
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 1, 2021

A Systematic Study of Duplicate Bug Report
Detection

Som Gupta1
Research Scholar
AKTU Lucknow

Sanjai Kumar Gupta2
Associate Professor

Computer Science Engineering Department BIET Jhansi

Abstract—Defects are an integral part of any software project.
They can arise at any time, at any phase of the software
development or the maintenance phase. In open source projects,
open bug repositories are used to maintain the bug reports. When
a new bug report arrives, a person called “Triager” analyzes
the bug report and assign it to some responsible developer. But
before assigning, has to look if it is duplicate or not. Duplicate
Bug Report is one of the big problems in the maintenance of bug
repositories. Lack of knowledge and vocabulary skills of reporters
sometimes increases the effort required for this purpose. Bug
Tracking Systems are usually used to maintain the bug reports
and are the most consulted resource during the maintenance
process. Because of the Uncoordinated nature of the submission
of bug reports to the tracking system, many times the same bug
report is reported by many users. Duplicate Bug Reports lead to
the waste of resources and the economy. It creates problems for
triagers and requires a lot of analysis and validation. Lot of work
has been done in the field of duplicate bug report detection. In this
paper, we present the researches systematically done in this field
by classifying the works into three categories and listing down
the methods being used for the classified researches. The paper
considers the papers till January 2020 for the analysis purpose.
The paper mentions the strengths, limitations, data set, and the
major approach used by the popular papers of the research in
this field. The paper also lists the challenges and future directions
in this field of research.

Keywords—AUSUM; feature-based; deep learning; semantic;
unsupervised

I. INTRODUCTION

Bug Report is one of the artifact which is produced during
the software development, testing and the maintenance phase
of the software process. It has been found that in any normal
software development process, maintenance phase accounts for
about two-thirds of the total efforts [1]. Mainly bug reporting
systems are used for maintaining the bug reports of large
software projects like Bugzilla. Nowadays, with the increasing
competition and rapid development with quick time to release,
it is common among the software community. But this quick
time to release also leads to a lot of issues and the remaining
features that make the users submit their expectations and
issues. Also, these bugs lead to the release of another version of
the software. As software defects add to the cost to the testing
process. It is very important to detect them as soon as possible.
As the software teams are usually geographically distributed,
for the collaboration purpose web-based systems are used [2].
Bug Tracking Systems also allows users to report the bug they
encounter. It has been found that finding whether the bug report
is duplicate or not is more expensive than creating the new bug
report.

In a paper by [3] they performed an exploratory study
of 8 open-source projects and 1 private company project to
analyze what percentage of the corpus consists of the duplicate
bug reports, how much time a submitter spends in identifying
the duplicate bug report before opening the new bug report,
how the time is spent in resolving the duplicate bug report
and the valid bug report, the average frequency of duplicate
bug reports coming up in the repository on daily basis, how
much vocabulary the master and duplicate bug report shares,
how the type of bug report impacts the frequency of duplicate
bug reports and why the duplicate bug report problem arises.
They found that the submitter productivity is impacted by
the duplicate bug reports problem as many times almost 48
man-hours need to be spent daily for performing this activity.
The same study was later conducted by [4] where their focus
was to predict the effort required by developers to identify
the duplicate bug reports. They used Peers, Workload, Bug
Report, Working Habits, and Triager experience to predict their
effort. In another paper by Xie et al. [5], they also analyzed
the percentage of duplicate bug reports in various popular
platforms like Mozilla Core, Firefox, Thunderbird, Eclipse
Platform, JDT, Hadoop, etc. They found that for these popular
projects, on an average 12 percent bug reports are duplicate.
The statistics of nine famous projects in terms of bug reports
and the number of duplicate bug reports are mentioned in Table
I. From the table, it is clear the duplicate bug reports comprises
of almost 20 percent of the total bug reports.

Because of the following issues, the duplicate bug reports
exist in a large number in these bug tracking systems.

1) free availability to the users to report the defect
2) Millions of users exists for the large projects
3) Bug Reports are submitted by both the developers

and the users
4) Frequent release of software versions
5) User Inexperience
6) Poor Search Functionality in the Bug Tracking Sys-

tems

Many times even if the bug report is duplicate, it gets attached
to the master report which is also known as triaging.

Bug Triaging is a process in which the person assigns
the bug to a particular person for the resolution. But before
assigning, has to go through these bug reports to find which
one is duplicate and which one is not. Along with this, the
triager has to look whether the bug report is related to the
problem or the modification to the software. Because if the
same problem is assigned to more than one person, it leads to

www.ijacsa.thesai.org 578 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 1, 2021

TABLE I. DATASET INFORMATION [6]

Project Name No of Issue per day Unique Components No of Duplicates Duplicate Percentage
Mozilla Core [7] 33 130 44691 21.8
Firefox22 52 35814 30.9
ThunderBird 23 7 12501 30.9
Eclipse Platform [8] 19 21 14404 16.9
JDT [9] 10 6 7688 17
Cassandra [10] 4 24 2083 14.8
MapReduce [11] 2 63 977 13.9
HDFS [12] 3 71 1659 13
Spark [13] 8 29 3077 13.6

the waste of resources. It has been found that many times
more than 300 [14] bugs on a day are reported. Not only
this but duplicate bugs are also there. This makes the finding
of a duplicate bug report a challenging task. They lead to
redundancy in the work and thus increase the workload for
engineers. For a large project, bug triaging increases the cost
to software maintenance, and manually doing this process is
almost impractical. Thus there is a need to find the automatic
approach which can help find the duplicate bug reports among
all.

Because of the above-mentioned problems, need for as-
sistance in detecting duplicate bug reports eases the task of
bug triager. In a paper by [15], they observed that detecting
duplicate bug reports consume a lot of time. Even though lot
of approaches have been proposed but getting the full score
for precision is very difficult. The reasons for these results is
the diversity of natural language text in the bug reports and the
diversity of the features in large software. The poorly written
content in the bug reports by the users also poses another
challenge to the triager.
Many authors [16] claim that the duplicate bug reports also
help find more information. Thus many have proposed the
techniques which finds the top-k most duplicate bug reports
for the triager to have the additional information also. From
our survey we have observed that following techniques are
very popular among the research community in this field:

1) Natural language based Researches [17] [18]
2) Execution Trace Based Researches [19]
3) Clustering based models with similarity measures[14]

[20]
4) Classifier-based machine learning approach [2]
5) Convolutional and LSTM Based Deep Learning Mod-

els [1]

In most of the projects, the first step to further process
the bug report for any analysis is feature vector representa-
tion. For the Feature vector representation following natural
language processing techniques are mainly used by various
researchers: Word Embedding, ,Bag of Words, Skip-Gram,
CBOW (Continuous Bag of Words), Latent Semantic Analysis,
Latent Dirichlet Analysis, N-Gram.

On the Basis of above based information, we divide our
work into three parts mainly Information-Retrieval, Machine
Learning and Natural Language Processing based, according
to the approach being used.

The main contributions of the paper are as follows:

• The paper presents the classification of duplicate bug
report approaches.

• Paper gives a brief overview to almost all the famous
researches in this field till early 2020.

• Paper gives the comparative results of various ap-
proaches being used in this field.

• Paper also mentions the various data-sets which have
been used by various researchers.

• Paper also mentions the Strengths and Limitations of
the works.

• Paper also discusses the Evaluation Measures being
used for various approaches.

• Paper also lists down the challenges and the directions
for future research.

The paper is organized as follows: Section 2 gives a brief
overview of existing approaches which is further divided into
Information-Retrieval Based, Natural Language Processing
Based and Machine Learning Based. Section 3 discusses the
Methodology that we opted for carrying out this research.
Section 4 discusses the various evaluation measures being used
for measuring the efficiency of Detecting duplicate bug reports
detection techniques. Finally we discuss the future directions
in this field and the conclusion of the paper.

II. EXISTING APPROACHES

Bug Report is an artifact which is produced during the
software testing or software maintenance phase. It contains
three types of data in it:

• Textual Data: It consists of Title, Description and
comments. Title is a brief introduction about the
bug. Description is the detailed overview along with
the steps to reproduce to clearly indicate about the
bug. Comments are the text that the other users or
developers write against the bug in order to either
given a suggestion or improvement or solution.

• MetaData: It consists of miscellaneous information
about the bug in terms of its classification like product
name, component field, assignee, version, priority,
reporter, create time, status and resolution. Component
refers to the component of the project where the bug
has occurred. Status means whether it is duplicate or
not. Status means whether the bug report is “open”,
“in-progress”, “resolved”, “closed”, “reopen”, “wont
fix”, “not a bug”, etc. Version means in which version
of the software, the bug has occurred.

• Attachment: It is the screen shot of the issue in order
to give better clarity about the bug report. It may also
include the execution trace.

www.ijacsa.thesai.org 579 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 1, 2021

Bug Reports not only contains the resolution for the
bug but also enhancements, ideas and the change requests.
Analyzing bug reports help in change management, software
evolution, traceability and also during effort estimation [3].
Many researchers observed that around 10 to 30 percent of
the bug reports are duplicate in these open bug repositories.
Having no duplicate bug report is also a big problem as it will
lead to less information. In research by [16], he observed that
duplicate bug reports help improve the knowledge by adding
more information bug having large number of duplicate bug
reports creates problem.

Many researchers [2] stated that duplicate bug report lit-
erature can be classified into two categories: one which finds
the relevant bugs and one which aims to find the duplicate bug
report. Thus the process can be classified into:

• Prevention of duplicate bug reports while submitting.

• Identification of top-k bug reports during bug report
triaging.

Even though the approaches are classified into the mentioned
two categories but in a paper by [21] they mentioned that the
former approaches can only delete 8 percent of the duplicate
bug reports but 92 percent bug reports still remains in the
system. Thus leading to no such good benefit to the triager.
More than this preventing the duplicate bug reports is a very
expensive process also.

We observed the first main research in this field started
with [17] where they used the log based weighing techniques
along with the NLP Based approaches to identify the duplicate
bug reports. The work was extended by [19] where along
with the natural language text, execution traces were also
used. The shortcomings of these approaches were taken into
consideration by [22] where they used SVM model after
creating the features using NLP techniques. In the same year
[18] used the n-grams for the same purpose. In 2010, [21]
used the BM25F to calculate the correlation between the bug
reports. In year 2012 the same work of [21] was extended by
[23] to calculate the effectiveness of BM25F for duplicate bug
report detection. After these works, we observed that most of
the works involve deep learning techniques for the same.

By analyzing all the works, we classified the approaches
into following categories:

A. Information-Retrieval based

Information Retrieval techniques aim to find out the struc-
ture from the unstructured data. IR Based Models are generally
divided into two approaches: word-based and topic-based
models. Vector Space Model (VSM) is one example which
gives the weights to the words and helps identify the main
themes out of the document. Mainly Logarithms, IDF and
Entropy are common weighing models which are used with
these word-based models.

Topic models are one of the very famous approach which
is used in IR field to find the latent topics of the text. They
help find the similarity scores between the documents. Topic
models help capture the semantic information from the bug
report. It includes approaches like Latent Dirichlet Allocation

(LDA), Latent Semantic Analysis (LSA), Random Projections
and their variants. In topic-based models, the term-document
distribution and the word-topic distribution are obtained. These
document-topic representation are converted into the vector
form. Few hyper parameters are used with the LDA to get the
cluster of relevant topics. For those hyper-parameters setting,
many researchers have used techniques like Genetic Algo-
rithms, Differential Evolution, Particle Swarm Optimization,
Simulated Annealing, Random Search. Similarity between
documents is usually calculated by using cosine similarity.
General Steps which are used for using Information Retrieval
Techniques are: first the pre-processing of the document to ex-
tract the relevant words from the document. This step includes
stemming and removal of stop words. Then either the Term-
by-document matrix or the probabilistic models are generated
which are then used to calculate the textual similarities [24].
Term-by-Document matrix includes vocabulary which is also
referred to as Terms as rows and the documents as the columns.
Weights are assigned to the terms in the documents by either
TF-IDF or their variants.

The author in [19] used the Vector Space Model to
transform the execution trace into the vector form for getting
the information from the execution trace of a bug report for
duplicate bug report detection. The author in [25] used the
VSM in their information retrieval module in the JDF server
to represent the document for the further similarity calculation.

The author in [26] compared the word-based model VSM
with the topic-based model over the Firefox and Eclipse
Project. They also analyzed how different weighing models
work with the VSM. They found that for the task of dupli-
cate bug report identification, VSM models outperformed the
Topic-Based models and Log-Entropy outperformed among the
weighing schemes.In the paper of [26], they compared the
Vector Space Model with the topic models and observed that
the Vector Space Model was performing better than the topic
models.

The author in [2] in their paper, used the LDA along
with the gibbs sampling to extract the topics. They used the
comments to find whether the two bug reports are same or
not. Their notion was that many times when the title and
description are vague, comments supplement the information
and help find out the similarity of bug reports. First they
classified the comments into useful and un-useful. For the
classification of comments, they used SVM along with the
RBF kernel. For the the classification, they used four features
namely IDF, bug status, length of comment and unigrams
to create the vectors for training purpose. They found the
weighted comment similarity to find the similarity between
the comments and the bug report title and description. They
used LDA topics along with the gibbs sampling to find the
main topics of the bug report. Then they used topic distance
models like Jensen-Shannon and symmetric KL-Divergence to
find the distance between the topic distributions. They also
used the knowledge about the issuing author to determine the
duplicate bug report. Their notion behind checking the issuing
author is that because of some specific way of writing, there
can be high similarity between the two bug reports from the
same author but chances of being duplicate will be very less.

The author in [27] used the information retrieval model
to find the top-k similar bug reports for BlackBerry Systems.

www.ijacsa.thesai.org 580 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 1, 2021

They first preprocessed the bug report then important fea-
tures were extracted for indexing purpose. The indexing was
specified in terms of Term-Vectors. Indexed data was fed to
searching and ranking module. They used the Lucene features
for finding the similar documents. The ranked documents were
then fed to the selection and filtering module to find the top-k
similar bug reports.

The author in [28] used the topic model LDA imple-
mented in MALLET along with the machine-learning based
approaches to identify the duplicate bug report. In their paper,
they first paired the bug reports using metrics like difference
of words in the summary and description respectively, number
of shared words between the summaries and descriptions re-
spectively, number of shared identical topics between summary
and description, priority field, time between two submissions,
component field, type of bug report severity, etc. In order to
find these metrics, they used LDA with alpha value as 50 and
beta value as 0.01 in the Weka.

The author in [29] used vector space model to detect
the duplicate bug reports by considering the title and the
description.

The author in [30] used the topic-based model LDA for
identifying the topics from the bug report which were further
used for the feature vector construction for the purpose of
training the model. The author in [31] along with the NLP
used the SVM to analyze whether the Expected Behavior and
steps2reproduce are missing or not. They also trained their
model with 10 fold SVM after finding the discourse patterns,
N-grams and Part Of Speech.

The author in [32] considered the domain-specific infor-
mation of the bug report to identify the duplicate bug reports.
They utilized the power of IR techniques along with the
contextual keywords which includes architectural words, non-
functional words, topic words extracted using LDA and labeled
LDA, and random dictionary words.

The author in [33] classified the duplicate bug reports as
one which shares the vocabulary and one which does not
share the vocabulary. They proposed an approach which deals
with both type of duplicate bug reports. For the first type
of bug reports where the vocabulary is shared, they used the
Vector Space Model and Clustering techniques. They used the
cross product between the vectors and the vector lengths were
computed using eucledian distance. They used the concept
that smaller the angle between the two vectors, higher is the
similarity. They used the TF-IDF weighing scheme to assign
the weight to each term of the vector. For clustering, they used
K-Means technique. For finding the dissimilar bug reports,
first they identified the dissimilar duplicate bug reports by
vector space model with TF-IDF where they analyzed the
angle between the bug reports. After finding dissimilar reports,
they created the word co-occurrence model. After creating
the co-occurrence model, they computed the similarity using
BM25 and language modeling techniques like Jelinek-Mercer
smoothing and Dirichlet smoothing.

The author in [34] in their mentioned how powerful the
word embeddings and the LDA approach is while calculating
the similarity between two documents. [35] used the LDA and
LSI approaches to find how continuously querying the bug

report like how it happens in Google Search Engine helps find
the duplicate bug reports.

The author in [24] in their paper compared five meta-
heuristics GA, DE, Particle Swarm Optimization, Simulated
Annealing and Random Search, to analyze how the LDA works
when applied.

B. Natural Language Processing based

The author in [17] used the natural language text of
bug reports, performed the pre-processing by tokenization,
stemming and stop word removal, and then converted the text
into bag of word models and modeled as feature vectors. For
the features calculation, Term frequency was used. Similarity
of the bug reports is calculated by calculating the similarity
between the features vectors by using cosine, Jaccard and dice
similarity measures. The word was extended by [19] where
they used the execution information along with the natural
language information and in the bug report to compare it
with the other reports. For the feature vector construction,
they used Inverse Document Frequency (IDF) along with the
Term Frequency (TF). They used the cosine similarity measure
to calculate the similarity between the feature vectors. They
detected the top-k similar bug reports with their approach.

The author in [36] used the event-component similarity
approach to find the duplicate bug reports for the bugs having
their component as GUI. In their approach they transformed
the report into event, component and requirements. They used
the Longest Common Subsequence approach for estimating the
similarity between the two event, component and requirements.

N-Gram models have been used to analyze the title and
the description of the bug report. The author in [18] et al.
have used n-gram characters to identify the top-N similar bug
reports. They used the number of shared n-gram characters
and the number of character-n grams of title present in the
other report’s description to find the similarity between the
two bug reports.

Extending this work, [25] used the above approach to create
a tool for Jazz bug repository to identify the duplicate bug
reports. They used Natural Language Based Similarities(NL-
S) and Execution-information based similarities(E-S) too cal-
culate the similarity of new bug report with the existing bug
reports. The author in [21] extended the concept of BM25F
to calculate the textual similarity accurately. For BM25F, they
used the property of weight of terms in the query. The author
in [37] used the bag of diagrams of title and description along
with the extension of BM25F to compute the similarity to find
the top-k similar bug reports. The author in [38] used the N-
grams to find the scores for 25 features for the bug text for
finding the semantic similarity between the two texts.

The author in [39] also used the features and textual
similarity to help assist in the duplicate bug report detection
while writing the bug report so that user also does not continue
writing the bug report. In their approach they have used some
fixed amount of word to calculate the features. In their paper,
they first pre-processed the titles and descriptions by picking
only few important words from them. Then they chosen
few bug reports which are non duplicate and few which are

www.ijacsa.thesai.org 581 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 1, 2021

duplicate for creating the training set. TakeLab tool is used
to calculate the features of the bug report. And then using
machine learning classifier approach, they detect whether the
bug report is duplicate or not.

The author in [32] used the textual, categorical and contex-
tual similarity measures by calculating the similarity between
the title, description, product feature, component feature, bug
type, priority and version to find the whether the bug report
is duplicate or not. For comparison, cosine similarity measure
is being used by them. They used the dictionary having the
architectural words which they extracted from project docu-
mentation, non-functional requirements which they classified
into they efficiency, functionality, maintainability, portability,
reliability and usability; LDA-topic words which they extracted
by using Vowpal Wabbit online learning tool; and Random
English words. For the comparison purpose, they used seven
comparison features which includes BM25F with unigram and
bigram characters, product, component, difference in versions
and priorities, and type of bug report which includes enhance-
ment or defect.

The author in [31] used the discourse based analysis
of observed behavior, expected behavior, steps2reproduce to
analyze the semantic and syntax of the bug report. They
used the part of speech tagging and dependency parsing for
finding the discourse patterns. They used Stanford CorenNLP
to perform these tasks at the sentence and the paragraph level.

The author in [40] proposed an approach which they called
as DURFEX where they used the feature extraction technique
by analyzing the stack trace and converting them to a particular
format.N-Grams were used to map the stack traces to generate
feature vectors. TF-IDF was used to generate the package
names. Along with the stack trace, they alsoo used severity
and component information of bug report to identify if the
bug report is duplicate or not.

The author in [41] used the Longest Common Subsequence
approach to find out the most similar substring between the
two bug reports to create the feature vector for bug report.
The author in [42] used the Hidden Markov Models (HMM)
to classify the bug reports as duplicate or not. Their approach
included first identifying the stack traces from bug reports.
These stack traces were splitted into the duplicate groups.
Each group was then separately trained by using HMM. The
incoming bug reports were then compared with the trained
HMM models to find the scores.

C. Machine Learning based

Machine Learning techniques involve the supervised,
unsupervised and semi-supervised approaches. Supervised
approaches involve the use of classifiers to either predict
binary class problems or multi-class problems. Unsupervised
approaches involves the use of clustering or associations
where the data is unlabeled. Here we divide the works
according to the approaches used:

1) Supervised approaches: The author in [21] proposed a
new machine learning model after applying textual similarity
to fine tune the parameters of BM25F which not only consider

the natural text but also product, component, priority and
other aspects of the bug report as well. Similar to this
work, [37] also used the SVM approach to learn the REP
parameters. In order to address the issues of imbalancing of
data, for the training purpose they reduced the number of
non-duplicates. The author in [2] used the SVM along with
the RBF kernel for the classification of comments of the bug
reports. They classified the comments describing the root
cause or solution or the bug phenomena as the useful class
and rest are classified as less useful. For the classification
purpose, they used the idf, status of bug, length of text and
unigram features of the comments to create the vector for
the learning purpose. The author in [15] in the same year
conducted the research where they used the stack trace along
with its structure to train the machine learning model. They
used the Eclipse project, found that roughly 10 percent of
the total corpora contained stack traces but they observed
that it was very easy to detect if the bug report is duplicate
or not for those 10 percent bug reports in comparison to
others where the text needed to be analyzed for the same.
They identified the duplicates even before the complete bug
report writing was over. The author in [28] used the machine
learning classifiers after applying the topic models to pair
the bug reports according to the duplicate metrics and used
ten-fold cross validation to test their classifiers. Along with
ZeroR, NaiveBayes, Logistic Regression, C4.5, K-NN; they
also used BootStrap Aggregating Technique to understand
how their approach is working. [38] also uses the supervised
learning approaches to find the semantic similarity between
two texts after finding the feature sets in the vector form.
For the binary classification, supervised learning they used
the following methods for K-NN(K Nearest Neighbor, Linear
SVM, RBF, SVM, Decision Tree, Random Forest and Naive
Bayes.). The author in [39] used LibSVM after finding the
features to find whether the bug report is duplicate or not.

The author in [32] first created the feature vector by finding
the comparison between various features of the bug report and
then undersampled the training data and used the Naive-Bayes,
K-NN, Logistic Regression and C4.5 for the classification
purpose.

2) Unsupervised approaches: In the supervised ap-
proaches, as it involves the training and the prediction of model
depends upon the training data. Thus there is a need of large
and good quality data. The author in [43] used the clustering
based weighing approach to improve the performance of SVM
Based approaches.

3) Deep learning approaches: Deep Learning is the part
of machine learning which involves neural networks with the
hidden layers involving the use of activation functions, max-
pooling to train and test the bug reports. They also help
extract the non-linear features. Deep Learning techniques in
the context of duplicate bug report detection involves first
the conversion of text into the numerical terms. Though there
a number of ways to do so like One-Hot Encoding, Word
Embedding, Vocabulary set creation, etc but word embedding
is one of the most famous approach for this purpose.

The author in [1] used Siamese style Neural Network which
used CNN and LSTM Based approach to detect whether the
Bug Report is duplicate or not and find the top-k similar

www.ijacsa.thesai.org 582 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 1, 2021

bug reports. They considered 3 parts of the Bug Report for
the purpose namely structure information like Component,
Title and Description. They used Vanilla single layered neural
network for the structured information.

σ(W.b)

They used Bi-LSTM for Title and CNN for Description so as to
convert it to small text. For Description, they used Filters and
Max-pooling layer. For finding top-k similar bug reports they
used Max margin training loss objective function along with
backproapagation and stochastic gradient. For Classification
purpose, they used two layer neural network along with
the softmax function. They used Adam optimizer and cross
entropy as the loss function for finding the accuracy of the
model.

The author in [5] used the word embedding and the con-
volutional neural networks(CNN) to find the similarity of bug
reports and in turn to identify the duplicate bug reports. Word
Embedding is the part of language modeling where the words
and phrases are converted into features and vectors. Mainly
Randomly-generated embedding, Glove and word2vec are used
for word embedding. Convolution Neural Networks are feed-
forward neural network. They used these techniques to capture
both the syntactic and semantic features of the bug report
to increase the performance of Natural language processing.
Along with the CNN, they used the domain-specific features of
the bug reports. For the activation function, hyperbolic tangent
function is used by researchers.

The author in [34] proposed a tool POSTER which uses
the high precision property of word-embedding and the high
recall property of LDA to capture the semantic and syntactic
information about the words in the text. Word-embedding was
used to convert the text of bug report into the vector form
and then the deep learning model was applied to learn the
distribution of duplicate and non duplicate bug reports.

After studying the research work in this field, we find
the strengths and limitations of the individual papers. Table
II and Table III gives the tabular representation of strengths
and limitations of the papers.

III. METHODOLOGY

We use the keywords and the citations of the searched
papers to find out the relevant documents. We have used IEEE
Xplore [50] Elsevier [51], ACL Anthology [52], Cornell Uni-
versity library, Springer [53], ACM [54] and Google Scholar
[55] for finding out the concerned research papers. We have
used only top 50 research articles for consideration as we
observed after these searches the relevance of papers with the
query started declining. Table IV describes the searching done
to find the important papers in this field.

Table V gives the number of papers which we selected
from various libraries for the inclusion into this paper.

Table VI gives the distribution of papers year-wise. The
statistics help understand how the evolution of the research in
this field has taken place by the research community.

After finding the Papers selected for the literature purpose,
we divide them into categories according to the Approach
they have used. Table VII gives the summary of papers in

terms of which approach was used, what type of Bug Report
Categorization was done and the Corpus used for the purpose.

IV. EVALUATION MEASURES

For the evaluation how effective the approach is in terms
of identifying the duplicate bug report,

• True Positive Rate: It is the number of actual duplicate
bug reports which are classified as duplicate.

• True Negative Rate: It is the fraction of number of
non-duplicate bug reports which are classified as non-
duplicate.

• Accuracy: It is the proportion of true results to the total
number of observations. It is not a very stable metrics.
It works well for balanced-set of data only. In case of
bug reports, the ratio of duplicate to non-duplicate bug
reports is very skewed as number of duplicate bug
reports are very less than the total number of non-
duplicate bug reports.

• AUC (Area Under Curve) or ROC (Area Under Re-
ceiver Operating Characteristic Curve): It measures
the capability of machine classifiers to discriminate
between instances of certain class. It is the plotting
between the True Positive Rate and False Positive
Rate. It describes the trade-off between these two.
It is also known as specificity. Closer the curve is
to 0, lesser is the trade-off. It helps tell what is the
probability that the classifier will choose the positive
instances over the negative instances.

• Kappa Statistics: It tells how the model fits the data.
It is the statistical measure which calculates the inter-
rated agreement. If the judges are completely agreeing
to one condition, the kappa value comes to 1 and if
complete disagreement is there, the value becomes
zero. It is used for agreement between the gold set
summaries and the machine learning classifier.

• Precision: It is the ratio of number of bug reports
which are duplicate and are classified as duplicates to
the total number of bug reports which are classified as
duplicates. Precision=True Positives/(True Positives +
False Positives)

• Recall: It is the ratio of number of bug reports
which are duplicate and are classified as duplicate
to the number of duplicate bug reports available in
the repository. Recall=True Positives/(True Positives
+ False Negatives)

• F-Measure: It is the harmonic mean of Precision and
Recall. F Score=(2* Precision * Recall)/ (Precision +
Recall)

• Fisher Score: It is one of the very popular measure
of statistics. It is used to find out the effectiveness of
different features for distinguishing between duplicate
and non-duplicate bug reports. Here mean and stan-
dard deviation for the feature values of a particular
class are used.

www.ijacsa.thesai.org 583 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 1, 2021

TABLE II. SUMMARY OF STUDIES: STRENGTHS AND LIMITATIONS

(Table Continues in Table III)
Author Pros Cons
[17] Approach does not require training data. Thus can be used for any project. Their approach could not achieve good results.
[19] First available approach where the execution trace is also included along with

the textual and categorical features of a bug report.
Considered only Recall as the evaluation Measure. More Evaluation measures
would have helped give better insights. Their approach depends upon the external
tools to collect the execution trace. The approach suffers from privacy issues also.

[20] They analyzed how the individual feature performs. Thus gives the important
features for further research.

Their approach requires the training data. Constructing the training data with
large sample size is not an easy task. Very few datasets are available to be used
for training for duplicate bug report detection.

[36] First Paper for analyzing the GUI Bugs by transforming them into Event,
Component and Requirement.

Approach does not consider the semantic information of the Bug Report.

[18] Utilized the word-level information, handled super word features, expansion of
short forms, and hyphenated phrases

N-grams introduces the unessential noisy features.

[22] They used 54 features of bug report title and description along with the SVM
to detect the duplicates.

Requires the computation of lot of features.

[21] Use of BM25 approach along with the stochastic Gradient Descent helped
introducing control weights to the features.

Lot of hand-crafted features need to be considered.

[37] Introduced the concept of relative similarity among the Bug Reports. Approach
also addressed the imbalancing problem for Machine Learning .

Only SVM is considered for learning from features.

[44] They used the longest common subsequence approach which helps preserve the
word order. Word ordering is usually neglected by IR approaches.

As the approach is based upon the word ordering, the presence of synonyms
and alternate spellings create the problem

[23] They did not considered the clustering information to their approach.
[2] First paper where along with just the information from Bug Report, comments

and user profile are also considered.
Evaluated only on Naive Bayes, Decision Tree and SVM. More Classifiers can
also be considered. More Similarity Measures can be used to improve the feature
scores.

[27] Approach is generic and thus can be used for any software repository. Their approach does not display the results in ordered manner.
[15] They used only Stack Traces to find the duplicate Bug Reports. Thus even if

the Bug Report is not written properly, it will not impact the performance of
the approach.

Very few Bug Reports contain the stack Trace. Thus limiting the approach.

[45] Achieved the good results with very simple approaches LSI and VSM Their approaches are experimented on small dataset. Thus results can not be
taken as for benchmark.

[46] They added the contextual information to create the topics which improved their
results a lot.

More features can be included for improving the results.

[14] The approach uses clustering, thus requires no training data Synonyms and phrases with similar meaning needs to be considered to improve
the accuracy of the approach.

[43] They used the cluster information to their TF-IDF weighing mechanism.
[29] The approach does not require training data and can be easily generalized to any

project. Rather than just proving their approach, they integrated their approach
to the the existing bug tracking system and observed the results.

Their approach only used conventional Vector Space Model (VSM) when their
exists many other approaches which give better results than the VSM.

[28] Along with the contextual information and the existing approaches till their time,
their approach also used another metric known as Bootstrap Aggregation which
gave better results than previous ones.

The approach does not consider for Top-k duplicate bug reports.

[47] The approach used the contextual information of software engineering for the
duplicate bug report detection. The approach reduced the time and effort to
detect the duplicate bug report

The contextual information used was software-level specific not the project-
specific.

[30] They involved the use of both the Classification and the Clustering to detect the
duplicates. Classification helps get the topic definition while Clustering helps
evaluate the degree of correlation between the topics.

Pre processing requires the intervention of experts. Approach first use classifi-
cation then clustering, Classification requires the goo

[33] Their paper not only included the techniques to find the Bug Reports which
resembles the textual similarity but also those which do not exhibit textual
similarity.

The approach needs the properly labeled triaged dataset as it involves the
machine learning approach.

[31] Discourse Based analysis to explore the Observed Behavior, Expected Behavior
and Steps to Reproduce helped improve the NLP Based Techniques

Noisy data and typographical mistakes imposes the challenge

[48] Reduced the machine learning bias by inclusion of Fidelity Loss Function. Only includes statistical and textual Similarity Features. Semantic Information
is not included. Considered the VSM approach. Approach can be evaluated over
other models also.

• Mean Reciprocal Rank: This approach is used by [35]
to find the rank of correct answer. As mentioned in
their paper, as this approach supports only one correct
result, this evaluation measure is not very appropriate
for duplicate bug report context. The reason is that
for a bug report, many duplicate bug reports can exist.
It has no lower limit. This metric gives the mean of
reciprocal ranks of the correct results. If the rank of
correct result is low, then a problem appears.

• Mean Average Precision: It is based on the ranks of
correct results. Here the multiple matches are allowed.
Average Precision is calculated for each query and
then mean is taken for all the queries.

Table VIII gives the tabular representations of various met-
rics being used by researchers for evaluating the effectiveness
of their approach.

V. FUTURE DIRECTIONS

• Need of testing the approaches with large and different
dataset: Almost in all the papers of duplicate bug
report detection, few includes [38] [25] [34] [37],
mentioned the need of testing their approach with the
large dataset to find the reliability of the approaches.
They also mentioned the need to extensively train the
approaches on various types of software projects.

• Extensive Training and Tuning for Deep Learning
models: In a paper by [1],they mentioned the need of
performing the extensive training for Deep Learning
models by involving the use of various approaches
like batch normalization. As in DL Based Models,
hyperparameters need to be trained for the learning
process. Thus need to fine tune the parameters is
also required. For ML and DL Based Models, the

www.ijacsa.thesai.org 584 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 1, 2021

TABLE III. SUMMARY OF STUDIES: STRENGTHS AND LIMITATIONS: CONTINUATION OF TABLE 6 SUMMARY

Author Strengths Limitations
[1] Use of LSTM and CNN Models helped achieve highly accurate duplicate bug

reports. No handcrafted features were used by them.
The approach needs to be tested with large training set and the attention
mechanism should also be added for improving the results.

[34] Inclusion of word embedding with deep learning improved the results signifi-
cantly very high.

The approach only uses simple Deep Learning Model along with the Word
Embedding while the RNN and CNN gives better results in terms of syntax and
semantic aspects. The model includes two step training.

[5] Simple Convolutional Model is used for learning the long descriptions of the
Bug Report.

Domain-specific features are not used for the approach which limits its results.

[35] Instead of giving the top-k results, their approach continuously queries the similar
bug reports and help be alerted before submitting the bug report. Thus the
approach helps users stop at any time.

As the approach uses the words for retrieving the results, many times because of
the use of synonyms and other similar words, the results do not come effectively.

[24] Usually the approaches which have used LDA, used number of topics as
the paramter. But in their paper,they studied the parameter tuning techniques
which included Genetic Algorithms, Differential Evolution, Particle Swarm
Optimization, Simulated Annealing and Random Search. Thus it opens the area
of improving LDA to achieve better results.

There are many more meta heuristics which are available which can be explored
further to see how the LDA models works with them.

[42] The approach not only helps in detecting the similar bug reports but also helps
assign the new bug report to the appropriate group of previous Bug Reports.

Their approach does not work for those bug reports which do not have prior
duplicates in the repository. Their approach involves the analysis of Stack Trace
Information but only few bug reports contain Stack Trace, thus impacts the
validation of efficiency of the approach.

[49] Query reformulation Strategy used by them is independent of other bug reports
other than itself.

Query Reformulation does not consider the description of Bug Report. It only
considers the Title and Observed Behavior for finding the duplicates.

[41] They included all the temporal, categorical, textual and contextual information
of the bug report to detect the duplicates. It is the first paper where they used
the Manhattan Distance Similarity Measure and found that the accuracy has
improved because of this measure.

Use of domain-specific knowledge can improve the accuracy of the model. More
work on reducing the search space for feature calculation is also needed.

TABLE IV. KEYWORDS USED FOR SELECTING THE RESEARCH PAPERS

Application Strings Used
Duplicate Bug Report: NLP Duplicate bug report detection using Natural Language Processing, Duplicate

Bug Report, Duplicate Bug Report NLP, Bug Report
Duplicate Bug Report: Information Retrieval Duplicate Bug Report Detection: Information Retrieval, Duplicate Bug, Bug

Report
Duplicate Bug Report: Machine Learning Duplicate Bug Reports Machine Learning, Duplicate Bug, Bug Report, Bug

Report Duplicate
Duplicate Bug Report: Deep Learning Deep Learning for Duplicate Bug Reports, Duplicate Bug Report

TABLE V. PAPER DISTRIBUTION: SOURCE WISE

Link No of
Papers

Duplicate Detec-
tion: NLP

Duplicate Detec-
tion: IR

Duplicate Detec-
tion: ML

Duplicate Detec-
tion: DL

Total Used in Pa-
per

IEEE 28 11 9 3 2 28
Springer 7 1 3 2 0 7
ACM 6 2 1 2 1 6
ACL Anthology 2 1 0 1 0 1
Elsevier 2 0 0 2 0 2
Total Papers
found

45 15 13 10 3 45

TABLE VI. PAPER DISTRIBUTION: YEAR WISE

Year No Of Papers
2008 3
2009 2
2010 2
2011 2
2012 6
2013 6
2014 6
2015 3
2016 5
2017 3
2018 3
2019 4
Total 45

approaches need to be trained on large datasets for
finding their efficiencies.

• The author in [3], mentioned the following things to
take care of for avoiding bug reports duplication:
◦ Analyze the submitter profile while analyzing

the bug report.
◦ Use of controlled vocabulary for the bug report

writing.

◦ Initial display of Related Search Results
◦ Automatic Duplicate Bug Report analysis for

the display of only top few duplicate bug
reports

◦ Visualization of bug reports

• The author in [26] mentioned the need to reformulate
and expand the queries to get the better results for
duplicate bug report detection.

• Even though lot of works have been done in the field
of machine learning, properly addressing the issue of
imbalanced data is also very important. The author in
[37] modified the training set by reducing the number
of non-duplicate instances in the training dataset.

• Need to integrate the approaches to the bug reporting
management system is also the need of time to reduce
the efforts of Triager.

• Most of the works have used Title and Description for
identifying the duplicate bug reports, in a paper by [2],
they used the comments also to identify the potential
duplicate bug reports. There is a need to include all the

www.ijacsa.thesai.org 585 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 1, 2021

TABLE VII. SUMMARY OF STUDIES

Author Major Approach Used Type of Duplicate Bug Report Cat-
egorization

Corpus Main Techniques Use

[17] Natural Language Based Top-k Sony Mobile Erricson Mobile Com-
munications

Similarity Measures, TF

[19] NLP Based Top-k Eclipse, Firefox Similarity Measures, TF-IDF
[20] NLP Based Top-k Mozilla [56] Cosine Similarity, TF
[36] NLP Top-k Event Extraction, Longest Common

Subsequence(LCS)
[18] NLP Based Top-k Eclipse Unigram and Bigrams
[22] Machine Learning Based Prevention Openoffice, Firefox, Eclipse SVM
[21] Information Retrieval Top-k Eclipse, Mozilla, Openoffice BM25F, Gradient Descent
[37] Machine-Learning Based Top-k Mozilla SVM
[44] NLP Top-k Eclipse, Firefox Longest Common Subsequence
[23] NLP Top-k Apache, AgroUML, SVN BM25
[2] ML(SL) Top-k MeeGo SVM with RBF Kernel, LDA,

Jensen-Shanon, symmetric KL Di-
vergence

[27] NLP Top-k BlackBerry BM25F+ Smoothing techniques
[15] NLP Top-k Eclipse TF-IDF
[45] IR Top-k Google Chrome Browser VSM, LSI
[46] IR Prevention Android [57] BM25F, LDA
[14] ML Top-k Eclipse, Mozilla, Open Office K-Means
[43] ML(USL) Top-k Apache, AgroUML,SVN
[29] IR Top-k - Vector Space Model
[28] IR+ ML Prevention Android ZeroR, Naive Bayes, Logistic Re-

gression, C4.5, K-NN, Bagging:
REP Tree

[47] NLP + ML Top-k Eclipse, OpenOffice, Mozilla BM25F
[30] IR+ML Top-k Apache, Eclipse, Mozilla Naive Bayes, LDA
[33] IR + ML Top-k Chrome Dataset Vector Space Model, Cosine Simi-

larity, TF-IDF, K-Mean Clustering,
Nearest Neighbor Classifier

[48] IR Top-k Eclipse LDA, Similarity Calcula-
tion(Cosine)

[31] NLP Top-k 9 different software projects from
Github and Jira

SVM+Discourse-
Based+Dependency Parsing

[1] ML(DL) Top-k, Classification Open Office, Eclipse, NetBeans CNN+LSTM +Word
Embedding+Feed Forward Neural
Network

[34] DL Top-k Firefox, Openoffice Word Embedding, Deep Learning
Feed Forward Neural Network

[5] DL Top-k Hadoop, HDFS, MapReduce, Spark Word Embeddings, Convolutional
Neural Networks

[35] IR+NLP Prevention [58] LDA, LSA, TF-IDF, BM25F
[24] IR TOp-k Bench4BL LDA with GA, DE,

PSO,SA,Random Search
[42] NLP Top-k Firefox and Gnome Hidden Markov Model
[49] NLP Top-k Accumulo,Ambari, ActiveMQ,

Cassandra, Cordova, Continuum,
Drill, Eclipse, Groovy, Hadoop,
Hbase, Hive, Maven, Firefox,
My Faces, OpenOffice, PDFBox,
Spark, Wicket, Struts

Ontology

[41] NLP Top-k Android,Mozilla Eclipse, Open Of-
fice

LCS , N-gram

aspects of a bug report including comments to solve
this problem.

• The author in [4] observed that finding those reports
which are textually similar requires less effort by de-
velopers but the reports which does not exhibit similar
textual similarity are more difficult to be identified
by developer. Thus more work is required to identify
the approach where the automatic techniques identify
the issue reports which do not or exhibit less textual
similarity.

VI. CONCLUSION

Duplicate Bug Report Detection is one of the very impor-
tant and frequent task that is performed on the daily-basis by
a person called triager. It is a tedious and a time-consuming
activity apart from the main software development and other

tasks. In this paper, we have identified the main works that have
been performed for this problem. We classified the works into
the Natural Language Processing Based, Information-Retrieval
Based, Machine Learning Based and Deep Learning Based.
We systematically mentioned all the works in the classified
manner. We also present the statistics about this work which
gives an insight about how much work has been done in this
field. We have mentioned almost all the popular evaluation
measures which have been used by various researchers. We
have also mentioned the Strengths and Limitations of all the
major works in this field along with their experimental results.
This will enable the researchers to easily identify the gaps and
compare their results. Apart from mentioning just the works
done, we also present the challenges and pointers for the future
research in this field.

www.ijacsa.thesai.org 586 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 1, 2021

TABLE VIII. RESULTS FROM RESEARCHES

Author Extension
of Re-
search

Evaluation Measure1 Evaluation Measure2 Any Other

[20]: Mozilla TPR: 8 % TNR: 100 % Harmonic: 15%
[37]: Mozilla TPR: 24% TNR: 91% Harmonic: 39%
[14]: Mozilla TP Rate: 27% TN Rate: 86% Harmonic: 41%
[21] MAP(BM25Fext): OpenOffice-45.21 %,

Mozilla-46.22%, Eclipse-53.21%, Large
Eclipse-44.22%

Recall: Top-1: 37%, Top-20: 71%

[44] Recall: Firefox- 73% (Top-20), Eclipse -
85%

[5]: Spark Dataset F Measure: Random: 0.964, GloVe: 0.944,
word2Vec:925

Accuracy: Random: 0.951, GloVe: 0.935,
word2Vec: 0.920

[18] Recall Rate: 0.2 (Top-1), 0.35 (Top-5), 0.49
(Top-20)

[23] Recall Rate:0.112(Top-1), 0.2 (Top-5), 0.3
(Top-20)

[34] Recall Rate: 0.25 (Top-1), 0.5 (Top-5), 0.7
(Top-20)

[1] Recall: 80% (Top-20) Accuracy: 90 % (Top-20)
[30]: Classification +LDA Accuracy: Naive Bayes: 38.74(T-1), 46.39

(T-2), 60.52 (T-3)
Bayesian Network: 27.93(T-1), 36.98 (T-2),
47.43(T-3)
C4.5: 41.31(T-1), 48.5 (T-2), 60.52 (T-3)
SVM: 22.96(T-1), 41.33 (T-2), 43.72 (T-3)

[22]
Textual and Categorical

Accuracy: 80%(ZeroR),
79.655% (Naive Bayes),
88.125% (Logistic Regression),
92.105% (C4.5),
91.55 %(K-NN)

AUC: 0.500(ZeroR),
0.904(Naive Bayes),
0.788(Logistic Regression),
0.888(C4.5),
0.7561%(K-NN)

Kappa: 0.0(ZeroR),
0.3508(Naive Bayes),
0.5967(Logistic
Regression),
0.7553(C4.5),
0.0.7561(K-NN)

[46]: Textual, Categorical
and Labeled-LDA

[22] Accuracy: 80%(ZeroR),
79.655% (Naive Bayes),
88.125% (Logistic Regression),
92.105% (C4.5),
91.55 %(K-NN)

AUC: 0.500(ZeroR),
0.904(Naive Bayes),
0.788(Logistic Regression),
0.888(C4.5),
0.7561%(K-NN)

Kappa: 0.0(ZeroR),
0.3508(Naive Bayes),
0.5967(Logistic
Regression),
0.7553(C4.5),
0.0.7561(K-NN)

[47]: Labelled LDA, An-
droid Textbook

[46] Accuracy: 80%(ZeroR),
87.01% (Naive Bayes),
94.22% (Logistic Regression),
92.75% (SVM),
94.22 %(C4.5)

Kappa: 0.0(ZeroR),
0.583(Naive Bayes),
0.753(Logistic Regression),
0.750(SVM),
0.799(C4.5)

[28] [46] Accuracy: 80%(ZeroR),
93% (Naive Bayes),
94.5% (Logistic Regression),
94.7% (C4.5),
94.75 %(K-NN),
95.17 (Bagging)

AUC: 0.5(ZeroR),
0.958(Naive Bayes),
0.972(Logistic Regression),
0.941(C4.5),
0.955 %(K-NN),
0.977(Bagging)

Kappa: 0.0(ZeroR),
0.77(Naive Bayes),
0.824(Logistic
Regression),
0.832(C4.5),
0.830(K-NN),
0.845(Bagging)

[49] Recall: Observed Behavior: 56.6 %, Bug
Title: 59.6%, Title +Observed: 78%

[41] Precision: Mozilla-97.14, Android-99.12,
Eclipse-96.86, Open Office-98.45

Recall: Mozilla-97.78, Android-99.45,
Eclipse-90.12, Open Office-97.59

Accuracy: Mozilla-97.14,
Android-99.47, Eclipse-
96.58, Open Office-97.10
%

REFERENCES

[1] J. Deshmukh, A. M, S. Podder, S. Sengupta, and N. Dubash, “Towards
accurate duplicate bug retrieval using deep learning techniques,” 09
2017, pp. 115–124.

[2] L. Feng, L. Song, C. Sha, and X. Gong, “Practical duplicate bug
reports detection in a large web-based development community,” in Web
Technologies and Applications, Y. Ishikawa, J. Li, W. Wang, R. Zhang,
and W. Zhang, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg,
2013, pp. 709–720.

[3] Y. C. Cavalcanti, P. A. da Mota Silveira Neto, D. Lucrédio,
T. Vale, E. S. de Almeida, and S. R. de Lemos Meira, “The bug
report duplication problem: an exploratory study,” Software Quality
Journal, vol. 21, no. 1, pp. 39–66, Mar 2013. [Online]. Available:
https://doi.org/10.1007/s11219-011-9164-5

[4] W. S. Mohamed Sami Rakha and A. E. Hassan, “Studying the needed
effort for identifying duplicate issues.” Empir Software Eng, vol. 21,
pp. 1960 – 1989, 2016.

[5] Q. Xie, Z. Wen, J. Zhu, C. Gao, and Z. Zheng, “Detecting duplicate bug

reports with convolutional neural networks,” in 2018 25th Asia-Pacific
Software Engineering Conference (APSEC), Dec 2018, pp. 416–425.

[6] A. Lamkanfi, J. Perez, and S. Demeyer, “The eclipse and mozilla defect
tracking dataset: a genuine dataset for mining bug information,” in MSR
’13: Proceedings of the 10th Working Conference on Mining Software
Repositories, May 18-–19, 2013. San Francisco, California, USA, 2013.

[7] [Online]. Available: https://bugzilla.mozilla.org
[8] [Online]. Available: https://bugs.eclipse.org/bugs/describecomponents.

cgi?\\product=Platform
[9] [Online]. Available: https://bugs.eclipse.org/bugs/describecomponents.

cgi?\\product=JDT
[10] [Online]. Available: http://issues.apache.org/jira/browse/CASSANDRA
[11] [Online]. Available: http://issues.apache.org/jira/browse/MAPREDUCE
[12] [Online]. Available: http://issues.apache.org/jira/browse/HDFS
[13] [Online]. Available: http://issues.apache.org/jira/browse/SPARK
[14] R. P. Gopalan and A. Krishna, “Duplicate bug report detection using

clustering,” in Proceedings of the 2014 23rd Australian Software
Engineering Conference, ser. ASWEC ’14. Washington, DC, USA:

www.ijacsa.thesai.org 587 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 1, 2021

IEEE Computer Society, 2014, pp. 104–109. [Online]. Available:
https://doi.org/10.1109/ASWEC.2014.31

[15] J. Lerch and M. Mezini, “Finding duplicates of your yet unwritten bug
report,” 03 2013, pp. 69–78.

[16] J. He, N. Nazar, J. Zhang, T. Zhang, and Z. Ren, “Prst: A pagerank-
based summarization technique for summarizing bug reports with dupli-
cates,” International Journal of Software Engineering and Knowledge
Engineering, vol. 27, pp. 869–896, 06 2017.

[17] P. Runeson, M. Alexandersson, and O. Nyholm, “Detection of duplicate
defect reports using natural language processing,” in 29th International
Conference on Software Engineering (ICSE’07), May 2007, pp. 499–
510.

[18] A. Sureka and P. Jalote, “Detecting duplicate bug report using character
n-gram-based features,” in 2010 Asia Pacific Software Engineering
Conference, Nov 2010, pp. 366–374.

[19] X. Wang, L. Zhang, T. Xie, J. Anvik, and J. Sun, “An approach to
detecting duplicate bug reports using natural language and execution
information,” in 2008 ACM/IEEE 30th International Conference on
Software Engineering, May 2008, pp. 461–470.

[20] N. Jalbert and W. Weimer, “Automated duplicate detection for bug
tracking systems,” in 2008 IEEE International Conference on Depend-
able Systems and Networks With FTCS and DCC (DSN), June 2008,
pp. 52–61.

[21] C. Sun, D. Lo, S. Khoo, and J. Jiang, “Towards more accurate re-
trieval of duplicate bug reports,” in 2011 26th IEEE/ACM International
Conference on Automated Software Engineering (ASE 2011), 2011, pp.
253–262.

[22] C. Sun, D. Lo, X. Wang, J. Jiang, and S. Khoo, “A discriminative
model approach for accurate duplicate bug report retrieval,” in 2010
ACM/IEEE 32nd International Conference on Software Engineering,
vol. 1, May 2010, pp. 45–54.

[23] C. Yang, H. Du, S. Wu, and I. Chen, “Duplication detection for software
bug reports based on bm25 term weighting,” in 2012 Conference on
Technologies and Applications of Artificial Intelligence, 2012, pp. 33–
38.

[24] A. Panichella, “A systematic comparison of search algorithms for topic
modelling—a study on duplicate bug report identification,” in Search-
Based Software Engineering, S. Nejati and G. Gay, Eds. Cham:
Springer International Publishing, 2019, pp. 11–26.

[25] Y. Song, X. Wang, T. X. L. Zhang, and H. Mei, “Jdf: Detecting duplicate
bug reports in jazz,” 2010.

[26] N. Kaushik and L. Tahvildari, “A comparative study of the performance
of ir models on duplicate bug detection,” in 2012 16th European
Conference on Software Maintenance and Reengineering, March 2012,
pp. 159–168.

[27] M. Amoui, N. Kaushik, A. Al-Dabbagh, L. Tahvildari, S. Li, and
W. Liu, “Search-based duplicate defect detection: An industrial ex-
perience,” in 2013 10th Working Conference on Mining Software
Repositories (MSR), 2013, pp. 173–182.

[28] N. Klein, C. S. Corley, and N. A. Kraft, “New features for
duplicate bug detection,” in Proceedings of the 11th Working
Conference on Mining Software Repositories, ser. MSR 2014. New
York, NY, USA: ACM, 2014, pp. 324–327. [Online]. Available:
http://doi.acm.org/10.1145/2597073.2597090

[29] F. Thung, P. S. Kochhar, and D. Lo, “Dupfinder: Integrated tool support
for duplicate bug report detection,” 2014.

[30] C. Jingliang, M. Zhe, and S. Jun, “A data-driven approach based on lda
for identifying duplicate bug report,” in 2016 IEEE 8th International
Conference on Intelligent Systems (IS), 2016, pp. 686–691.

[31] O. Chaparro, “Improving bug reporting, duplicate detection, and local-
ization,” in 2017 IEEE/ACM 39th International Conference on Software
Engineering Companion (ICSE-C), 2017, pp. 421–424.

[32] A. Hindle, A. Alipour, and E. Stroulia, “A contextual approach towards
more accurate duplicate bug report detection and ranking,” Empirical
Software Engineering, vol. 21, no. 2, pp. 368–410, Apr 2016. [Online].
Available: https://doi.org/10.1007/s10664-015-9387-3

[33] P. Anjaneyulu, G. Sarbendu, A. Gopichand, P. B. Satya, and
P. Srinivas”, An Analytics-Driven Approach to Identify Duplicate Bug
Records in Large Data Repositories. Cham: Springer International
Publishing, 2016, pp. 161–187. [Online]. Available: https://doi.org/10.
1007/978-3-319-31861-5 8

[34] A. Budhiraja, K. Dutta, R. Reddy, and M. Shrivastava, “Poster: Dwen:
Deep word embedding network for duplicate bug report detection in
software repositories,” in 2018 IEEE/ACM 40th International Confer-
ence on Software Engineering: Companion (ICSE-Companion), May
2018, pp. 193–194.

[35] A. Hindle and C. Onuczko, “Preventing duplicate bug reports by
continuously querying bug reports,” Empirical Software Engineering,
vol. 24, no. 2, pp. 902–936, Apr 2019. [Online]. Available:
https://doi.org/10.1007/s10664-018-9643-4

[36] N. K. Nagwani and P. Singh, “Bug mining model based on event-
component similarity to discover similar and duplicate gui bugs,” in
2009 IEEE International Advance Computing Conference, 2009, pp.
1388–1392.

[37] Y. Tian, C. Sun, and D. Lo, “Improved duplicate bug report identifi-
cation,” in 2012 16th European Conference on Software Maintenance
and Reengineering, March 2012, pp. 385–390.

[38] A. Lazar, S. Ritchey, and B. Sharif, “Improving the accuracy of
duplicate bug report detection using textual similarity measures,” in
Proceedings of the 11th Working Conference on Mining Software
Repositories, ser. MSR 2014. New York, NY, USA: ACM, 2014,
pp. 308–311. [Online]. Available: http://doi.acm.org/10.1145/2597073.
2597088

[39] A. Tsuruda, Y. Manabe, and M. Aritsugi, “Can we detect bug report
duplication with unfinished bug reports?” in 2015 Asia-Pacific Software
Engineering Conference (APSEC), Dec 2015, pp. 151–158.

[40] K. K. Sabor, A. Hamou-Lhadj, and A. Larsson, “Durfex: A feature
extraction technique for efficient detection of duplicate bug reports,” in
2017 IEEE International Conference on Software Quality, Reliability
and Security (QRS), 2017, pp. 240–250.

[41] B. S. Neysiani and S. Morteza Babamir, “Improving performance of au-
tomatic duplicate bug reports detection using longest common sequence
: Introducing new textual features for textual similarity detection,” in
2019 5th Conference on Knowledge Based Engineering and Innovation
(KBEI), 2019, pp. 378–383.

[42] N. Ebrahimi, A. Trabelsi, M. S. Islam, A. Hamou-Lhadj, and
K. Khanmohammadi, “An hmm-based approach for automatic
detection and classification of duplicate bug reports,” Information and
Software Technology, vol. 113, pp. 98 – 109, 2019. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S095058491930117X

[43] M. Lin and C. Yang, “An improved discriminative model for duplication
detection on bug reports with cluster weighting,” in 2014 IEEE 38th
Annual Computer Software and Applications Conference, 2014, pp.
117–122.

[44] S. Banerjee, B. Cukic, and D. Adjeroh, “Automated duplicate bug report
classification using subsequence matching,” in 2012 IEEE 14th Interna-
tional Symposium on High-Assurance Systems Engineering, 2012, pp.
74–81.

[45] I. Chawla and S. K. Singh, “Performance evaluation of vsm and lsi
models to determine bug reports similarity,” in 2013 Sixth International
Conference on Contemporary Computing (IC3), 2013, pp. 375–380.

[46] A. Alipour, A. Hindle, and E. Stroulia, “A contextual approach towards
more accurate duplicate bug report detection,” 05 2013, pp. 183–192.

[47] K. Aggarwal, T. Rutgers, F. Timbers, A. Hindle, R. Greiner, and
E. Stroulia, “Detecting duplicate bug reports with software engineering
domain knowledge,” in 2015 IEEE 22nd International Conference on
Software Analysis, Evolution, and Reengineering (SANER), 2015, pp.
211–220.

[48] J. Zou, L. Xu, M. Yang, M. Yan, D. Yang, and X. Zhang, “Duplication
detection for software bug reports based on topic model,” in 2016 9th
International Conference on Service Science (ICSS), 2016, pp. 60–65.

[49] O. Chaparro, J. M. Florez, U. Singh, and A. Marcus, “Reformulating
queries for duplicate bug report detection,” in 2019 IEEE 26th Interna-
tional Conference on Software Analysis, Evolution and Reengineering
(SANER), 2019, pp. 218–229.

[50] [Online]. Available: https://ieeexplore.ieee.org/
[51] [Online]. Available: https://www.elsevier.com
[52] [Online]. Available: http://aclweb.org/anthology/
[53] [Online]. Available: https://link.springer.com
[54] [Online]. Available: https://dl.acm.org/

www.ijacsa.thesai.org 588 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 1, 2021

[55] [Online]. Available: https://scholar.google.co.in/
[56] [Online]. Available: https://bugzilla.mozilla.org/buglist.cgi?

quicksearch=Mozilla
[57] [Online]. Available: https://source.android.com/setup/contribute/

report-bugs
[58] [Online]. Available: https://archive.org/details/

2016-04-09ContinuousQuery

www.ijacsa.thesai.org 589 | P a g e

