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Abstract—Seismic images are data collected by sending 

seismic waves to the earth subsurface, recording the reflection 

and providing subsurface structural information. Seismic 

attributes are quantities derived from seismic data and provide 

complementary information. Enhancing seismic images by fusing 

them with seismic attributes will improve the subsurface 

visualization and reduce the processing time. In seismic data 

interpretation, fusion techniques have been used to enhance the 

resolution and reduce the noise of a single seismic attribute. In 

this paper, we investigate the enhancement of 3D seismic images 

using image fusion techniques and neural networks to combine 

seismic attributes. The paper evaluates the feasibility of using 

image fusion models pretrained on specific image fusion tasks. 

These models achieved the best results on their respective tasks 

and are tested for seismic image fusion. The experiments showed 

that image fusion techniques are capable of combining up to 

three seismic attributes without distortion, future studies can 

increase the number. This is the first study conducted using 

pretrained models on other types of images for seismic image 

fusion and the results are promising. 

Keywords—Image fusion; seismic image; seismic attribute; 

neural networks 

I. INTRODUCTION 

Seismic images are data gathered during the exploration of 
the earth subsurface by sending seismic waves to the earth 
subsurface and recording the reflection. They provide 
subsurface structural information and allow the modeling and 
visualization of the earth subsurface [1]. Seismic attributes are 
quantities derived from seismic data that supplement and 
emphasize certain information to make the visualization 
process more informative [2]. To create an accurate 
representation of the earth subsurface, a geophysicist needs to 
look at the seismic image and its corresponding seismic 
attributes, interpreting a large amount of information 
simultaneously, which is a cumbersome effort. Therein lies the 
challenge, combining multiple views into a single view that 
effectively exploits all information contained in all individual 
views and reduces the duration of the process. 

There has been work addressing the challenge of 
combining seismic attributes such as volume blending, cross-
plotting, principal components analysis (PCA) and Octree [3], 
[4]. The most recent and relevant is the work done by 
Al-Dossari et al. [4]. They have extended octree color 
quantization Algorithm, to increase the number of the 

combined seismic attributes. The main limitations are the 
maximum number of attributes is limited to eight, the order of 
the attributes effects the results and the combined image 
results have artifacts. 

Alfarraj et al. [5] proposed a multiscale fusion technique to 
enhance the seismic geometric attributes using a Gaussian 
pyramid to generate different scales of an attribute, which then 
are fused together to get an enhanced attribute. This technique 
reduces noise and improves the resolution. 

By extending the use of fusion techniques to enhance 
seismic data instead of enhancing the resolution of a single 
attribute, these fusion techniques can be used to enhance 
seismic data by combining multiple attributes, combining 
multiple images into a single one is a need that is common 
among several domains such as photography and medical 
imaging. One of the techniques used to address this need is 
Image fusion. 

Image fusion is used to combine two or more input images 
containing complementary details of the same scene creating a 
new image [6]. The input images are taken from the same 
imaging device with different parameters or from different 
imaging devices; the resulting fused image will be more 
informative than any individual input image [7]. Image fusion 
techniques show incredible benefits in various tasks of image 
processing that depend on viewing multiple images of the 
same scene such as object detection and recognition as well as 
in a variety of fields, for example digital photography, medical 
imaging and remote sensing [6], [7]. On these types of tasks, 
combining the significant details of multiple input images into 
a single fused image can often reduce the difficulty and 
enhance the outcome of the task [6]. The information 
enhancement provided by seismic attributes of a seismic 
image is similar to many image fusions tasks such as medical 
imaging and remote sensing. Conceptually, we can consider 
different seismic images and attributes as different types of 
medical images i.e., the seismic (raw) image as magnetic 
resonance imaging (MRI); one attribute as positron emission 
tomography (PET); and another attribute as computed 
tomography (CT). 

Recently, with the rise of Deep Learning (DL) many 
methods from image fusion using DL have been proposed. DL 
is a class of Machine Learning algorithms that excel in feature 
extraction and image representation using neural networks. 
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Convolutional Neural Networks (CNN) can solve 
conventional hand-crafted approach issues of designing fusion 
methods and selecting fusion rules and activity-level metrics 
as it can learn features implicitly through training on data, 
since image fusion tasks are very similar to classification tasks 
which CNN shines in, so it gets better results [8]. 

In order to achieve our task, in our paper, we propose a 
deep learning method which is constructed by neural 
networks. We use the method to extract image features and 
then fuse them into one. The method receives 3-dimensional 
(3D) image data; each piece of 3D data represents either the 
seismic (raw data) image or seismic attributes. Then the 
method slices the 3D data and forwards the resulting 2-
dimensional (2D) images as an input to the fusion model, 
which extracts the important information from input images 
using the convolutional layer and creates feature maps. Then 
we fuse the feature maps to create the output image. Finally, 
the method constructs the output as 3D data. 

We conduct experiments to analyze the proposed method 
using different fusion models. These models have been 
pretrained on a dataset belonging to different image fusion 
tasks and have achieved excellent results compared to other 
models’ performance on the specific task. The reason for 
using pretrained models is the lack of available datasets for 
seismic images with ground-truth fusion images, which hinder 
training process. We are investigating task-specific models’ 
performance on seismic images, trying to find commonality 
between this task and other tasks, whether due to data 
similarity or a certain task’s model ability to generalize to 
include seismic images tasks. Thus, the experiments will 
analyze similarities between the seismic image fusion task and 
other fusion tasks. 

Our paper is structured as follows. In Section II, we briefly 
review related works. In Section III, the proposed fusion 
method is introduced in detail. The experiment results are 
shown in Section IV. The conclusion of our paper and 
discussion are presented in Section V. 

II. RELATED WORK 

In this section, we give a briefing of the previous work 

done by extended octree quantization method and highlight 
its limitation. Then we review the work done so far in Image 
fusion, to investigate the most relevant approaches that suites 
the problem of seismic attributes combination. 

Al-Dossari et al. [4], proposed to use octree and its color 
quantization algorithm to combine groups of attributes onto a 
single one, by extending octree’s color quantization three 
nodes to eight nodes octree color quantization, this method 
originated from image processing of compressing colors, it 
handles eight groups of attributes to form a single attribute. 
The method was tested on to combine up to eight seismic 
attributes. The method has the following limitations: The 
order of the chosen attribute will affect the result and the need 
to take average of multiple octree sequences to rectify and the 
method can be applied to up to eight attributes. 

A. Overview of Image Fusion 

Image fusion is a subfield of image processing. It is the 
process of  combining multiple input images captured from 
one or more sensors to create a single image [6]. The aim of 
image fusion is not only to minimize the amount of 
information, but also to create images that are more suitable 
and more comprehensible to human and computer perception. 
It gives the possibility to collect information from multi-
source images to generate a high-quality fused image with all 
spatial and spectral information [7]. 

The image that has been fused must satisfy the following 
conditions: (1) include all pertinent information, (2) be clear 
of all artifacts and anomalies and (3) have all noise and error 
removed. Major applications of image fusion include remote 
sensing image fusion, medical image fusion, and multi-focus 
image fusion [6]. 

The general image fusion strategy consists of the following 
steps: acquisition of different input images, image-to-image 
registration and fusion. Image registration entails feature 
detection, aligning and matching, estimation of the 
transformation model, image transformation and resampling. 
Fusion rules are performed either as a direct mathematical 
application such as averaging or choosing the maximum pixel 
value or as a part of the image transformation model [9]. 

DL-based image fusion has shown a lot of potential in 
improving image fusion techniques. The basic architecture of 
CNNs consists of two parts: the feature extractor and the 
classifier. The feature extractor uses convolutional and 
pooling layers to extract the salient features of the inputs and 
represent them using activation maps, which align with the 
image registration step of image fusion. The classifier can be 
utilized or changed to apply fusion rules on the maps, which 
align with the fusion step of image fusion. Also, CNNs have 
the ability to use multiple fusion rules due to being trained on 
a large dataset, thus avoiding one of the limitations of classical 
fusion methods. Fig.1 shows the basic architecture of CNNs. 

 

Fig. 1. Basic Architecture of CNNs. 

B. Image Fusion Applications 

Image fusion can be grouped into multiple classes based 
on the task it performs. These classes include the following: 
(1) multi-focus image: it fuses images with different focus 
depth to create a focused image; (2) Visible/Infrared light 
image fusion: it fuses images taken using infrared with visible 
light to create a more informative image; (3) medical image 
fusion: it fuses images used in the medical field such as MRI 
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and CT to create a more informative image; and (4) multi-
exposure image fusion: it fuses images with different exposure 
with different lighting to create a superimposed image [10]. 

For the task of multi-focus image fusion, a CNN is used by 
Liu et al. [11] to address a binary classification task in the area 
of multi-focus image fusion in the spatial domain. The 
Siamese network structure is implemented where two similar 
networks function together to generate one output. Du and 
Gao [12] extended the work of Liu et al. [11] with the 
distinction of adding multi-scale decomposition of inputs 
before feeding it to the network. The input images are 
segmented into three overlapping stacks with three different 
sizes. The network generates three focus maps that are 
averaged to create a single fused focus map. The work [11] 
demonstrates that the method benefits from the introduction of 
the multi-scale strategy in terms of performance but it suffers 
from the drawback of increased computational cost. Another 
issue most multi-focus image fusion CNN models face is that 
although they enhance the decision maps, the initial 
segmented maps suffer from many errors. To overcome this, 
Amin-Naji et al. [13] proposed a novel Ensample of CNN 
(ECNN) framework to take advantage of ensample learning, 
which is used to improve the model’s ability to generate 
decision maps and take advantage of learning from several 
datasets. The proposed method uses three CNNs trained on 
three different datasets to create the initial decision maps. The 
authors used COCO dataset and performed transformation on 
it to create the additional two datasets. It has the following 
structure. It has four convolutional layers of sizes (32 64 64, 
16 32 128, 8 16 128, 4 8 256) and kernel size (3 3), 
stride (1 1), padding (1 1), non-linear activation and max-
pooling (2 2) for all convolutional layers. For CNN2 and 
CNN3, they concatenate the output of convolutional layer 
(8 16 128) as input to convolutional layer (4 8 256), and 
the output then is concatenated with CNN1 as input to 
convolutional layer (4 8 256). The output is concatenated 
and fed to the fully connected layer of size (4 8 512), that 
classifies each pixel. The novelty of the proposed method lies 
in its input feeding mechanism; instead of creating branches 
for feeding focused and unfocused images, the focused and 
unfocused parts of the image are fed together. As a result, it 
outperformed all the other models, achieving state-of-the-art 
results. 

For the task of Visible/Infrared light image fusion,  Zhong 
et al. [14] created a model for image fusion and enhanced 
resolution. First, the input images are upscaled and 
decomposed, then SR-CNN [15] is used to improve the 
resolution the high frequency maps. Then they are fused using 
choose-max rule, while low frequency coefficients are fused 
using averaging rule. Then the fused image is created by 
fusing both high- and low-frequency coefficients. This model 
has produced good results in medical image fusion and multi-
focus fusion in addition to Visible/Infrared light image fusion. 
Li and Wu [16] proposed “DenseFuse,” a novel encoder-
decoder model for the fusion of infrared and visible images. 
The model uses a dense block in the encoding part to improve 
the flow of information between layers and avoid information 
degradation. It has the following structure: the encoder has 
two components, a convolutional layer of size (3 3 1 16) 

and a dense block. The dense block has three cascading 
convolutional layers of sizes (3 3 16 16), (3 3 32 16) 
and (3 3 48 16). The output is fed to the fusion layer to 
fuse the feature maps. The decoder has four convolution layers 
of sizes (3 3 64 64), (3 3 64 32), (3 3 32 16) and 
(3 3 16 1). It receives the feature maps from the encoder 
and constructs the image. The results showed state-of-the-art 
performance compared to other models and exhibited that the 
proposed model can be applied to other fusion tasks with 
appropriate modification. 

For the task of medical image fusion, Liu et al. [17] 
incorporated a multi-scale decomposition framework instead 
of spatial fusion into the method proposed by [11]. The 
presented framework decomposes input images using a 
Laplacian pyramid and also passes the input images into the 
CNN to acquire the weight map, which is then decomposed 
using a Gaussian pyramid, using a similarity strategy to adjust 
fusion rules. The Laplacian and Gaussian decompositions are 
fused, and then the fused image is created using a Laplacian 
pyramid reconstruction. In Liu et al. [18] Convolutional 
Sparse Representation (CSR) was used for image fusion. In 
their method the proposed input images are segmented into 
detail layer and base layer. Convolutional Sparse Coding 
(CSC) is executed on the detail layer to get sparse coefficient 
maps. After several calculations the “choose max” rule is 
applied to produce a fused coefficient map that is used 
alongside dictionary filters to create the fused detail layer. 
Dictionary filters are a set of filters that are trained on a set of 
natural scene images. Most medical imagery fusion models 
cannot preserve the energy levels of the input images in the 
fused images. Yin et al. [19] proposed a novel model that uses 
Nonsubsampled Shearlet Transform Domain with Parameter-
Adaptive Pulse Coupled-Neural Network (NSST PA-PCNN) 
that can maintain the energy level in the fused image. PCNN 
is an artificial neural network with biological procedures [20]. 
The paper presented the use of PAP-PCNN to increase the 
convergence speed and reduce computation. It also uses NSST 
for enhanced detail extraction. NSST-PAPCNN is a pulse-
coupled neural network that takes the following four steps: 
NSST decomposition, high-frequency band fusion, low-
frequency band fusion and NSST reconstruction. NSST 
decomposition extracts image details using the Shearlet filter, 
and parameter-adapting pulse coupling trains the neuron in an 
iterative manner for the fusion process. The model exhibits 
state-of-the-art performance and outperforms on existing 
tasks. 

For the task of multi-exposure fusion, Kalantari and 
Ramamoorthi [21] proposed a solution to the motion artifact 
in dynamic scenery through the implementation of a CNN for 
High Dynamic Range (HDR) image creation. To generate the 
HDR image directly, three aligned LDR images are used as 
the input of the CNN. The authors implemented three different 
network structures to investigate the output adjustments. For 
the loss function, the Euclidean interval between tone-mapped 
ground-truth and approximate HDR images is used. Prabhakar 
et al. [22] proposed “DeepFuse,” a novel model for multi-
exposure fusion that takes an unsupervised approach in the 
fusion process. Also, the authors created and trained the 
network on a new benchmark dataset, improving the model’s 
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learning rate. The CNN takes an input image pair and 
segments the image into color channels of YCbCr. The reason 
for the segmentation is to use luminance channel Y to display 
fundamental details by using the CNN feature extraction 
capabilities. Then the remaining Cb and Cr channels for each 
input are fused respectively using weighted-average fusion 
rule, generating CbFused and CrFused channel and they are 
combined with the outcome of Y channel to generate the fused 
image. Then the resulting images are converted back into 
RGB. DeepFuse is an encoder-decoder model and has the 
following structure: the encoder has two input channels, both 
of which have two convolution layers of sizes (5 5 1 16) 
and (7 7 16 32), respectively. A fusion layer using addition 
rule is used to fuse the feature maps from both channels. The 
decoder has three convolution layers of sizes (7 7 32 32), 
(5 5 32 16) and (5 5 16 1). It receives the feature maps 
from the encoder and constructs the image. The results 
showed state-of-the-art results compared to other multi-
exposure fusion models. Also, results showed that DeepFuse 
trained on multi-exposure data can perform well on a multi-
focus task and that the CNN filters are general enough to be 
used on other image fusion tasks. 

Our studies showed that the pretrained models have not 
been used for seismic image fusion, and that there are 
similarities between seismic images and medical images, the 
data capturing method and the semantic importance of 
different images used in the fusion process. For data 
capturing, seismic data and medical image data capture 
images of a survey line using different kinds of waves to 
represent a 3D object [23]. Also, seismic and medical image 
fusion inputs contain different types of information for every 
image. While there are no similarities between the multi-
exposure, Infrared/Visible and multi-focus image fusion tasks, 
results showed that training models on composite or detailed 
scenery will allow models to better generalize to other tasks 
[24]. 

III. PROPOSED METHOD 

The proposed image fusion method supports the fusion of 
seismic data and one or more seismic attributes as follows: 
suppose there are M inputs to the method and M 2, M are 3D 
images of identical size that are either seismic data or 
attributes denoted as IR and IAn respectively, as 
IAn|n {1,2,3,…,N} as seen in Fig. 2. The inputs IR and IAn are 
first sent to a slicing function to covert the 3D data (x,y,z) into 
2D data (x,y) with Z number of images. The output of the 
slicing function is fed as an input to the fusion model. The 
fusion model accepts a set of images as an input containing 
one image from each IR and IAn starting by z =1 until Z. After 
all the fused images are created by the fusion model and the 
fusion metrics are calculated, the fused images are then made 
into 3D image data using the reverse of the slicing function. 

A. Fusion Model 

We chose the models that performs best in their respective 
fusion task after comparing them in Section II and will 
compare the performance on the seismic image fusion task. 
Table I shows a summary of the selected fusion models. 

 

Fig. 2. Schematic of the Proposed Method. 

TABLE I. SELECTED FUSION MODELS 

Fusion Task Model Name Dataset 

Multi-Exposure DeepFuse [22] EMPA HDR  

Multi-Focus ECNN [13] MS-COCO 

Medical imagery NSST-PAPCNN [19] Brain Atlas 

Visible/Infrared  DenseFuse [16] MS-COCO 

B. Fusion Metrics 

The evaluation performance metrics of image fusion that 
were used in most of the methods in [10,13,16,18] are used to 
compare the performance of the models. The assessment of 
the non-referenced fusion is not direct since the ground truth 
images are not available, so there is a need to use several non-
referenced image fusion metrics to evaluate the models’ 
performance. The metrics formulas can be found in [25]. We 
used the following metrics: 

1) Entropy (EN): measure the information content of the 

fused image. 

2) Information Transfer (QAB/F): measure the total 

information transferred from source images to fused image. 

3) Modified Fusion Artifacts (NAB/F): measure artificial 

artifacts generated by fusion. 

4) Feature Mutual Information (FMI):  measure the 

dependency between the input images and fused image. 

5) Mutual Information (MI): measure the similarity of 

image intensity between the fused and reference images. 

IV. EXPERIMENTS AND RESULTS 

We conducted experiments on the models discussed in 
Section II using pretrained models published by [10,13,16,18]. 
In our study we have designed two experiments. The first 
experiment takes two inputs and the second one takes three 
inputs. The first experiment is used to ascertain if the 
proposed models can combine two different seismic images. 
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The second experiment is used to show that image fusion can 
increase the input number limit without distortion, by 
combining three different seismic images without distorting 
the resulted image. The common goal of both experiments is 
to measure and evaluate the performance metrics of running 
the four selected fusion models on our dataset. Also, 
conducting the experiments on different numbers of inputs 
serves the goal of examining the change of measurements as 
we add more inputs. To evaluate the fusion results, we 
perform a visual comparison alongside the quantitative 
comparison, to assess the visual representation such as texture 
and color etc. of the fused image alongside the structural 
information. 

In the first experiment: the number of inputs M is 2; one 
input is a seismic image (IR) and the second is a seismic 
attribute named skeleton created by a skeletonization 
algorithm denoted as (IA) [26]. The size of IR and IA is 
(876,221,271). 

In the second experiment: the number of inputs M is 3; in 
addition to (IR) and (IA), another seismic attribute named 
coherence is used, denoted (IAc). IAc has the same size as IR and 
IA. 

There are four sets of IR, IA and IAc for the experiments. A 
sample of these images is shown in Fig. 3. The images are 
minimized and cropped to accommodate the space limit; 
experiments are performed on original images. 

Experiment 1 and 2’s results are presented in Table II and 
Table III respectively. The average results of the four sets of 
each experiment are displayed. Results in bold signify best 
performance and results that are underlined signify second 
best. The results showed the performance of the models with 
different numbers of available inputs. Experiment 2’s fusion 
had more input, and thus the amount of information in the 
fusion increased, which can be indicated by larger values of 
EN and MI, and the amount of artificial fusion noise indicated 
by NAB/F, Thus the discussion below will consider experiment 
1’s results as it has more information. 

The fusion results on two sets of images due to the space 
limit are shown in Fig. 4 and Fig. 5. 

As we can see, the DeepFuse model outperformed all other 
models. It had the best values in (EN, NAB/F, MI) and second-
best values in (QAB/F, FMI). Having high EN values denotes 
that the fused image has a large amount of information and 
that the model is good for feature extraction. Having high FMI, 
QAB/F and MI values denotes that the fused image has 
maintained structural information and features. Having low 

NAB/F values denotes less artificial noise due to fusion. When 
visually comparing the fused image to the input image, the 
fused image contains all structure information from the inputs; 
all the edges are clear; the color and texture of the inputs are 
present and there is no noticeable fusion noise. The 
performance of the DeepFuse model can be attributed to its 
filters’ adaptability, as it was trained on a large dataset of 
high-resolution complex images, which allowed the filters to 
learn and reach a point where they can perform remarkably 
well on other fusion tasks. 

The ECNN model had the best values of FMI and the 
second-best values of NAB/F. This can be attributed to the 
fusion rules used by the multi-focus task, which chooses the 
max value of the pixels in the fusion. The fused pixel value is 
in one of the inputs, and thus there is high dependency 
between the inputs and the fused images. But, as can be 
observed in the fusion results example in Fig. 5, ECNN has 
the worst visual representation of the fused information. The 
fused image is missing a lot of structural information and the 
color and texture don’t match the input images. This might be 
as a result of the nature of the multi-focus task, since its aim is 
to extract the best parts from multiple input images and create 
a new image from those parts, which in hindsight doesn’t 
match the desired outcome. Thus, it can be inferred that the 
multi-focus fusion models are not suitable for the seismic data 
fusion task. 

 

Fig. 3. Four Sets of Source Images. Left Column Contains Seismic Data (IR) 

Middle Column Contains Skeleton Attribute (IA), and Right Column Contains 

Coherency Attribute (IAc). 

TABLE II. EXPERIMENT 1 FUSION RESULTS AVERAGE OF 4 PAIR 

Metric DeepFuse ECNN 
NSST-

PAPCNN 
DenseFuse  

EN↑ 6.27397 2.5677 4.74846 5.74016 

QAB/F ↑ 0.40374 0.2435 0.42837 0.40147 

FMI ↑ 0.88237 0.8859 0.85902 0.86483 

MI ↑ 12.54794 5.1355 9.49692 11.48034 

NAB/F ↓ 7.7083e-4 0.0112 0.09243 0.02932 

TABLE III. EXPERIMENT 2 FUSION RESULTS AVERAGE OF 4 PAIR 

Metric DeepFuse ECNN 
NSST-

PAPCNN 
DenseFuse  

EN↑ 6.71435 2.6955 5.5743 6.27537 

QAB/F ↑ 0.60482 0.2468 0.6092 0.50932 

FMI ↑ 0.92781 0.9356 0.8978 0.88958 

MI ↑ 13.4286 5.3911 11.149 12.5508 

NAB/F ↓ 0.00554 0.0108 0.15933 0.03124 
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Fig. 4. Fusion Results of Experiment 1, a Test Set is displayed here to 

Illustrate the Fusion Results. Above-Line: Inputs, Below-Line: Fusion 

Outputs. 

 

Fig. 5. Fusion Results of Experiment 2, a Test Set is displayed here to 

Illustrate the Fusion Results. Above-Line: Inputs, Below-Line: Fusion 

Outputs. 

The NSST-PAPCNN model had the best values of QAB/F, 
which can be attributed to the model’s ability to preserve 
energy levels. Seismic images and medical images are similar 
in that they are both collected using surveys and that the type 
of information of every input image is different and needs to 
be maintained. However, the model suffers from the highest 
artificial noise having the highest values of NAB/F. Visually the 
fused image emphasizes the edges and lines, but it doesn’t 
capture the color and texture from the input images, and as 
more inputs are added the fusion noise increases creating a 
shadow effect on the image. 

Finally, the DenseFuse model has the second-best values 
of EN and MI, indicating the model’s ability to extract and 
maintain the structural information of the input images. This 
can be attributed to the Dense Block used in the model 
preserving the images’ structure. The model had the second-
best overall performance. Visually comparing the fused image 
to the input image, the fused image contains all structure 
information from the inputs; all the edges are clear; and there 
is no noticeable fusion noise. Visually the difference between 
the best performer DeepFuse and the second-best DenseFuse 
is the DeepFuse’s ability to capture the color and texture of 
the inputs better with less artificial noise. 

In relation to the work done previously, it has combined a 
limited number of seismic attributes (eight) and cannot add 
more due to the cluttered results. Our research is work in 
progress, and we are planning to experiment by adding more 
attributes. In principle, our work can accept unlimited number 
of attributes. Also, as can be seen from our experiments, a 
third attribute improved the results and has not cluttered the 
images rendering them unreadable. 

V. CONCLUSION 

In this paper, we investigate enhancement of 3D seismic 
images using image fusion and deep learning. Fusion 
technique has been used to enhance the resolution and reduce 
the noise of a single seismic attributes. The study was 
conducted to evaluate the feasibility of using image fusion 
models pretrained on other image fusion tasks for seismic data 
fusion. We presented a method for the enhancement of 3D 
seismic images by slicing the 3D data and attributes to images 
and feeding them to a fusion model. We chose four different 
models pretrained for different image fusion tasks and tested 
the method. We used quantitative fusion metrics to evaluate 
our fusion method. The experimental results show that the 
DeepFuse model has good fusion results on seismic images; 
both quantitative metrics and visual representation of the fused 
images are better than the results of other models. Also, the 
experimental results show that models pretrained for multi-
focus image fusion are not suitable for the task of seismic 
image fusion. In comparison to previous done work, our 
results show that the increasing attribute number doesn’t 
distort the image. The experiments showed that image fusion 
techniques are capable of combing three seismic attributes. In 
the future, we will conduct studies to increase the number. 
This is the first study conducted using models pretrained on 
other types of images for seismic image fusion and the results 
are promising. 
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