
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 1, 2021

524 | P a g e

www.ijacsa.thesai.org

Conceptual Temporal Modeling Applied to Databases

Sabah Al-Fedaghi

Computer Engineering Department, Kuwait University, Kuwait

Abstract—We present a different approach to developing a

concept of time for specifying temporality in the conceptual

modeling of software and database systems. In the database field,

various proposals and products address temporal data. The

difficulty with most of the current approaches to modeling

temporality is that they represent and record time as just another

type of data (e.g., values of a bank balance or amounts of money),

instead of appreciating that time and its values are unique, in

comparison to typical data attributes. Time is an engulfing

phenomenon that lifts a system’s entire model from staticity to

dynamism and beyond. In this paper, we propose a

conceptualization of temporality involving the construction of a

multilevel modeling method that progresses from static

representation to system compositions that form regions of

dynamism. Then, a chronology of events is used to define the

system’s behavior. Lastly, the events are viewed as data sources

with which to build a temporal model. A case-study model of a

temporal banking-management system database that extends

UML and the object-constraint language is re-modeled using

thinging machine (TM) modeling. The resultant TM

diagrammatic specification delivers a new approach to

temporality that can be extended to be a holistic monitoring

system for historic data and events.

Keywords—Conceptual modeling; temporal database; static

model; events model; behavioral model

I. INTRODUCTION

In most existing relational database systems, data objects
are stored such that when an attribute’s value changes, the
new value replaces the old value. Thus, only the latest state of
an object resides in the database. However, discarding old
information is inappropriate for many database applications
(e.g., financial, health-care management, reservation, medical,
and decision support system applications). In these cases, time
values must be associated with data to indicate the time for
which the data are valid. A time dimension is added to a
database at either the attribute or the tuple level to maintain a
data object’s history. Such a database is referred to as a
temporal database [1]. Many temporal extensions of the
classical relational database model have been proposed, and
some of them have been realized (e.g., [2], [3]).

Conceptual models are essential for describing an
application’s requirements, and they facilitate communication
between users and designers because they do not require
knowledge of the technical features of the underlying
implementation platform [4]. A conceptual model provides a
notation and formalism, which designers can use to construct a
high-level, implementation-independent description of
selected aspects of the modeled portion of reality [5].

Time is a source of mystery and sometimes is treated as a
philosophical curiosity [6]. In software engineering, modeling

research mostly adopts a “clock-based” mechanistic
interpretation of time and ignores the complex, multifaceted,
subtle, and socially embedded nature of temporality [7].
Proposals and products have been developed in the database
field to address temporal data (e.g., SQL/temporal) [8].
Various time-related concepts exist (e.g., according to Halpin
[8]), and three basic temporal data types may be distinguished:
instant, interval, and period. Temporal operators (e.g.,
subtraction) can be defined for each of these types. Temporal
database terminology includes many kinds of time values,
including valid time, transaction time, snapshot, bitemporal,
spun, and time stamp. Extra columns in relational tables often
capture some of these times, and the time-as-value sometimes
is distinguished from the facts (true propositions). According
to Halpin [8], facts are completely devoid of any temporal
aspect, and once-only facts correspond to a single event, for
which an event seems to be defined as a state of affairs.

A. Related Works

Almost all current approaches to data temporality take the
same conceptualization scheme described in the previous
paragraph. Surveying more such works would not serve our
purposes because what we propose in this paper is not based
on their paradigm. Instead, we describe the difference between
an example how such approaches conceptualize temporality
and our proposed conceptualization of data temporality in our
thinging machine (TM) methodology.

B. Difficulties

Over the years, the topic of temporality has been a rich
research theme, such as in philosophical essays on time and
temporal reasoning. Time is an important notion in many real-
world applications. In recent years, research on data
temporality has spread to other areas (e.g., the temporal
dimensions of semantic Web applications and temporal
ontologies). Yet, the field of temporality studies for such
applications lacks a common terminology, infrastructure, and
conceptual framework, thus reducing the adoption of temporal
database technology [9]. According to Lu et al. [10], we have
witnessed a major burst of temporal support in conventional
database management systems; however, the existing temporal
data model is inadequate, and such databases suffer from
limited expressiveness [10]. Additionally, notions such as the
transaction time in temporal data models are difficult to
establish and update [10].

C. Proposed Solution to the Identified Cause

In this paper, we advocate the thesis that the difficulties
with current approaches to representing and recording time
notion originate from them handling time data as just another
value, similar to the number of cars, the length of a tree, or an
amount of money. This conception reflects a lack of

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 1, 2021

525 | P a g e

www.ijacsa.thesai.org

appreciation for time as a one-of-a-kind singularity distinct
from things such as attributes. In this study, we view time as
an engulfing phenomenon that lifts the entire model
description from staticity to dynamism. Such movement from
staticity converts static description into eventized form (TM
machine), injecting activity into the whole system in a way
that is analogous to transforming a mere textual narrative into
a live theater performance. The text, “Alice comes across a
caterpillar sitting on a mushroom”, when converted to a
performance in a theater, becomes Alice as a thing knotted in
time comes across as an action knotted in time, a caterpillar as
a thing knotted in time, sitting as an action knotted in time, on
a mushroom as a thing knotted in time. The sentence “Alice
comes across a caterpillar sitting on a mushroom”, with its
things and action, is a static model, whereas the performance
is a dynamic model in which things and actions are
transformed into events. Our model captures such a distinction
between staticity and dynamism that is not found in most other
models (e.g., UML) representing dynamism in a static form
(e.g., a UML activity diagram).

The static representation shown in Fig. 1 (adapted from
[11]), in which the time is the value of the temporal attribute
Date, lacks the key notion that time data are generated at a
higher level than that of static descriptions. This idea is
adopted in this paper, whereby a static fact (Employee,
MoneyAmount) is at a lower modeling level than time is
(Fig. 2). Fig. 2 shows the lower level (dark region) and upper
level, along with their respective data (e.g., Date).

D. Outline of the Approach

In this paper, we express the domain involved (i.e., bank-
operations management) in terms of a new modeling
methodology called TM modeling, which is a conceptual tool
that abstractly represents a system at four levels: the static,
dynamic, behavioral, and temporal levels. The crucial
construction of this multilevel modeling involves a
progression from the static representation of a system to a set
of compositions that form regions of events. The event
chronology defines the system behavior. Lastly, the events are
viewed as data sources for a temporal system.

These modeling stages are illustrated in a simplified form
using a single decomposition (Fig. 3). Fig. 4 shows the
corresponding event. Fig. 5 shows the meta-event that
produces salary data and its data of occurrence, which is
stored as a record in the temporal salary database. Of course,
the record includes other data such as employee names and ID
numbers. This record is generated each time the event of
updating the salary value occurs.

To provide a self-contained paper, the next section
includes a brief summary of the TM model. Section 3 details a
full example of TM modeling for understanding the model and
its concepts, such as actions, events, and behaviors. Section 4
introduces a temporal database given by El Hayat et al. [12]
that extends UML and the object-constraint language (OCL)
to produce an elaborate conceptual schema of banking-system
management. This temporal database is re-modeled using the
TM methodology.

Fig. 1. Model of a Salary with History (Adapted from Balsters et al. [11]).

Fig. 2. The Conceptualization of Temporality Adopted in this Paper.

Fig. 3. The Static Model Presented in Terms of a Single Decomposition.

Fig. 4. The Dynamic Model with a Single Event.

Fig. 5. The Temporal Model Proposed in this Paper.

II. TM MODELING

The TM model articulates the ontology of the world in
terms of an entity that is simultaneously a thing and a
machine, called a thimac [13-22]. A thimac is like a double-
sided coin. One side of the coin exhibits the characterizations
assumed by the thimac; on the other side, operational
processes emerge, which provide a dynamism that goes
beyond structures or things to embrace other things in the
thimac. A thing is subjected to doing (e.g., a tree is a thing that
is planted, cut, etc.), and a machine does (e.g., a tree is a
machine that absorbs carbon dioxide and uses sunlight to
make oxygen). The tree thing and the tree machine are two
faces of the tree thimac. A thing is viewed based on
Heidegger’s [23] notion of thinging. According to Bryant [24],
“A tree is a thing through which sunlight, water, carbon
dioxide, minerals in the soil, etc., flow. Through a series of
operations, the machine transforms those flows of matter,

Time

 Region of the event

MoneyAmount Employee

Event

Event

Event

Date

 Employee Salary Receive

Region of the event

Event

Time

Employee Salary Receive

Create

Triggering

 Event
 Employee Salary Receive

Meta-event

 Date

Create Receive

Temporal

database

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 1, 2021

526 | P a g e

www.ijacsa.thesai.org

those other machines that pass through it, into various sorts of
cells.” A thing is a machine, and a machine is a thing. A
machine facilitates the movement of things; simultaneously, as
a machine, it is a thing in its processual mode.

The simplest type of machine is shown in Fig. 6. The
actions in the machine (also called stages) are as follows:

Arrive: A thing moves to another machine.

Accept: A thing enters a machine. For simplification, we

assume that all arriving things are accepted; hence,

we can combine the arrival and acceptance of the

thing into the receive stage.

Release: A thing is marked as ready to for transfer outside

the machine (e.g., in an airport, passengers wait to

board after passport clearance).

Process: A thing is changed in form, but no new thing

results.

Create: A new thing is born in a machine.

Transfer: A thing is input into or output from a machine.

Additionally, the TM model includes storage and
triggering (denoted by a dashed arrow in this study’s figures),
which initiates a flow from one machine to another. Multiple
machines can interact with each other through the movement
of things or triggering stages. Triggering is a transformation
from one series of movements to another (e.g., electricity
triggers cold air).

Fig. 6. The Thinging Machine.

III. TM MODELING EXAMPLE

Because the subject of temporality in this paper is a fourth-
level notion in the TM model, this section builds a solid basis
for understanding the model before treating the topic of
temporal data.

Etzion and Niblett [25] presented a fast flower-delivery
system specification as a case study of an event-processing
scheme. The case study involves a consortium of flower stores
that have an agreement with local independent van drivers to
deliver flowers from the stores to their destinations.

When a store gets a flower delivery order, it creates a
request, which is broadcast to relevant drivers within a certain
distance from the store, with the time for pickup (typically
now) and the required delivery time. A driver is then assigned,
and the customer is notified that a delivery has been
scheduled. The driver makes the pickup and delivery, and the
person receiving the flowers confirms the delivery time by
signing for it on the driver’s mobile device. The system
maintains a ranking of each individual driver based on his or

her ability to deliver flowers on time. Each store has a profile,
which can include a constraint on the ranking of its drivers.
The profile also indicates whether the store wants the system
to assign drivers automatically or whether it wants to receive
several applications and then make its own choice. [21].

Fig. 7 shows the corresponding static TM model. The
diagram includes the user (circle 1), the store (2), the driver
(3), and the person who receives the flowers (4). The other
parts of the diagram model the system. The following occurs
accordingly:

 The user creates the order (4), which flows to the store
(5), where a minimum ranking requirement (6) is
added to the user order to form a delivery order (7).

 The delivery order flows to the system (8) to be
processed (9) and is sent to a submachine (10), which
extracts a subset of drivers who satisfy the minimum
ranking requirement. In this machine, the delivery
request is processed (11) to extract the minimum
ranking (12), which is compared (13) with driver ranks
(14) coming one at a time (15) from the file of all
ranked drivers (16). Through this comparison, a file of
qualified (minimum ranking) drivers is constructed
(17).

 Another machine (18) identifies drivers who are
currently in the region by processing.

- the list of qualified drivers (17);

- the delivery location, extracted from the delivery
request (19); and.

- the current location of the qualified driver (20). The
current locations of drivers (21) are updated
continuously via satellite (22).

 If a driver is located in a nearby region, then a bid
request is constructed (23) and sent to that driver (24).

 Drivers who receive bid requests respond by creating a
delivery bid (25), which flows to the system (26) to be
collected with other delivery bids (27).

 When bid requests are sent, a timing machine (28) is
constructed to set a deadline of 2 minutes (29). At the
end of the 2 minutes, the accumulated delivery bids
(27) are processed (30). If there are no bids, then an
alert is generated (31) and sent to the store (32) and the
system manager (33).

 If there are bids and the store policy is to select the
assigned driver manually, then a list of top bidders is
generated (34) and sent to the store (35), and a deadline
for the response is set (36). If there is no response by
the deadline, then, as before, an alert is sent to the store
and the system manager (37).

 An assignment of a driver is either created by the
system (38) or received from the store (39) and sent to
the driver (40).

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 1, 2021

527 | P a g e

www.ijacsa.thesai.org

 The driver goes to the store (41) and picks up (42) the
flowers (43). A confirmation of this (44) is sent to the
system.

 The driver with the flowers (45) drives to the person
who ordered the flowers (46), and a confirmation of the
delivery is sent to the system (47). Details such as
about how the confirmation is sent through signing the
driver’s mobile device are not included, due to space
considerations.

Additionally, the rest of the case study, which involves
updating the drivers’ ranks, is not modeled, to limit the model
to one page. Some other simplifications were also applied,
such as lumping all alerts and all confirmations together.

Fig. 8 shows the events in the model, which were
developed as a layer over the static model in Fig. 7.

Event 1 (E1): The user submits an order for flowers to the

store.

Event 2 (E2): The store constructs a delivery request that

includes minimum driver rankings.

Event 3 (E3): The delivery request flows to the system, in

which a list of qualified drivers is produced.

Event 4 (E4): A qualified driver in the nearby region is

identified.

Event 5 (E5): A bid request is generated and sent to the

qualified driver in the nearby region.

Event 6 (E6): A time deadline (2 minutes) is initiated to

receive delivery bids.

Event 7 (E7): The driver formulates a delivery bid, which

flows to the system to be stored with all other delivery bids.

Event 8 (E8): The time deadline (2 minutes) to receive

delivery bids expires.

Event 9 (E9): The list of all delivery bids is processed.

Event 10 (E10 The bid receives no bidders.

Event 11 (E11): An alert is generated and sent to the store and

system manager.

Event 12 (E12): There are bidders.

Event 13 (E13): The top delivery bids are selected.

Event 14 (E14): The top delivery bids are sent to the store.

Event 15 (E15): The timing is set for the store to select a

driver.

Event 16 (E16): The store selection of a driver passes the

deadline.

Event 17 (E17): The system selects a driver.

Event 18 (E18): The store selects a driver.

Event 19 (E19): The selection is sent to the driver.

Event 20 (E20): The driver goes to the store and picks up the

flowers

Event 21 (E21): A confirmation is sent to the system.

Event 22 (E22): The driver delivers the flowers to the

customer.

Fig. 9 shows the behavioral model of this example. Note
that the granularity of events depends on the modeler. For
example, Event 3 can be refined further into six events:

Event 3a (E3a): The delivery request is inputted to the

submachine.

Event 3b (E3b): The list (file) of ranked drivers is processed.

Event 3c (E3c): A single record of a ranked drivers is retrieved

from the file.

Event 3d (E3d): The retrieved record flows for comparison

with the requested minimum ranking.

Event 3e (E3e): If the record does not satisfy the minimum

requirement, then it is ignored, and the next record is retrieved

from the file containing the ranked drivers.

Event 3f (E3f): If the record satisfies the minimum

requirement, then it is added to the file of qualified drivers.

The detailed chronology of events for Event 3 can be
developed in the same way as in the main model.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 1, 2021

528 | P a g e

www.ijacsa.thesai.org

Fig. 7. The Static TM Model of the Consortium of Flower Stores.

Process

No
bidders

Receive

29

30

Driver

Bid request

Create Order

Customer

Minimum

ranking

Transfer

Receive

Process

Process

Process

With rank
Not ranked

(bring next)

Release

Transfer

Qualified Drivers

Receive

Transfer

Create Location data Transfer

Seattleite

Driver

locations

Transfer

Locations

in the

delivery

request

Transfer

Receive

Process

Are ranked drivers currently

in the region?

Process

Create Process

 Delivery bid

All delivery bids

Process: select top bidders

System manager

Receive

Process

Transfer

Transfer

Release Release

Transfer

Create

Delivery request

Transfer Release Receive Transfer

Drivers with ranking

One record Transfer

Transfer

Release Transfer Release

Release

Transfer

Transfer

Release

Receive

Receive

Transfer

Process

Process

Transfer

Receive

Receive

Transfer

One record

Transfer

Receive

Release

Transfer

Transfer

Release

Receive

Transfer

Release

Transfer

Receive Transfer Release Transfer

Create Transfer

Process

Timing
Create Process: 2 minutes passed

Start time

Bidders

Transfer

Release

Receive Process

Process

 Assignment

Create Transfer Release

Receive

Process

Assignment Create

Receive

Release

Transfer

Transfer

Alert

Create

Transfer Receive

 Timing
Create Process: 1

minute passed
Start time

Transfer

Driver (and van)

T
ran

sfe
r

Release

 Flowers Transfer

Driver with

flowers

Receive Receive

Create Transfer

Transfer

Confirmation

Create
R

elease

R
eceiv

e

T
ran

sfe
r Release

Transfer

Release

Transfer Release

Receive

Driver and

flowers (and

van)

Release

T
ran

sfe
r

R
eceiv

e

T
ran

sfe
r

R
eceiv

e

 Create

Transfer

Confirmation

Release Transfer
Person

receiving

Transfer

1

3

4

5
Store 2

6

7
8 9

10

Process
T

ran
sfe

r

R
eceiv

e

Minimum

ranking

11

12

13

14

15

16

17

18

19

20

21

22

24 23

25

27

26 28

32

32

34

35

36

37

39

38

40

41

42

43

44 45

46 47

Transfer

31

Transfer

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 1, 2021

529 | P a g e

www.ijacsa.thesai.org

Fig. 8. The Dynamic TM Model of the Flower Store Consortium.

Fig. 9. The Behavioral Model of the Flower Stores.

Set 2 minutes deadline

E5 E3 E4 E2 E1 E9 E8

E7

E6

Order

arrives

Qualified

drivers

Qualified

drivers in

the region

Delivery

request

Send bid

request

Receive

bid request

Deadline ends

Process

delivery bids
E10

E12

E11

E13

No

bids

Alert

Their

bids

Top bidders

E17

Top bidders sent

to the store

E15 Set deadline

E16
Deadline

expires

E14

E18

Assignment to

driver

E19

Assignment

sent to driver

E20
Driver picks

up the flowers

E21 E20
Driver

delivers the

flowers

Confirmation

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 1, 2021

530 | P a g e

www.ijacsa.thesai.org

IV. MODELING A BANK

According to El Hayat et al. [12], the emergence of
temporal databases calls for new, efficient visual-modeling
techniques to facilitate the design of temporal objects. El
Hayat et al. [12] used extended UML and the OCL to produce
an elaborate conceptual schema that allows for defining the
restrictions and constraints that contain the duplicate and
complex expressions in a temporal database. The proposed
temporal UML/OCL model is based on bitemporal data,
which translate into a temporal object-relational database for
tracking historical information efficiently. El Hayat et al. [12]
provided the class diagram of a banking system that includes
bitemporal data to make records of the history of the data and
transaction operations.

A. Static Model

This paper lacks the space to describe El Hayat et al.’s [12]
model. We will take their example, with some minor
simplifications, as an example of a TM conceptualization of a
temporal database. Fig. 10 shows the static TM model of the
involved banking system. The simplification of El Hayat et
al.’s [12] model involves such changes as eliminating some
attributes of the customer’s address, such as their city and
postal code, while keeping their ID, name, and address. The
purpose is to remove redundant types of attributes without
changing the kinds of data in the model. Additionally, we will
focus on four regions in the model that involve the temporality
of data: transfer, withdrawal, deposit, and loan transactions.

In Fig. 10, before a customer (circle 1) requests a service,
he or she provides an account number (2), which flows to the
system, (3) where it is validated (4) with the account number
stored in the system (5 and 6).

a) Loan service: A customer requests a loan (7); hence,

the request moves to the system (8 and 9), where it is

processed (10). Assuming the loan is approved, the amount is

extracted (11) from the request, along with a generated loan

number (12) that flows to the loan subsystem (13), where they

and the account number (14) are processed (15) to trigger the

creation (16) of a loan record, which is stored in the loan

database (17).

The temporal data of such activities will be handled in the
events model.

b) Transactions (18): A customer requests a transaction

(19); hence, the request moves to the system (20 and 21),

where it is processed (22). Additionally, the customer provides

the transaction request (22), which flows to the system (23).

Based on the transaction type (21), the input amount is

directed (24) to the transfer (25 and 26), withdraw (27 and

28), or deposit module (29 and 30). The account (31) is

updated according to the type of transaction.

c) Transfer: The account is retrieved (32) to be received

in the transfer module (33) and is processed along with the

input amount (34) to create the new account value (35), which

flows as the new account value (36).

d) Withdraw: The account is retrieved (37) to be

received in the transfer module (38) and is processed along

with the input amount (39) to create the new account value

(40), which flows as the new account value (41).

e) Deposit: The account is retrieved (42) to be received

in the transfer module (43) and is processed along with the

input amount (44) to create the new value of the account (45)

that flows as the new value of the account (46).

In this scenario, we ignore the modeling of processes such
as checking whether sufficient funds exist for withdrawal or
the mechanism of transferring from the account to the
intended destination. These processes can be added easily, but
the purpose here is not to demonstrate the TM modeling,
which was the purpose of the previous section’s example.
Rather, the purpose of the current example is to show the
temporal features of TM modeling by registering the times of
account values for multiple transactions. This will be the
function of the TM events model.

B. Dynamic Model

Fig. 11 shows the events model of the bank operations, in
which we identify the following events.

Event 1 (E1): The customer requests a loan.

Event 2 (E2): The request flows to the system, where it is

approved and sent to the loan module.

Event 3 (E3): The loan amount, number, and account number

are processed.

Event 4 (E4): A record of the loan amount, number, and

account number is created and stored.

Event 5 (E5): The customer requests a transaction service and

gives the amount related to the transaction.

Event 6 (E6): The system determines that the requested service

is a transfer and sends the transaction to the transfer module.

Event 7 (E7): The current balance value is retrieved and is

processed along with the transfer amount in the transfer

module.

Event 8 (E8): The new balance value is created in the transfer

module.

Event 9 (E9): The balance value is updated.

Event 10 (E104): The system determines that the requested

service is a withdrawal and sends the transaction to the

withdraw module.

Event 11 (E11): The current balance value is retrieved and,

along with the withdrawal amount, is processed in the

withdraw module.

Event 12 (E12): The new balance value is created in the

withdraw module.

Event 13 (E13): The system determines that the requested

service is a deposit and sends the transaction to the deposit

module.

Event 14 (E14): The new balance value is created in the deposit

module.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 1, 2021

531 | P a g e

www.ijacsa.thesai.org

Fig. 10. The Static TM Model of the Bank.

Bank branch Customer

Transaction

 Address Create

Customer ID Create Name Create Address Create

Checking account

Balance

Transactions Deposit

 Withdraw

Loan

Amount

Process: addition

Process

Create

Create

Transfer

T
ran

sfe
r

R
eceiv

e R
el

ea
se

R
el

ea
se

 T
ran

sfe
r Release Receive

Transfer

C
re

at
e

T
ran

sfe
r

Transfer

Receive

 Loan request

P
ro

ce
ss

Approved

Amount

Process

(Number, Amount, Account No.)

Process: subtract

Create

Receive

Transfer

Transfer

Process

Transfer

Receive

Transaction

request

C
re

at
e

Transfer

Process: subtract

Transfer

Release

Process

Transfer

Process

Deposit

Withdraw

Transfer

Account no.

 Process: OK

R
el

ea
se

 T
ran

sfe
r C

re
at

e

T
ran

sfe
r C

re
at

e

 Create

Process

Receive

R
el

ea
se

T
ran

sfe
r

Release Transfer

Release Transfer
T

ran
sfe

r

R
eceiv

e

Release

Transfer

Receive

Transfer

Release

Process

Transfer

Process

Release

R
eceiv

e

T
ran

sfe
r

T
ran

sfe
r

R
eceiv

e

R
eceiv

e

T
ran

sfe
r

R
eceiv

e

T
ran

sfe
r

Transfer

Receive
Release

Create

Transfer

R
eceiv

e

Transfer Receive Transfer Receive

Transfer

1

 Amount

Create

2 4 3

Transfer Receive

6

7

8 9

16

17

Account no.

Release

Transfer

5

12

11

10
15

14

13

18

21

20 19

22

R
el

ea
se

23 24

27

26

25

30

29

28

31
32

33

34

35

36 37

38

39
40

41 42

43

44

46

45

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 1, 2021

532 | P a g e

www.ijacsa.thesai.org

Fig. 11. The Dynamic TM Model for Bank-System Management.

Bank branch Customer

Transaction

 Address Create

Customer ID Create Name Create Address Create

Checking account

Balance

Transactions Deposit

 Withdraw

Loan

Amount

Process: addition

Create

Create

Transfer

T
ran

sfe
r

R
eceiv

e R
el

ea
se

R
el

ea
se

 T
ran

sfe
r Release Receive

Transfer

C
re

at
e

T
ran

sfe
r

Transfer

Receive

 Loan request

P
ro

ce
ss

Approved

Amount

Process

(Number, amount, account no.)

Process: subtract

Create

Receive

Transfer

Transfer Transfer

Receive

Transaction

request

C
re

at
e

Transfer

Process: subtract

Release

Transfer

Process

Deposit

Withdraw

Transfer

Account no.

 Process: OK

R
el

ea
se

 T
ran

sfe
r C

re
at

e

T
ran

sfe
r C

re
at

e

 Create

R
el

ea
se

T
ran

sfe
r

Release Transfer

Release Transfer
T

ran
sfe

r

R
eceiv

e

Release

Transfer

Receive

Transfer

Release

Process

Release

R
eceiv

e

T
ran

sfe
r

T
ran

sfe
r

R
eceiv

e

R
eceiv

e

T
ran

sfe
r

R
eceiv

e

T
ran

sfe
r

Transfer

Release

Create

Transfer

R
eceiv

e

Transfer Receive Transfer Receive

Transfer

 Amount

Create

Transfer Receive

Account no.

Release

Transfer

R
el

ea
se

Transfer

Process

Receive

Transfer

Receive

E1 E2
E3

E4

E5

E6 E7

E8

E9

E10

E11

E12

E13

E15

E14

Process
Process

Process Process

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 1, 2021

533 | P a g e

www.ijacsa.thesai.org

Fig. 12. The TM behavioral of the Bank Services.

Fig. 12 shows the behavioral model of the bank operations.

C. Temporal Model

We will focus on the values of the loans and balances at
different times. Fig. 13 shows a file being built for the
temporal balance value. This change in the balance value
occurs at event E9. Accordingly, when event E9 occurs, it
triggers a meta-event (an event that is generated by an event),
denoted as ME9. ME9 creates a record of E9 that contains data
about the time of E9, the new balance value, and the account
number. In general, the event time may include different types
of time-related data (e.g., the start time, end time, duration,
and urgency). Thus, a temporal file of changes to the customer’s
balance is updated each time a new value is calculated and
stored. A similar file can be constructed for loans.

Such a meta-event notion can be applied not only to collect
a history of certain data but also to all events in the behavioral
model in order to form a temporal-monitoring system of
historic records of all activities. For example, a history record
can be generated of the events and data changes for each
customer’s loan. Fig. 14 shows an expansion of the system to
monitor the total activity involved in the loan service. For
example, in the loan service, not only are the loan value and
loan’s time recorded, but also all related activities (e.g., time
the customer submitted the request or processing time) are
recorded and stored when registering the new loan. We can
generalize this model to a complete monitoring system that
records all activities and data changes over time, as shown in
Fig. 15.

Fig. 13. Generating Temporal Data for Changes in the Balance Value.

Fig. 14. Historical Record of all Events for a Certain Loan.

Fig. 15. General Monitoring System for Temporal Data and Changes.

V. CONCLUSION

In this paper, we have examined a model for temporal
databases using an example banking-system-management
model that extends UML and OCL. The bank system is re-
modeled using TM modeling. The resulting diagrammatic TM
specification delivers a new approach to temporality that can
be extended to a holistic monitoring system for historic data
and events. In this case, a temporal database can be viewed as
a restricted monitoring system. One limitation of TM
modeling is the complexity of its diagram. However, this
apparent complexity originates from the level of granularity of
the description. For example, the actions release, transfer, and
received can be eliminated under the assumption that the
arrow direction will be sufficient to indicate the direction of
flows. Future research can be conducted to develop a general
monitoring scheme for an entire organization.

E1 E2 E3 E4

E5

E12 E11

E6 E7 E8

E0

E9
E10

E14 E13
E15

Request loan

Request

Transaction

Transfer

Withdraw

Deposit

Fetch balance

Fetch balance

Fetch balance

Updated balance

Updated balance

Updated balance

Store

new

balance

Loan approved Process loan

Store new

loan

E9

E9 Time

Process

Create

Balance

Account no.

Transfer

Meta-event

Create

T
ran

sfe
r

R
eceiv

e R
el

ea
se

P
r
o
c
e
ss

(Account no.,

new balance

value, time)

Release
Temporal file

of changes of

balances

E1 E2 E3 E4

Request the

loan

Loan approval Process the loan
Store the

new loan

Building a historical record of events leading to a loan

Monitoring system of historic data and events

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 1, 2021

534 | P a g e

www.ijacsa.thesai.org

REFERENCES

[1] A. Shah, F. Fotouhi, W. Grosky, S. H. Shah Khan, and J. Al-Muhtadi,
“Operators of the temporal object system and their implementation,” Inf.
Sci., vol. 158, pp. 37-68, January 2004.

[2] C. Date, H. Darwen, and N. Lorentzos, Temporal Data and the
Relational Data Model. San Francisco: Morgan Kaufmann, 2003.

[3] B. Novikov and E. Gorshkova, “Temporal databases: From theory to
applications, programming and computer software,” Programming and
Computer Software, vol. 34, no. 1, pp. 1-6, 2008.

[4] E. Malinowski and E. Zimanyi, “A conceptual model for temporal data
warehouses and its transformation to the ER and the object-relational
models,” Data Knowl. Eng., vol. 64, pp. 101-133, January 2008. DOI:
10.1007/978-3-540-74405-4_5.

[5] V. Khatri, “Temporal conceptual models,” in Encyclopedia of Database
Systems, L. Liu and M. Özsu, Eds. New York: Springer, 2017.

[6] K. Karimi, “A brief introduction to temporality and causality,” arXiv
preprint, pp. 1007-2449, 2010.

[7] M. O’Connor, “It’s about time: Applying temporality to software
development teams,” Proceedings of the 13th International Symposium
on Open Collaboration Companion, pp. 1-8, August 2017.

[8] T. Halpin, “Temporal modeling (Part 1),” Business Rules Journal, vol. 8,
no. 2, February 2007. http://www.brcommunity.com/a2007/b332.html

[9] S. de Ridder and F. Frasincar, “Temporally enhanced ontologies in
OWL: A shared conceptual model and reference implementation,” in
Web Information Systems Engineering, J. Wang et al., Eds. Springer,
31-45, 2015.

[10] W. Lu et al., “A lightweight and efficient temporal database
management system in TDSQL,” PVLDB, vol. 12, no. 12, pp. 2035-
2046, 2019.

[11] H. Balsters, A. Carver, T. Halpin, and T. Morgan, “Modeling dynamic
rules in ORM,” in On the Move to Meaningful Internet Systems, R.
Meersman, Z. Tari, and P. Herrero, Eds. Berlin: Springer, 2006, pp.
1201-1210.

[12] S. A. El Hayat, F. Toufik, and M. Bahaj, “UML/OCL based design and
the transition towards temporal object relational database with
bitemporal data,” J. King Saud Univ. Sci., vol. 32, pp. 39-407, 2020.

[13] S. Al-Fedaghi, “Computer program decomposition and
dynamic/behavioral modeling,” Int. J. Comput. Sci. Netw., vol. 20, no.
8, pp. 152-163, 2020. DOI: 10.22937/IJCSNS.2020.20.08.16.

[14] S. Al-Fedaghi, “Modeling the semantics of states and state machines,” J.
Comput. Sci., 16(7): 891-905, 2020. DOI: 10.3844/jcssp.2020.891.905.

[15] S. Al-Fedaghi and B. Behbehani, “How to document computer
networks,” J. Comput. Sci., vol. 16, no. 6, pp. 423-434, 2020. DOI:
10.3844/jcssp.2020.723.434.

[16] S. Al-Fedaghi, “Conceptual software engineering applied to movie
scripts and stories,” J. Comput. Sci., vol. 16, no. 12, pp. 1718-1730,
2020. DOI: 10.3844/jcssp.2020.1718.1730.

[17] S. Al-Fedaghi and E. Haidar, “Thinging-based conceptual modeling:
Case study of a tendering system,” J. Comput. Sci., vol. 16, no. 4, pp.
452–466, 2020. DOI: 10.3844/jcssp.2020.452.466.

[18] S. Al-Fedaghi and J. Al-Fadhli, “Thinging-oriented modeling of
unmanned aerial vehicles,” Int. J. Adv. Comput. Sci. Applic., vol. 11,
no. 5, pp. 610-619, 2020. DOI: 10.14569/IJACSA.2020.0110575.

[19] S. Al-Fedaghi and J. Al-Fadhli, “Thinging-oriented modeling of
unmanned aerial vehicles,” Int. J. Adv. Comput. Sci. Appl., vol. 11, no.
5, pp. 610–619, 2020. DOI: 10.14569/IJACSA.2020.0110575.

[20] S. Al-Fedaghi and Y. Atiyah, “Tracking systems as thinging machine: A
case study of a service company,” Int. J. Adv. Comput. Sci. Appl., vol.
9, no. 10, pp. 110-119, 2018. DOI: 10.14569/IJACSA.2018.091014.

[21] S. Al-Fedaghi and J. Al-Fadhli, “Thinging-oriented modeling of
unmanned aerial vehicles,” Int. J. Adv. Comput. Sci. Applic., vol. 11,
no. 5, pp. 610-619, 2020. DOI: 10.14569/IJACSA.2020.0110575.

[22] S. Al-Fedaghi and H. Alnasser, “Modeling network security: Case study
of email system,” Int. J. Adv. Comput. Sci. Appl., vol. 11, no. 3, 2020.

[23] M. Heidegger, “The thing,” in Poetry, Language, Thought, A.
Hofstadter, Trans. New York: Harper and Row, pp. 161-184, 1975.

[24] L. R. Bryant, “Towards a machine-oriented aesthetics: On the power of
art,” Proceedings of the Matter of Contradiction Conference, Limousin,
France, 2012.

[25] O. Etzion and P. Niblett, Event Processing in Action. Stamford, CT:
Manning Publications, 2011.

http://www.brcommunity.com/a2007/b332.html
https://arxiv.org/search/cs?searchtype=author&query=Al-Fadhli%2C+J
https://dx.doi.org/10.14569/IJACSA.2020.0110575

