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Abstract— The k integer-merging problem is to merge the k 

sorted arrays into a new sorted array that contains all elements 

of  𝑨𝒊, ∀ 𝒊 . We propose a new parallel algorithm based on 

exclusive read exclusive write shared memory. The algorithm 
runs in 𝑶(𝒍𝒐𝒈 𝒏) time using 𝒏/ 𝒍𝒐𝒈 𝒏 processors. The algorithm 

performs linear work, 𝑶(𝒏), and has optimal cost. Furthermore, 

the total work done by the algorithm is less than the best-known 
previous parallel algorithms for k merging problem. 
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I. INTRODUCTION 

The problem of merging has many applications in computer 
science and used as a subroutine for solving many problems 
such as sorting [1], database management systems [2], 
information retrieval [3], memory management, scheduling [1], 
and reconstruction of the tree [4][5]. Most of these applications 
based their solutions on the merging problem. For example, the 
optimal algorithm for sorting an array A of size n can be done 
as follows. (1) Partition the array A into two subarrays of equal 
size, A1 and A2. (2) Sort recursively for A1. (3) Sort reclusively 
for A2. (4) Merge A1 and A2. 

 The merging problem is defined as follows [10]. Given 
two sorted arrays A = (a0, a1,..., an-1) and B = (b0, b1,..., bm-1). 
The merging of two sorted arrays is a new sorted array C = (c0, 
c1,.. ., cn+m-1) such that: 

1) ci ∈ A or ci ∈B, ∀ 0 ≤ 𝑖 ≤ 𝑛 + 𝑚 − 1; and 

2) ai and bj appear exactly once in C, ∀ 0 ≤ 𝑖 < 𝑛 and 0 ≤
𝑗 < 𝑚. 

On the other side, some applications of computer science 
such as external sorting and information retrieval systems 
require to merge k sorted arrays of different lengths. In such a 
case, the problem is known as a k merging problem. For 
example, the external sorting (sorting a file of large data) 
problem can be done by the following steps [1]: (1) Dividing 
the file into small blocks to fit into main memory. (2) Applying 
the fast sorting algorithm on each block. (3) Merging the sorted 
blocks into sorted bigger blocks, until the file is sorted. 

The merging problem of k sorted arrays is defined as 
follows. 

Given k sorted arrays of lengths 𝑛𝑖′𝑠,  𝐴𝑖 =
(𝑎𝑖 0, 𝑎𝑖 1, ⋯ , 𝑎𝑖 𝑗 , ⋯ , 𝑎𝑖 𝑛𝑖−1), such that ∑ 𝑛𝑖

𝑘−1
𝑖=0 = 𝑛 , 0 ≤ 𝑖 <

𝑘, 0 ≤ 𝑗 < 𝑛𝑖 , and 2≤ k ≤ n. The merging of k sorted arrays is a 
new sorted array C = (c0,c1, ... ,cn-1) such that: 

1) cj belongs to one of Ai, ∀ 0 ≤ 𝑗 < 𝑛; and 

2) ai j appear exactly once in C, ∀ 0 ≤ 𝑖 < 𝑘 and ∀ 0 ≤
𝑗 < 𝑛𝑖. 

In sequential computation, the problem of merging two 
arrays of sorted elements is solved in linear time, O(n), where 
n≥m [1][7], while the problem of k merging required Ω(n log 
k), where 2≤ k ≤ n [17]. 

In parallel computation, different algorithms solve the 
problem of computation based on different strategies and 
parallel computational models. The two main types of parallel 
models are shared memory and interconnection networks. Our 
paper focuses only on the type of shared memory that is the 
Parallel Random Access Machine, PRAM. PRAM consists of p 
identical processors that operate p synchronously and 
communicate through large shared memory. There are three 
main models for PRAM based on memory access conflicts in 
shared memory. (1) Allowing read or write operations to 
memory location that is called Exclusive Read Exclusive Write 
(EREW). (2) Allowing only read operations to a memory 
location that is called Concurrent Read Exclusive Write 
(CREW). (3) Allowing read or write operations to a memory 
location that is called Concurrent Read Concurrent Write 
(CRCW). 

In case of merging two sorted arrays [9] [10] [11][12] [13] 
[14] [15], the optimal parallel algorithm uses 𝑝 ≤  𝑛/
𝑙𝑜𝑔 𝑛 processors to run the algorithm in 𝑂(𝑛/𝑝) time. The 
algorithm is based on EREW PRAM [12]. In case of CREW, 
Kruskal [13] shows that the merging problem can be solved in 
𝑂(𝑙𝑜𝑔 𝑙𝑜𝑔 𝑛) time using 𝑂(𝑛) work. 

In case the elements of the two arrays are taken from 
integer domain [1,m], then the problem of merging is called 
integer merging [6][16][17][18][19]. The problem of integer 
merging needs further investigation. In case of EREW PRAM, 
Hagerup and Kutyloushi [19] presented 𝑂(𝑙𝑜𝑔 𝑙𝑜𝑔 𝑛 +
𝑙𝑜𝑔 min{𝑛, 𝑚}) algorithm with total space O(n), where m = 
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O(n). The total number of operations done by the algorithm is 
O(n). Additionally, Bahig [16][17] reduced running time to 
constant, by considering some properties for the elements of 
the input. These properties are: (1) each element has a constant 
number of repetitions and (2) the difference between two 
successive elements is bounded by a constant. In case of 
CREW PRAM, Berkman and Vishkin in [6] proposed an 
algorithm that uses 𝑛/ log log log 𝑚  processors and has 
running time 𝑂(𝑙𝑜𝑔 𝑙𝑜𝑔 𝑙𝑜𝑔 𝑚),  when  𝑚 =  𝑛𝑘 . Also; they 

have proposed 𝑂(𝛼(𝑛))  algorithm by using 𝑛/𝛼(𝑛) 

processors, where α(n) is the inverse of Ackermann’s function 
and m=n. Furthermore the author in [18] proposed a constant-
time deterministic algorithm, O(1), for merging on CREW. The 
proposed algorithm is optimal in case of the values of input 
elements are less than or equal to the size of the inputs and the 
number of processors is equal to size of the inputs. 

In case of k merging problem, PRAM is the main used 
algorithm. In [19], the algorithm is based on repeated pairwise 
merging of k sorted arrays. The algorithm is not working 
optimally and it is running in 𝑂(log 𝑛 ×  log 𝑘) time. In [20], 
the author proposed an algorithm based on CREW PRAM. The 
algorithm has O(𝑙𝑜𝑔 𝑛) parallel time using (𝑛 𝑙𝑜𝑔 𝑘)/𝑙𝑜𝑔 𝑛 
processors with total work O(n log k). The algorithm based its 
solution on pipelining strategy and optimal work. In [8], the 
authors proposed two optimal parallel algorithms on PRAM 
with work 𝑂(𝑛 𝑙𝑜𝑔 𝑘). Previous two algorithms are based on 
sampling scheme. The first algorithm runs in Ω(𝑙𝑜𝑔 𝑛) under 
EREW, while the second algorithm runs in Ω(𝑙𝑜𝑔 𝑙𝑜𝑔 𝑛 +
 𝑙𝑜𝑔 𝑘) under CREW. Recently, the authors in [24] proposed a 
lazy-merge algorithm, have running time equal to O(k log (n/k) 
+ merge(n/p)), where k and merge(n/p) are the number of 
segments and the time needed to merge n/p elements 
respectively by the used in-place merging algorithm. Also, the 
authors in [21] presented two parallel algorithms for k integer 
merging, when no repetition occurs in the elements. The 
running time for both algorithms are O(log n) and O(1) under 
EREW and CREW PRAM respectively. 

The paper studies the k integer merging problem on PRAM 
and shows that the k integer merging problem can be solved in 
total work O(n), even though the elements number of 
repetitions is extreme. The proposed algorithm uses 𝑛/
𝑙𝑜𝑔 𝑛 processors of type EREW PRAM to run the algorithm in 
time 𝑂(𝑙𝑜𝑔 𝑛). 

The paper is organized as follows: an introduction and five 
sections. In Section 2, we give foundations and subroutines that 
is needed for proposed algorithm. Proposed algorithm for k 
integer merging is explained in Section 3. In Section 4, we 
calculate the complexity analysis of the proposed algorithm. In 
Section 5, we show how the proposed algorithm works by 
tracing the algorithm on an example. Finally, in Section 6, we 
show the conclusion of our work. 

II. PRELIMINARIES 

In this section, we give the fundamental definitions and 
subroutines related to k integer merging problem. 

Definition 1 [10][22]: Given a problem Q of size n. The 
cost of the parallel algorithm for Q is equal to the product of 
the number of processor used and the running time for the 
parallel algorithm. 

Definition 2 [10][22]: Given a problem Q of size n. The 
cost of parallel algorithm for Q is optimal if it matches with the 
time complexity of the best-known sequential algorithm for Q. 

Definition 3 [8][10][22]: The work of a parallel algorithm 
is the total number of operations that the processors perform. 

Definition 4 [9][10]: The prefix sums of the array 𝐴 =
 (𝑎0, 𝑎1, . . . , 𝑎𝑛−1) is an array 𝑆 =  (𝑠0, 𝑠1, . . . , 𝑠𝑛−1) , where 
𝑠𝑖  =  𝑎0  ⊕ 𝑎1  ⊕ . . .⊕ 𝑎𝑖 , and ⊕  is a binary operator, 
∀ 0 ≤ 𝑖 < 𝑛. 

Proposition 1 [23]: An EREW PRAM algorithm for 
computing the prefix sums of an array of n elements runs in 
𝑂(𝑛/𝑝) time using p, 𝑝 ≤ 𝑛/ log 𝑛. 

The technique used to solve the prefix sum is called binary 
tree strategy and it can be used to solve many related problems 
[9][23]. 

Proposition 2 [1][9][10]: Given an array A of n integers. 
The integer sorting algorithm runs in 𝑂(𝑛) sequential time and 
𝑂(log 𝑛) using 𝑛/ log 𝑛 time under EREW PRAM. 

III. NEW PARALLEL ALGORITHM 

In this section, we show that the k integer merging problem 
on exclusive read exclusive write shared memory model can be 
solved in total work O(n) instead of 𝑂(𝑛 log 𝑘), which is the 
total work for the best-known algorithm for k merging on the 
same shared memory model. Without loss of generality, 
assume that the elements of the k sorted arrays, 𝑎𝑖 𝑗 , are taken 

from the integer domain [0,n-1], ∀ 0 ≤ 𝑖 < 𝑘, 0 ≤ 𝑗 < 𝑛𝑖, 2 ≤
𝑘 ≤ 𝑛, and 𝑛 = ∑ 𝑛𝑖

𝑘−1
𝑖=0 . The elements of the k sorted arrays 

are uniformly distributed over the integer domain. We also 
assume that the number of processors used to design the 
parallel algorithm is 𝑛/𝑙𝑜𝑔 𝑛. 

The main idea behind the proposed algorithm is how to 
partition the k sorted arrays into 𝑛/𝑙𝑜𝑔 𝑛  independent lists. 
Then, the proposed algorithm assigns each list to a processor to 
merge it sequentially. The algorithm consists of the following 
stages. 

A. Stage 1: Partitioning 

The partitioning stage is the first stage to merge k sorted 
arrays of integer elements. The goal of this stage is to divide 
the elements of the k sorted arrays into 𝑛/ log 𝑛 lists. The lists 
have the following properties. 
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P1: The lists are independent which means that the elements 

of the list number i are different from the elements of the 

list number 𝑗, ∀ 𝑖 ≠ 𝑗. 
P2: The lists are relatively ordered which means that the 

elements of the list number i is less than the elements of 

the list number j, ∀ 𝑖 < 𝑗. 
P3: A small integer range called bounded range, BR., bound 

the difference between the elements in a list. 

To verify the three properties of the 𝑛/ log 𝑛  lists, we 
define the value of BR by the following equation: 

𝐵𝑅 = {
log 𝑛 if 𝑛/ log 𝑛 is perfect integer

log 𝑛 + 1 otherwise


To construct the independent lists, we will use two phases 
to partition the k sorted arrays. These two phases are called 
local and global partitioning. 

B. Local Partitioning Phase 

The main objective of the local partitioning phase is to 
partition each sorted array Ai into many subarrays based on the 
values of the elements of Ai. The elements of the ith subarray 
belong to the range [(𝑖 − 1)𝐵𝑅, 𝑖 𝐵𝑅 − 1], ∀ 1 ≤ 𝑖 ≤ 𝑛/ log 𝑛. 

The input of local phase is k sorted arrays A0, A1, …, Ak-1 of 
lengths n0, n1, …, nk-1, respectively. By the end of the local 
partitioning phase, we construct a list, ALi, of li elements for 
each sorted array Ai, ∀ 0 ≤ 𝑖 < 𝑘 . The list contains the 
boundary indices for each partition in the sorted array Ai. Each 
element in the list ALi, ALi[j], consists of four fields, aNo, pNo, 
start and end. The component aNo represents the array 
number, while the component pNo represents the partition 
number. The fields start and end represent start and end indices 
for the partition number pNo in the sorted array Ai, 
respectively. 

To construct the elements of ALi, we have two cases. The 
first case is when the size of each sorted array is approximately 
equal to BR. The second case is when the sizes of the sorted 
arrays are different. 

In the case, the size of each sorted array Ai is approximately 
equal to BR, we do Subroutine 1 to construct the local partition. 
In the subroutine, we can compute the component of each 
element for the list ALi by the following steps. 

Initially, the number of elements in the list ALi is equal to 0, 
and the first element in the array Ai, ai0, determines the first 
partition belong to the list ALi, see lines 1-2 in Subroutine 1. 

The first three components of ALi[0] are as follows: 

·

 ·

·

The partition number, pNo, is determined by using the Div 
operator to return the quotient of division. The fourth 
component will be determined later when the algorithm 
determines the start of a new partition. Then, the algorithm 
scans the elements of the array Ai from the second to the last 
elements to determine the end of the current partition and the 

start of a new partition (see line 3 in Subroutine 1). The end 
and the start of the current and new partitions, respectively, can 
be determined by testing if the quotients for the two successive 

elements, 𝑎𝑖 𝑗−1, and 𝑎𝑖 𝑗 , on BR are different. When, the result 

of comparison is different, then, the partition number, pNo, is 

equal to 𝑎𝑖 𝑗  Div 𝐵𝑅. In such case, the element 𝑎𝑖 𝑗  represents 

the first element of a new partition and the index j represents 
the start index of current partition. On the other side, the 
element 𝑎𝑖 𝑗−1  represents the last element of the current 

partition and the index j-1 represents the last index of the 
current partition. 

In case, the sizes of the k sorted arrays are different; we can 
compute 𝐴𝐿𝑖,∀𝑖, using two steps. The first step include that, we 

take each array of size greater than or equal to BR and do the 
following: 

1) Determine the number of processors required for the 

array Ai which is equal to 𝑛𝑝𝑖 = ⌊𝑛𝑖/𝐵𝑅⌋. 
2) Each processor, 𝑝𝑗 , will do the same process as in 

Subroutine 1 on the ith partition of ALij, ∀ 0≤ j <npi. 
3) Combine all the sublists, 𝐴𝐿𝑖𝑗, to the list 𝐴𝐿𝑖 by using 

the binary tree paradigm. 

After finishing from all arrays of sizes greater than or equal 
to BR, we execute the second step. The second step includes 
that, we assign one processor to each of the remainder arrays 
and do the same process as in Subroutine 1. 

 

Subroutine 1:  

Each processor do the following: 

1. 
2. 

li=0 // number of elements in ALi  
ALi[li]=(i,ai0 Div BR,0, ) 

3. for j=1 to ni -1 do 

4.  if ai j Div BR ≠ ai j-1 Div BR then 

5. 

6. 

7. 

  ALi[li]=( , , ,j-1) 

li= li+1 

ALi[li]=(i,ai j Div BR,j, ) 

8.  end if 

9. end for 

10. ALi[li]=( , , ,ni-1) 
 

 

C. Global Partitioning Phase 

The main objective of the global partitioning phase is to 
partition the k sorted arrays into 𝑛/ log 𝑛  lists. Each list 
satisfies the three previous properties (mentioned in Stage1). 

The input of global phase is a collection of k lists AL0, AL1, 
…, ALk-1, of lengths l0, l1,…, lk-1, respectively. By the end of 
this phase, we have an array, AP, of 𝑛/ log 𝑛 elements. The 
element AP[i] consists of three fields. The first two fields, start 
and end, represent the start and the end indices for the elements 
of the k sorted arrays that belong to the partition number i. The 
third field, no, represents the number of elements in the 
partition i, for all k sorted arrays. We can construct the array 
AP as follows: 

1) Apply the parallel integer sort algorithm [24] on the 

elements of k lists, 𝐴𝐿 =∪𝑖=0
𝑘−1 𝐴𝐿𝑖 , according to the second 
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component of ALi, pNo, using 𝑛/ log 𝑛 processors. If there are 

two elements in AL having the same value of the second 

component, then the elements are ordered according to the first 

component. The output of the first step is an array AL of 

length 𝑙 = ∑ 𝑙𝑖
𝑘−1
𝑖=0 ≤ 𝑛. 

2) Divide AL into 𝑛/ log 𝑛  partitions of approximately 

equal size, (𝑙 ∗  log 𝑛)/𝑛. 

3) Initially, compute the start and the end of the first and 

the last partitions, respectively, as follows: 

𝐴𝑃[𝐴𝐿[0] ∙ 𝑝𝑁𝑜] ∙ 𝑠𝑡𝑎𝑟𝑡 = 0 

𝐴𝑃[𝐴𝐿[𝑙 − 1] ∙ 𝑝𝑁𝑜] ∙ 𝑒𝑛𝑑 = 𝑙 − 1 

4) Determine the start and the end of each list that satisfies 

our proposed three properties, by applying Subroutine 2 on 

each partition. 

5) Each processor, pi, determines the third component of 

the partition, AP[i], by scanning the array AP from 𝐴𝐿[𝑖] ∙
𝑠𝑡𝑎𝑟𝑡  to 𝐴𝐿[𝑖] ∙ 𝑒𝑛𝑑  and calculates the total number of 

elements using the following formula: 

𝐴𝑃[𝑖] ∙ 𝑛𝑜 = ∑ 𝐴𝐿[𝑗] ∙ 𝑒𝑛𝑑 − 𝐴𝐿[𝑗] ∙ 𝑠𝑡𝑎𝑟𝑡 + 1

𝐴𝑃[𝑖]∙𝑒𝑛𝑑

𝑗=𝐴𝑃[𝑖]∙𝑠𝑡𝑎𝑟𝑡

 

Subroutine 2 
Each processor pi do the following test on its partition as 

follows: 0≤i<p and 𝑖⌈𝑙/𝑝⌉ ≤ 𝑗 < (𝑖 + 1)⌈𝑙/𝑝⌉, except i=0 

and j=0. 
1. if 𝐴𝐿[𝑗] ∙ 𝑝𝑁𝑜 ≠ 𝐴𝐿[𝑗 − 1] ∙ 𝑝𝑁𝑜 then  

2.  𝐴𝑃[𝐴𝐿[𝑗] ∙ 𝑝𝑁𝑜] ∙ 𝑠𝑡𝑎𝑟𝑡 = 𝑗 

3.  𝐴𝑃[𝐴𝐿[𝑗 − 1] ∙ 𝑝𝑁𝑜] ∙ 𝑒𝑛𝑑 = 𝑗 − 1 

Note that in case i=p-1, the value of j is less than n. 

 
 

D. Stage 2: Merging 

The main objective of the merging stage is to merge 
elements of each partition. In other words, the goal is to merge 
the sorted subarrays that belong to the ith partition, AP[i]. 

To merge sorted subarrays that belong to the ith partition, 
we have two cases based on the number of elements in each 
partition. In the first case, the size of each partition is 
approximately equal to BR, while in the second case the size of 
each partition is different. 

In the first case, we do the process of merging by using 
Subroutine 3, which uses the idea of counting sorting algorithm 
[25]. To verify our goal, we use an array CAi of length BR to 
merge the subarrays that belong to the partition number i, 
∀ 0 ≤ 𝑖 < 𝑛/ log 𝑛. Each element in this array consists of two 
fields. The first component, val, represents the value of the 
element, while the second component, count, represents the 
number of repetitions of the element val. The first step of 
Subroutine 3 is to initialize the two fields of the array 𝐶𝐴𝑖 with 
𝑖 log 𝑛 + 𝑗 and 0, respectively as in lines 1-3 in Subroutine 3. 
In the second step we compute the number of repetitions for 
each element by traversing the elements of the partition 𝐴𝑃[𝑖] 

in lines 4-7 in Subroutine 3. In the third step, we reallocate the 
elements of the auxiliary array 𝐶𝐴𝑖 to the array 𝐶𝑖. 

In case that the size of each partition is different, we can 
construct 𝐶𝐴𝑖  by the same method that is described in local 
partitioning step. 

 

 

Subroutine 3 

Processor pi do the following 

1. for j=0 to BR-1 do 
2.  𝐶𝐴𝑖[𝑗] ∙ 𝑣𝑎𝑙 = 𝑖 log 𝑛 + 𝑗 

3.  𝐶𝐴𝑖[𝑗] ∙ 𝑐𝑜𝑢𝑛𝑡 = 0 

4. for 𝑗 = 𝐴𝑃[𝑖] ∙ 𝑠𝑡𝑎𝑟𝑡 to 𝐴𝑃[𝑖] ∙ 𝑒𝑛𝑑 do 

5.  for 𝑥 = 𝐴𝐿[𝑗] ∙ 𝑠𝑡𝑎𝑟𝑡 to 𝐴𝐿[𝑗] ∙ 𝑒𝑛𝑑 do 

6.  𝑦 = 𝐴𝐿[𝑗] ∙ 𝑎𝑁𝑜 

7.   𝐶𝐴𝑖[𝐴𝑦[𝑥] mod log 𝑛] ∙ 𝑐𝑜𝑢𝑛𝑡 =

 𝐶𝐴𝑖[𝐴𝑦[𝑥] mod log 𝑛] ∙ 𝑐𝑜𝑢𝑛𝑡 + 1 

8. x=0 

9. for j=0 to BR-1 do 

10. while 𝐶𝐴𝑖[𝑗] ∙ 𝑐𝑜𝑢𝑛𝑡 ≥ 1 do 

11.  𝐶𝑖[𝑥] = 𝐶𝐴𝑖[𝑗] ∙ 𝑣𝑎𝑙 
12.   𝐶𝐴𝑖[𝑗] ∙ 𝑐𝑜𝑢𝑛𝑡 =  𝐶𝐴𝑖[𝑗] ∙ 𝑐𝑜𝑢𝑛𝑡 − 1 

13.  𝑥 = 𝑥 + 1 
 

IV. COMPLEXITY ANALYSIS 

In this section, we analyze the proposed parallel algorithm 
for k integer merging problem according to the following 
criteria: running time, total number of work, optimality, and 
storage. 

To compute the running time of the parallel proposed 
algorithm, the algorithm consists of three main stages: local 
partitioning, global partitioning, and merging. 

The running time for the local partitioning stage can be 
computed as follows. In case that the size of each Ai is 
approximately equal to BR, each processor pi will execute a 
sequential loop on an array of length O(BR) approximately. 

Therefore, the running time of this step is O(BR)=O(log n). 
In case of the size of Ai is different, the running time can be 
computed as follows. Determining the number of processors 
that is required for Ai equal to constant time. The running time 
for step 2, execution of Subroutine 1, and step 3, combine all 
the sublists, are O(BR) and 𝑂(log 𝑛𝑝𝑖) , respectively. The 
overall time for the local partitioning phase is 𝑂(𝐵𝑅 + 𝑛𝑝𝑖) =
𝑂(𝑙𝑜𝑔 𝑛). 

The running time for the global partitioning stage can be 
computed as follows. The running time for applying the 
parallel integer sort algorithm on AL is bounded by 𝑂(log 𝑛), 
because the maximum length of the list AL is n. The running 
time for the substep 2.1 is constant. The running time for the 

substep 2.2 is 𝑂(log 𝑛), because 
𝑙∗log 𝑛

𝑛
≤ log 𝑛. The running 

time for the substep 2.3 is 𝑂(log(𝑛 log 𝑛⁄ )). Therefore, the 
overall running time for global partitioning is 𝑂(log 𝑛). 

The running time for the merging phase can be computed 
as follows. In case of the size of each AP[i] is approximately 
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equal to BR, the running time for Step 3.1 and 3.3 in 
Subroutine 3, are O(BR). The running time for Step 3.2 in 
Subroutine 3 depends on the size of the partition, which is 
equal to O(BR). So, the overall time for Subroutine 3 is O(BR). 
In case the size of each partition is different, then, the running 
time can be computed by a similar way which is equal 
to  𝑂(log 𝑛) . The overall running time of the algorithm is 
𝑂(log 𝑛). 

It can be seen from previous calculation that the total 
number of work done by each processor pi is 𝑂(log 𝑛), ∀ 0 ≤
𝑖 < 𝑛/ log 𝑛. Hence, the algorithm has a total work of 𝑂(𝑛). 

Therefore, the proposed algorithm has optimal work and 
cost. Also, the storage required by the proposed algorithm is 
𝑂(𝑛). 

Finally, it is clear that no step in the algorithm requires 
concurrent read or write. So, proposed algorithm based its 
work on exclusive read exclusive write shared memory. 

V. EXAMPLE 

Assume that we have six sorted arrays of total lengths equal 
to 32 as in Fig. 1. 

It is clear that k=6, n=32, n0=5, n1=11, n2=6, n3=1, n4=7, 
and n5=2. Therefore, the number of processors required is 𝑝 =
⌊𝑛/ log2 𝑛⌋  =  6 and BR=5+1=6. 

Now, we apply the first stage (local partitioning) on the six 
sorted arrays as follows. For the sorted array A0, the details of 
constructing the list AL0 are as follows. Initially, l0=0 and 
AL0[0]=(0,0,0, ) because i=0 and 2 Div 6 =0. For j=1, no 
updating for AL0 because 5 Div 6 =2 Div 6. For the next 
iteration, j=2, AL0 will be updated as AL0[0]=(0,0,0,1), l0=1 and 

AL0[1]=(0,2,2, ) because 13 Div 6 ≠5 Div 6. For next iteration, 
j=3, no updating for AL0 because 13 Div 6 =13 Div 6. For last 
value of j=3, the updating values of AL0 are as follows. 
AL0[1]=(0,2,2,3), l0=2 and AL0[2]=(0,3,4, ) because 23 Div 6 

≠13 Div 6. Finally, the last component of the final element in 
AL0 become AL0[2]=(0,3,4,4). Hence, the elements of AL0 are 
(0,0,0,1), (0,2,2,3), and (0,3,4,4). The results of applying the 
first stage on all sorted input arrays are as in Fig. 2. 

Next, the algorithm starts to execute the global partitioning 
stage by sorting the elements of all lists, AL0, AL1, AL2, AL3, 
AL4, and AL5 to obtain a sorted list AL of l=17 elements as in 
Fig. 3. 

Initially, the processor p0 determines the start and the end 
of the first and last partitions, respectively, as follows: 

𝐴𝑃[0] ∙ 𝑠𝑡𝑎𝑟𝑡 = 0 

 𝐴𝑃[16] ∙ 𝑒𝑛𝑑 = 16 

After that, each processor assigned to three elements, 
except the last processor has two elements, to determine the 
first two components, start and end in the array AP. For more 
details, the first three elements, (0,0,0,1), (1,0,0,1) and 
(4,0,0,1), are assigned to the processor p0. The second three 
elements, (1,1,2,4), (2,1,0,1), and (4,1,2,3), are assigned to the 
processor p1, while the last two elements, (5,4,1,1) and 
(1,5,10,10), are assigned to the processor p5. 

 

Fig. 1. Input Data. 

 

Fig. 2. Execution of Local Partition. 

 

Fig. 3. First Step of Global Partition. 

The processor p0 does not determine any components 
because 𝐴𝐿[1] ∙ 𝑝𝑁𝑜 ≠ 𝐴𝐿[0] ∙ 𝑝𝑁𝑜  and 𝐴𝐿[2] ∙ 𝑝𝑁𝑜 ≠
𝐴𝐿[1] ∙ 𝑝𝑁𝑜 are false. The processor p1 determines the start of 
the second partition and the end of the first partition because 

 0 1 2 3 4 

A0  2 5 13 13 23 
 

 0 1 2 3 4 5 6 7 8 9 10 

A1 0 4 6 8 10 18 18 21 22 28 30 
 

 0 1 2 3 4 5 

A2 8 9 15 16 17 27 
 

 0 

A3 19 
 

 0 1 2 3 4 5 6 

A4 1 3 8 11 24 25 29 
 

 0 1 

A5 7 26 
 

 0 1 2 

AL0 (0,0,0,1) (0,2,2,3) (0,3,4,4) 
 

 0 1 2 3 4 

AL1 (1,0,0,1) (1,1,2,4) (1,3,5,8) (1,4,9,9) (1,5,10,10) 
 

 0 1 2 

AL2 (2,1,0,1) (2,2,2,4) (2,4,5,5) 
 

 0 

AL3 (3,3,0,0) 
 

 0 1 2 

AL4 (4,0,0,1) (4,1,2,3) (4,4,4,6) 
 

 0 1 

AL5 (5,1,0,0) (5,4,1,1) 
 

 0 1 2 3 4 

AL (0,0,0,1) (1,0,0,1) (4,0,0,1) (1,1,2,4) (2,1,0,1) 
 

 5 6 7 8 9 

 (4,1,2,3) (5,1,0,0) (0,2,2,3) (2,2,2,4) (0,3,4,4) 
 

 10 11 12 13 14 

 (1,3,5,8) (3,3,0,0) (1,4,9,9) (2,4,5,5) (4,4,4,6) 
 

15 16 

(5,4,1,1) (1,5,10,10) 
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𝐴𝐿[3] ∙ 𝑝𝑁𝑜 ≠ 𝐴𝐿[2] ∙ 𝑝𝑁𝑜  is true. So, 𝐴𝐿[1] ∙ 𝑠𝑡𝑎𝑟𝑡 = 3 
and 𝐴𝐿[0] ∙ 𝑒𝑛𝑑 = 2. On the other side, the two other elements 
do not lead to new partition because 𝐴𝐿[4] ∙ 𝑝𝑁𝑜 ≠ 𝐴𝐿[3] ∙
𝑝𝑁𝑜  and 𝐴𝐿[5] ∙ 𝑝𝑁𝑜 ≠ 𝐴𝐿[4] ∙ 𝑝𝑁𝑜  are false. The last 
processor p5 determines the start of the fifth partition and the 
end of the fourth partition because 𝐴𝐿[16] ∙ 𝑝𝑁𝑜 ≠ 𝐴𝐿[15] ∙
𝑝𝑁𝑜  is true. So, 𝐴𝐿[5] ∙ 𝑠𝑡𝑎𝑟𝑡 = 16  and 𝐴𝐿[4] ∙ 𝑒𝑛𝑑 = 15 . 
The array AP is shown in Fig. 4(a). 

By applying Step 5 of the global partition phase, each 
processor pi computes the number of elements in each 
partition. For the processor p0, 𝐴𝑃[0] ∙ 𝑝𝑁𝑜 = 2 + 2 + 2 = 6, 
while p1 computes 𝐴𝑃[1] ∙ 𝑝𝑁𝑜 = 3 + 2 + 2 = 7. The array 
AP becomes as in Fig. 4(b). 

In the last stage, each processor, pi, merges the different 
subarrays of the ith partition. The results of implementing the 
last stage consist of two steps. In the first step, each processor 
computes the repetition of each element as shown in Fig. 5. 
The results of the second step are shown in Fig. 6. The output 
array is C=(C0, C1, C2, C3, C4, C5)= (0, 1, 2, 3, 4, 5, 6, 7, 8, 8, 8, 
9, 10, 11, 13, 13, 15,16, 17, 18, 18, 19, 21, 22, 23, 24, 25, 26, 
27, 28, 29, 30). 

 

Fig. 4. Result of Global Partition. 

 

Fig. 5. First Step of Merging Phase. 

 

Fig. 6. Results of the Second Step of Merging Phase (Output). 

VI. CONCLUSION  

The paper addresses the problem of merging when the 
number of input sorted arrays is k, 2 ≤ 𝑘 ≤ 𝑛. The output of 
the merging is a new sorted array that contains all elements of 
the input. Our main contribution is solving the k integer 
merging problem under exclusive read exclusive write shared 
memory. The proposed algorithm runs in 𝑂(log 𝑛) time using 
𝑛/ log 𝑛 processors. Additionally, the total work done by the 
proposed algorithm is 𝑂(𝑛), which is less than the best-known 
k merging parallel algorithm that perform 𝛩(𝑛 log 𝑘) work. 
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