b-learning,” Proc.
Fourth Int. Conf. Technol. Ecosyst. Enhancing Multicult. - TEEM ’16,

pp. 1139–1145, 2016.

[12] M. Roman-Gonzalez, J. C. Perez-Gonzalez, and C. Jimenez-Fernandez,
“Which cognitive abilities underlie computational thinking? Criterion

validity of the Computational Thinking Test,” Comput. Human Behav.,
vol. 72, pp. 678–691, 2017.

[13] M. Romero, A. Lepage, and B. Lille, “Computational thinking

development through creative programming in higher education,” Int. J.
Educ. Technol. High. Educ., vol. 14, no. 1, 2017.

[14] E. B. Witherspoon, R. M. Higashi, C. D. Schunn, E. C. Baehr, and R.

Shoop, “Developing computational thinking through a virtual robotics
programming curriculum,” ACM Trans. Comput. Educ., vol. 18, no. 1,

pp. 1–20, 2017.

[15] B. Wu, Y. Hu, A. R. Ruis, and M. Wang, “Analysing computational

thinking in collaborative programming: A quantitative ethnography
approach,” J. Comput. Assist. Learn., no. January, pp. 1–14, 2019.

[16] F. K. Cansu and S. K. Cansu, “An Overview of Computational

Thinking,” Int. J. Comput. Sci. Educ. Sch., vol. 3, no. 1, p. 17, 2019.

[17] A. Yadav, C. Stephenson, and H. Hong, “Computational thinking for
teacher education,” Commun. ACM, vol. 60, no. 4, pp. 55–62, 2017.

[18] J. M. Wing, “Computational thinking,” Commun. ACM, vol. 49, no. 3, p.

33, 2006.

[19] J. M. Wing, Research Notebook: Computational Thinking-What and
Why? The Link magazine of Carnegie Mellon University. 2011.

[20] P. J. Denning, “the Profession of It Beyond Computational thinking,” no.

6, pp. 5–7, 2009.

[21] A. Yadav, C. Mayfield, N. Zhou, S. Hambrusch, and J. T. Korb,

“Computational Thinking in Elementary and Secondary Teacher
Education,” ACM Trans. Comput. Educ., vol. 14, no. 1, pp. 1–16, 2014.

[22] P. J. Denning and M. Tedre, Computational Thinking. London, England:

The MIT Press, 2019.

[23] C. Angeli et al., “A K-6 computational thinking curriculum framework:
Implications for teacher knowledge,” Educ. Technol. Soc., vol. 19, no. 3,

pp. 47–57, 2016.

[24] A. Csizmadia et al., “Computational thinking - A guide for teachers,”
Comput. Sch., 2015.

[25] C. Selby and J. Woollard, “Computational Thinking: The Developing

Definition,” Univ. Southampt., 2013.

[26] J. M. Wing, “Computational thinking and thinking about computing,”
Philos. Trans. R. Soc. A Math. Phys. Eng. Sci., vol. 366, no. 1881, pp.

3717–3725, 2008.

[27] P. J. Denning, “Remaining trouble spots with computational thinking,”

Commun. ACM, vol. 60, no. 6, pp. 33–39, 2017.

[28] B. Rodriguez, S. Kennicutt, C. Rader, and T. Camp, “Assessing
computational thinking in CS unplugged activities,” Proc. Conf. Integr.

Technol. into Comput. Sci. Educ. ITiCSE, pp. 501–506, 2017.

[29] R. Burbaite, V. Stuikys, and V. Drasute, “Integration of Computational
Thinking Skills in STEM-Driven Computer Science Education,” IEEE

Glob. Eng. Educ. Conf. EDUCON, pp. 1824–1832, 2018.

[30] K. Brennan and M. Resnick, “New frameworks for studying and
assessing the development of computational thinking,” Proc. 2012 Annu.

Meet. Am. Educ. Res. Assoc. Vancouver, Canada., vol. Vol. 1, pp. 1–25,
2012.

[31] S. Papert, Mindstorms: Children, computers and powerful ideas, vol. 1.

1980.

[32] F. Anna, Sabariah Sha’rif, W. Wong, and Muralindran Mariappan,
“Computational Thinking and Tinkering : Exploration Study of Primary

School Students’ in Robotic and Graphical Programming,” Int. J. Assess.
Eval. Educ., vol. 7, no. 1993, pp. 44–54, 2017.

[33] CAS Barefoot, “Computational Thinking,” 2014.

[34] M. Berland, T. Martin, T. Benton, C. P. Smith, and D. Davis, “Journal of

the Learning Using Learning Analytics to Understand the Learning
Pathways of Novice Programmers,” no. January 2014, pp. 564–599,

2013.

[35] J. Krauss and K. Prottsman, Computational Thinking and Coding for
Every Student: The Teacher’s Getting- Started Guide. Corwin Press: Sage

Publishing Company, 2016.

[36] R. McCauley et al., “Debugging: A review of the literature from an

educational perspective,” Comput. Sci. Educ., vol. 18, no. 2, pp. 67–92,
2008.

[37] B. Özmen and A. Altun, “Undergraduate Students’ Experiences in

Programming: Difficulties and Obstacles Üniversite Öğrencilerinin
Programlama Deneyimleri: Güçlükler ve Engeller,” Turkish Online J.

Qual. Inq., vol. 5, no. 3, pp. 9–27, 2014.

[38] K. Kwon and J. Cheon, “Exploring problem decomposition and program
development through block-based programs,” Int. J. Comput. Sci. Educ.

Sch., vol. 3, no. 1, p. 3, 2019.

[39] M. Tom, “Five Cs framework: A student-centered approach for teaching
programming courses to students with diverse disciplinary background,”

J. Learn. Des., vol. 8, no. 1, pp. 21–37, 2015.

[40] M. Othman, N. M. Zain, U. H. Mazlan, and R. Zainordin, “Assessing
cognitive enhancements in introductory programming through online

collaborative learning system,” 2015 Int. Symp. Math. Sci. Comput. Res.,
vol. 2015, pp. 7–12, 2015.

[41] M. Karyotaki and A. Drigas, “Online and other ICT-based training tools

for problem-solving skills,” Int. J. Emerg. Technol. Learn., vol. 11, no. 6,
pp. 35–39, 2016.

[42] M. Tiantong and S. Teemuangsai, “The four scaffolding modules for
collaborative problem-based learning through the computer network on

moodle lms for the computer programming course,” Int. Educ. Stud., vol.
6, no. 5, pp. 47–55, 2013.

[43] A. Gomes and A. Mendes, “A teacher’s view about introductory

programming teaching and learning: Difficulties, strategies and
motivations,” Proc. - Front. Educ. Conf. FIE, vol. 2015-Febru, no.

February, 2015.

[44] D. C. Berliner, “The Near Impossibility of Testing for Teacher Quality,”
J. Teach. Educ., vol. 56, no. 3, pp. 205–213, 2005.

[45] M. Adler and E. Ziglio, Gazing into the oracle. Bristol, PA: Jessica

Kingsley Publishers, 1996.

[46] N.Amira M.Saffie, Nur’Amirah Mohd Shukor, and Khairul A. Rasmani,
“Fuzzy delphi method: Issues and challenges,” pp. 1–7, 2017.

[47] L. A. Zadeh, “Fuzzy set,” Inf. Control, vol. 8, pp. 338–353, 1965.

[48] Mohd Ridhuan Mohd Jamil, Saedah Siraj, Zaharah Hussin, Nurulrabihah
Mat Noh, and Ahmad Ariffin Sapar, Pengenalan Asas Kaedah Fuzzy

Delphi Dalam Penyelidikan Reka Bentuk dan Pembangunan. Minda
Intelect, 2017.

[49] N. S. Thomaidis, N. Nikitakos, and G. D. Dounias, “The evaluation of

information technology projects: A fuzzy multicriteria decision-making
approach,” Int. J. Inf. Technol. Decis. Mak., vol. 5, no. 1, pp. 89–122,

2006.

[50] C.-H. Cheng and Y. Lin, “Evaluating the best main battle tank using
fuzzy decision theory,” Eur. J. Oper. Res., vol. 142, pp. 174–186, 2002.

