
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 1, 2021

685 | P a g e
www.ijacsa.thesai.org

k-Integer-Merging on Shared Memory

Ahmed Y Khedr1, Ibrahim M Alseadoon2

College of Computer Science and Engineering, University of Ha’il, Ha’il, KSA1

Systems and Computers Department, Faculty of Engineering, Al-Azhar University, Cairo, Egypt1

College of Computer Science and Engineering, University of Ha’il, Ha’il, KSA2

Abstract— The k integer-merging problem is to merge the k

sorted arrays into a new sorted array that contains all elements

of 𝑨𝒊, ∀ 𝒊 . We propose a new parallel algorithm based on

exclusive read exclusive write shared memory. The algorithm
runs in 𝑶(𝒍𝒐𝒈 𝒏) time using 𝒏/ 𝒍𝒐𝒈 𝒏 processors. The algorithm

performs linear work, 𝑶(𝒏), and has optimal cost. Furthermore,

the total work done by the algorithm is less than the best-known
previous parallel algorithms for k merging problem.

Keywords—Merging; parallel algorithm; shared memory;

optimality; linear work

I. INTRODUCTION

The problem of merging has many applications in computer
science and used as a subroutine for solving many problems
such as sorting [1], database management systems [2],
information retrieval [3], memory management, scheduling [1],
and reconstruction of the tree [4][5]. Most of these applications
based their solutions on the merging problem. For example, the
optimal algorithm for sorting an array A of size n can be done
as follows. (1) Partition the array A into two subarrays of equal
size, A1 and A2. (2) Sort recursively for A1. (3) Sort reclusively
for A2. (4) Merge A1 and A2.

 The merging problem is defined as follows [10]. Given
two sorted arrays A = (a0, a1,..., an-1) and B = (b0, b1,..., bm-1).
The merging of two sorted arrays is a new sorted array C = (c0,
c1,.. ., cn+m-1) such that:

1) ci ∈ A or ci ∈B, ∀ 0 ≤ 𝑖 ≤ 𝑛 + 𝑚 − 1; and

2) ai and bj appear exactly once in C, ∀ 0 ≤ 𝑖 < 𝑛 and 0 ≤
𝑗 < 𝑚.

On the other side, some applications of computer science
such as external sorting and information retrieval systems
require to merge k sorted arrays of different lengths. In such a
case, the problem is known as a k merging problem. For
example, the external sorting (sorting a file of large data)
problem can be done by the following steps [1]: (1) Dividing
the file into small blocks to fit into main memory. (2) Applying
the fast sorting algorithm on each block. (3) Merging the sorted
blocks into sorted bigger blocks, until the file is sorted.

The merging problem of k sorted arrays is defined as
follows.

Given k sorted arrays of lengths 𝑛𝑖′𝑠, 𝐴𝑖 =
(𝑎𝑖 0, 𝑎𝑖 1, ⋯ , 𝑎𝑖 𝑗 , ⋯ , 𝑎𝑖 𝑛𝑖−1), such that ∑ 𝑛𝑖

𝑘−1
𝑖=0 = 𝑛 , 0 ≤ 𝑖 <

𝑘, 0 ≤ 𝑗 < 𝑛𝑖 , and 2≤ k ≤ n. The merging of k sorted arrays is a
new sorted array C = (c0,c1, ... ,cn-1) such that:

1) cj belongs to one of Ai, ∀ 0 ≤ 𝑗 < 𝑛; and

2) ai j appear exactly once in C, ∀ 0 ≤ 𝑖 < 𝑘 and ∀ 0 ≤
𝑗 < 𝑛𝑖.

In sequential computation, the problem of merging two
arrays of sorted elements is solved in linear time, O(n), where
n≥m [1][7], while the problem of k merging required Ω(n log
k), where 2≤ k ≤ n [17].

In parallel computation, different algorithms solve the
problem of computation based on different strategies and
parallel computational models. The two main types of parallel
models are shared memory and interconnection networks. Our
paper focuses only on the type of shared memory that is the
Parallel Random Access Machine, PRAM. PRAM consists of p
identical processors that operate p synchronously and
communicate through large shared memory. There are three
main models for PRAM based on memory access conflicts in
shared memory. (1) Allowing read or write operations to
memory location that is called Exclusive Read Exclusive Write
(EREW). (2) Allowing only read operations to a memory
location that is called Concurrent Read Exclusive Write
(CREW). (3) Allowing read or write operations to a memory
location that is called Concurrent Read Concurrent Write
(CRCW).

In case of merging two sorted arrays [9] [10] [11][12] [13]
[14] [15], the optimal parallel algorithm uses 𝑝 ≤ 𝑛/
𝑙𝑜𝑔 𝑛 processors to run the algorithm in 𝑂(𝑛/𝑝) time. The
algorithm is based on EREW PRAM [12]. In case of CREW,
Kruskal [13] shows that the merging problem can be solved in
𝑂(𝑙𝑜𝑔 𝑙𝑜𝑔 𝑛) time using 𝑂(𝑛) work.

In case the elements of the two arrays are taken from
integer domain [1,m], then the problem of merging is called
integer merging [6][16][17][18][19]. The problem of integer
merging needs further investigation. In case of EREW PRAM,
Hagerup and Kutyloushi [19] presented 𝑂(𝑙𝑜𝑔 𝑙𝑜𝑔 𝑛 +
𝑙𝑜𝑔 min{𝑛, 𝑚}) algorithm with total space O(n), where m =

Deanship of Scientific Research, University of Ha’il

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 1, 2021

686 | P a g e
www.ijacsa.thesai.org

O(n). The total number of operations done by the algorithm is
O(n). Additionally, Bahig [16][17] reduced running time to
constant, by considering some properties for the elements of
the input. These properties are: (1) each element has a constant
number of repetitions and (2) the difference between two
successive elements is bounded by a constant. In case of
CREW PRAM, Berkman and Vishkin in [6] proposed an
algorithm that uses 𝑛/ log log log 𝑚 processors and has
running time 𝑂(𝑙𝑜𝑔 𝑙𝑜𝑔 𝑙𝑜𝑔 𝑚), when 𝑚 = 𝑛𝑘 . Also; they

have proposed 𝑂(𝛼(𝑛)) algorithm by using 𝑛/𝛼(𝑛)

processors, where α(n) is the inverse of Ackermann’s function
and m=n. Furthermore the author in [18] proposed a constant-
time deterministic algorithm, O(1), for merging on CREW. The
proposed algorithm is optimal in case of the values of input
elements are less than or equal to the size of the inputs and the
number of processors is equal to size of the inputs.

In case of k merging problem, PRAM is the main used
algorithm. In [19], the algorithm is based on repeated pairwise
merging of k sorted arrays. The algorithm is not working
optimally and it is running in 𝑂(log 𝑛 × log 𝑘) time. In [20],
the author proposed an algorithm based on CREW PRAM. The
algorithm has O(𝑙𝑜𝑔 𝑛) parallel time using (𝑛 𝑙𝑜𝑔 𝑘)/𝑙𝑜𝑔 𝑛
processors with total work O(n log k). The algorithm based its
solution on pipelining strategy and optimal work. In [8], the
authors proposed two optimal parallel algorithms on PRAM
with work 𝑂(𝑛 𝑙𝑜𝑔 𝑘). Previous two algorithms are based on
sampling scheme. The first algorithm runs in Ω(𝑙𝑜𝑔 𝑛) under
EREW, while the second algorithm runs in Ω(𝑙𝑜𝑔 𝑙𝑜𝑔 𝑛 +
 𝑙𝑜𝑔 𝑘) under CREW. Recently, the authors in [24] proposed a
lazy-merge algorithm, have running time equal to O(k log (n/k)
+ merge(n/p)), where k and merge(n/p) are the number of
segments and the time needed to merge n/p elements
respectively by the used in-place merging algorithm. Also, the
authors in [21] presented two parallel algorithms for k integer
merging, when no repetition occurs in the elements. The
running time for both algorithms are O(log n) and O(1) under
EREW and CREW PRAM respectively.

The paper studies the k integer merging problem on PRAM
and shows that the k integer merging problem can be solved in
total work O(n), even though the elements number of
repetitions is extreme. The proposed algorithm uses 𝑛/
𝑙𝑜𝑔 𝑛 processors of type EREW PRAM to run the algorithm in
time 𝑂(𝑙𝑜𝑔 𝑛).

The paper is organized as follows: an introduction and five
sections. In Section 2, we give foundations and subroutines that
is needed for proposed algorithm. Proposed algorithm for k
integer merging is explained in Section 3. In Section 4, we
calculate the complexity analysis of the proposed algorithm. In
Section 5, we show how the proposed algorithm works by
tracing the algorithm on an example. Finally, in Section 6, we
show the conclusion of our work.

II. PRELIMINARIES

In this section, we give the fundamental definitions and
subroutines related to k integer merging problem.

Definition 1 [10][22]: Given a problem Q of size n. The
cost of the parallel algorithm for Q is equal to the product of
the number of processor used and the running time for the
parallel algorithm.

Definition 2 [10][22]: Given a problem Q of size n. The
cost of parallel algorithm for Q is optimal if it matches with the
time complexity of the best-known sequential algorithm for Q.

Definition 3 [8][10][22]: The work of a parallel algorithm
is the total number of operations that the processors perform.

Definition 4 [9][10]: The prefix sums of the array 𝐴 =
 (𝑎0, 𝑎1, . . . , 𝑎𝑛−1) is an array 𝑆 = (𝑠0, 𝑠1, . . . , 𝑠𝑛−1) , where
𝑠𝑖 = 𝑎0 ⊕ 𝑎1 ⊕ . . .⊕ 𝑎𝑖 , and ⊕ is a binary operator,
∀ 0 ≤ 𝑖 < 𝑛.

Proposition 1 [23]: An EREW PRAM algorithm for
computing the prefix sums of an array of n elements runs in
𝑂(𝑛/𝑝) time using p, 𝑝 ≤ 𝑛/ log 𝑛.

The technique used to solve the prefix sum is called binary
tree strategy and it can be used to solve many related problems
[9][23].

Proposition 2 [1][9][10]: Given an array A of n integers.
The integer sorting algorithm runs in 𝑂(𝑛) sequential time and
𝑂(log 𝑛) using 𝑛/ log 𝑛 time under EREW PRAM.

III. NEW PARALLEL ALGORITHM

In this section, we show that the k integer merging problem
on exclusive read exclusive write shared memory model can be
solved in total work O(n) instead of 𝑂(𝑛 log 𝑘), which is the
total work for the best-known algorithm for k merging on the
same shared memory model. Without loss of generality,
assume that the elements of the k sorted arrays, 𝑎𝑖 𝑗 , are taken

from the integer domain [0,n-1], ∀ 0 ≤ 𝑖 < 𝑘, 0 ≤ 𝑗 < 𝑛𝑖, 2 ≤
𝑘 ≤ 𝑛, and 𝑛 = ∑ 𝑛𝑖

𝑘−1
𝑖=0 . The elements of the k sorted arrays

are uniformly distributed over the integer domain. We also
assume that the number of processors used to design the
parallel algorithm is 𝑛/𝑙𝑜𝑔 𝑛.

The main idea behind the proposed algorithm is how to
partition the k sorted arrays into 𝑛/𝑙𝑜𝑔 𝑛 independent lists.
Then, the proposed algorithm assigns each list to a processor to
merge it sequentially. The algorithm consists of the following
stages.

A. Stage 1: Partitioning

The partitioning stage is the first stage to merge k sorted
arrays of integer elements. The goal of this stage is to divide
the elements of the k sorted arrays into 𝑛/ log 𝑛 lists. The lists
have the following properties.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 1, 2021

687 | P a g e
www.ijacsa.thesai.org

P1: The lists are independent which means that the elements

of the list number i are different from the elements of the

list number 𝑗, ∀ 𝑖 ≠ 𝑗.
P2: The lists are relatively ordered which means that the

elements of the list number i is less than the elements of

the list number j, ∀ 𝑖 < 𝑗.
P3: A small integer range called bounded range, BR., bound

the difference between the elements in a list.

To verify the three properties of the 𝑛/ log 𝑛 lists, we
define the value of BR by the following equation:

𝐵𝑅 = {
log 𝑛 if 𝑛/ log 𝑛 is perfect integer

log 𝑛 + 1 otherwise


To construct the independent lists, we will use two phases
to partition the k sorted arrays. These two phases are called
local and global partitioning.

B. Local Partitioning Phase

The main objective of the local partitioning phase is to
partition each sorted array Ai into many subarrays based on the
values of the elements of Ai. The elements of the ith subarray
belong to the range [(𝑖 − 1)𝐵𝑅, 𝑖 𝐵𝑅 − 1], ∀ 1 ≤ 𝑖 ≤ 𝑛/ log 𝑛.

The input of local phase is k sorted arrays A0, A1, …, Ak-1 of
lengths n0, n1, …, nk-1, respectively. By the end of the local
partitioning phase, we construct a list, ALi, of li elements for
each sorted array Ai, ∀ 0 ≤ 𝑖 < 𝑘 . The list contains the
boundary indices for each partition in the sorted array Ai. Each
element in the list ALi, ALi[j], consists of four fields, aNo, pNo,
start and end. The component aNo represents the array
number, while the component pNo represents the partition
number. The fields start and end represent start and end indices
for the partition number pNo in the sorted array Ai,
respectively.

To construct the elements of ALi, we have two cases. The
first case is when the size of each sorted array is approximately
equal to BR. The second case is when the sizes of the sorted
arrays are different.

In the case, the size of each sorted array Ai is approximately
equal to BR, we do Subroutine 1 to construct the local partition.
In the subroutine, we can compute the component of each
element for the list ALi by the following steps.

Initially, the number of elements in the list ALi is equal to 0,
and the first element in the array Ai, ai0, determines the first
partition belong to the list ALi, see lines 1-2 in Subroutine 1.

The first three components of ALi[0] are as follows:

·

 ·

·

The partition number, pNo, is determined by using the Div
operator to return the quotient of division. The fourth
component will be determined later when the algorithm
determines the start of a new partition. Then, the algorithm
scans the elements of the array Ai from the second to the last
elements to determine the end of the current partition and the

start of a new partition (see line 3 in Subroutine 1). The end
and the start of the current and new partitions, respectively, can
be determined by testing if the quotients for the two successive

elements, 𝑎𝑖 𝑗−1, and 𝑎𝑖 𝑗 , on BR are different. When, the result

of comparison is different, then, the partition number, pNo, is

equal to 𝑎𝑖 𝑗 Div 𝐵𝑅. In such case, the element 𝑎𝑖 𝑗 represents

the first element of a new partition and the index j represents
the start index of current partition. On the other side, the
element 𝑎𝑖 𝑗−1 represents the last element of the current

partition and the index j-1 represents the last index of the
current partition.

In case, the sizes of the k sorted arrays are different; we can
compute 𝐴𝐿𝑖,∀𝑖, using two steps. The first step include that, we

take each array of size greater than or equal to BR and do the
following:

1) Determine the number of processors required for the

array Ai which is equal to 𝑛𝑝𝑖 = ⌊𝑛𝑖/𝐵𝑅⌋.
2) Each processor, 𝑝𝑗 , will do the same process as in

Subroutine 1 on the ith partition of ALij, ∀ 0≤ j <npi.
3) Combine all the sublists, 𝐴𝐿𝑖𝑗, to the list 𝐴𝐿𝑖 by using

the binary tree paradigm.

After finishing from all arrays of sizes greater than or equal
to BR, we execute the second step. The second step includes
that, we assign one processor to each of the remainder arrays
and do the same process as in Subroutine 1.

Subroutine 1:

Each processor do the following:

1.
2.

li=0 // number of elements in ALi
ALi[li]=(i,ai0 Div BR,0,)

3. for j=1 to ni -1 do

4. if ai j Div BR ≠ ai j-1 Div BR then

5.

6.

7.

 ALi[li]=(, , ,j-1)

li= li+1

ALi[li]=(i,ai j Div BR,j,)

8. end if

9. end for

10. ALi[li]=(, , ,ni-1)

C. Global Partitioning Phase

The main objective of the global partitioning phase is to
partition the k sorted arrays into 𝑛/ log 𝑛 lists. Each list
satisfies the three previous properties (mentioned in Stage1).

The input of global phase is a collection of k lists AL0, AL1,
…, ALk-1, of lengths l0, l1,…, lk-1, respectively. By the end of
this phase, we have an array, AP, of 𝑛/ log 𝑛 elements. The
element AP[i] consists of three fields. The first two fields, start
and end, represent the start and the end indices for the elements
of the k sorted arrays that belong to the partition number i. The
third field, no, represents the number of elements in the
partition i, for all k sorted arrays. We can construct the array
AP as follows:

1) Apply the parallel integer sort algorithm [24] on the

elements of k lists, 𝐴𝐿 =∪𝑖=0
𝑘−1 𝐴𝐿𝑖 , according to the second

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 1, 2021

688 | P a g e
www.ijacsa.thesai.org

component of ALi, pNo, using 𝑛/ log 𝑛 processors. If there are

two elements in AL having the same value of the second

component, then the elements are ordered according to the first

component. The output of the first step is an array AL of

length 𝑙 = ∑ 𝑙𝑖
𝑘−1
𝑖=0 ≤ 𝑛.

2) Divide AL into 𝑛/ log 𝑛 partitions of approximately

equal size, (𝑙 ∗ log 𝑛)/𝑛.

3) Initially, compute the start and the end of the first and

the last partitions, respectively, as follows:

𝐴𝑃[𝐴𝐿[0] ∙ 𝑝𝑁𝑜] ∙ 𝑠𝑡𝑎𝑟𝑡 = 0

𝐴𝑃[𝐴𝐿[𝑙 − 1] ∙ 𝑝𝑁𝑜] ∙ 𝑒𝑛𝑑 = 𝑙 − 1

4) Determine the start and the end of each list that satisfies

our proposed three properties, by applying Subroutine 2 on

each partition.

5) Each processor, pi, determines the third component of

the partition, AP[i], by scanning the array AP from 𝐴𝐿[𝑖] ∙
𝑠𝑡𝑎𝑟𝑡 to 𝐴𝐿[𝑖] ∙ 𝑒𝑛𝑑 and calculates the total number of

elements using the following formula:

𝐴𝑃[𝑖] ∙ 𝑛𝑜 = ∑ 𝐴𝐿[𝑗] ∙ 𝑒𝑛𝑑 − 𝐴𝐿[𝑗] ∙ 𝑠𝑡𝑎𝑟𝑡 + 1

𝐴𝑃[𝑖]∙𝑒𝑛𝑑

𝑗=𝐴𝑃[𝑖]∙𝑠𝑡𝑎𝑟𝑡

Subroutine 2
Each processor pi do the following test on its partition as

follows: 0≤i<p and 𝑖⌈𝑙/𝑝⌉ ≤ 𝑗 < (𝑖 + 1)⌈𝑙/𝑝⌉, except i=0

and j=0.
1. if 𝐴𝐿[𝑗] ∙ 𝑝𝑁𝑜 ≠ 𝐴𝐿[𝑗 − 1] ∙ 𝑝𝑁𝑜 then

2. 𝐴𝑃[𝐴𝐿[𝑗] ∙ 𝑝𝑁𝑜] ∙ 𝑠𝑡𝑎𝑟𝑡 = 𝑗

3. 𝐴𝑃[𝐴𝐿[𝑗 − 1] ∙ 𝑝𝑁𝑜] ∙ 𝑒𝑛𝑑 = 𝑗 − 1

Note that in case i=p-1, the value of j is less than n.

D. Stage 2: Merging

The main objective of the merging stage is to merge
elements of each partition. In other words, the goal is to merge
the sorted subarrays that belong to the ith partition, AP[i].

To merge sorted subarrays that belong to the ith partition,
we have two cases based on the number of elements in each
partition. In the first case, the size of each partition is
approximately equal to BR, while in the second case the size of
each partition is different.

In the first case, we do the process of merging by using
Subroutine 3, which uses the idea of counting sorting algorithm
[25]. To verify our goal, we use an array CAi of length BR to
merge the subarrays that belong to the partition number i,
∀ 0 ≤ 𝑖 < 𝑛/ log 𝑛. Each element in this array consists of two
fields. The first component, val, represents the value of the
element, while the second component, count, represents the
number of repetitions of the element val. The first step of
Subroutine 3 is to initialize the two fields of the array 𝐶𝐴𝑖 with
𝑖 log 𝑛 + 𝑗 and 0, respectively as in lines 1-3 in Subroutine 3.
In the second step we compute the number of repetitions for
each element by traversing the elements of the partition 𝐴𝑃[𝑖]

in lines 4-7 in Subroutine 3. In the third step, we reallocate the
elements of the auxiliary array 𝐶𝐴𝑖 to the array 𝐶𝑖.

In case that the size of each partition is different, we can
construct 𝐶𝐴𝑖 by the same method that is described in local
partitioning step.

Subroutine 3

Processor pi do the following

1. for j=0 to BR-1 do
2. 𝐶𝐴𝑖[𝑗] ∙ 𝑣𝑎𝑙 = 𝑖 log 𝑛 + 𝑗

3. 𝐶𝐴𝑖[𝑗] ∙ 𝑐𝑜𝑢𝑛𝑡 = 0

4. for 𝑗 = 𝐴𝑃[𝑖] ∙ 𝑠𝑡𝑎𝑟𝑡 to 𝐴𝑃[𝑖] ∙ 𝑒𝑛𝑑 do

5. for 𝑥 = 𝐴𝐿[𝑗] ∙ 𝑠𝑡𝑎𝑟𝑡 to 𝐴𝐿[𝑗] ∙ 𝑒𝑛𝑑 do

6. 𝑦 = 𝐴𝐿[𝑗] ∙ 𝑎𝑁𝑜

7. 𝐶𝐴𝑖[𝐴𝑦[𝑥] mod log 𝑛] ∙ 𝑐𝑜𝑢𝑛𝑡 =

 𝐶𝐴𝑖[𝐴𝑦[𝑥] mod log 𝑛] ∙ 𝑐𝑜𝑢𝑛𝑡 + 1

8. x=0

9. for j=0 to BR-1 do

10. while 𝐶𝐴𝑖[𝑗] ∙ 𝑐𝑜𝑢𝑛𝑡 ≥ 1 do

11. 𝐶𝑖[𝑥] = 𝐶𝐴𝑖[𝑗] ∙ 𝑣𝑎𝑙
12. 𝐶𝐴𝑖[𝑗] ∙ 𝑐𝑜𝑢𝑛𝑡 = 𝐶𝐴𝑖[𝑗] ∙ 𝑐𝑜𝑢𝑛𝑡 − 1

13. 𝑥 = 𝑥 + 1

IV. COMPLEXITY ANALYSIS

In this section, we analyze the proposed parallel algorithm
for k integer merging problem according to the following
criteria: running time, total number of work, optimality, and
storage.

To compute the running time of the parallel proposed
algorithm, the algorithm consists of three main stages: local
partitioning, global partitioning, and merging.

The running time for the local partitioning stage can be
computed as follows. In case that the size of each Ai is
approximately equal to BR, each processor pi will execute a
sequential loop on an array of length O(BR) approximately.

Therefore, the running time of this step is O(BR)=O(log n).
In case of the size of Ai is different, the running time can be
computed as follows. Determining the number of processors
that is required for Ai equal to constant time. The running time
for step 2, execution of Subroutine 1, and step 3, combine all
the sublists, are O(BR) and 𝑂(log 𝑛𝑝𝑖) , respectively. The
overall time for the local partitioning phase is 𝑂(𝐵𝑅 + 𝑛𝑝𝑖) =
𝑂(𝑙𝑜𝑔 𝑛).

The running time for the global partitioning stage can be
computed as follows. The running time for applying the
parallel integer sort algorithm on AL is bounded by 𝑂(log 𝑛),
because the maximum length of the list AL is n. The running
time for the substep 2.1 is constant. The running time for the

substep 2.2 is 𝑂(log 𝑛), because
𝑙∗log 𝑛

𝑛
≤ log 𝑛. The running

time for the substep 2.3 is 𝑂(log(𝑛 log 𝑛⁄)). Therefore, the
overall running time for global partitioning is 𝑂(log 𝑛).

The running time for the merging phase can be computed
as follows. In case of the size of each AP[i] is approximately

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 1, 2021

689 | P a g e
www.ijacsa.thesai.org

equal to BR, the running time for Step 3.1 and 3.3 in
Subroutine 3, are O(BR). The running time for Step 3.2 in
Subroutine 3 depends on the size of the partition, which is
equal to O(BR). So, the overall time for Subroutine 3 is O(BR).
In case the size of each partition is different, then, the running
time can be computed by a similar way which is equal
to 𝑂(log 𝑛) . The overall running time of the algorithm is
𝑂(log 𝑛).

It can be seen from previous calculation that the total
number of work done by each processor pi is 𝑂(log 𝑛), ∀ 0 ≤
𝑖 < 𝑛/ log 𝑛. Hence, the algorithm has a total work of 𝑂(𝑛).

Therefore, the proposed algorithm has optimal work and
cost. Also, the storage required by the proposed algorithm is
𝑂(𝑛).

Finally, it is clear that no step in the algorithm requires
concurrent read or write. So, proposed algorithm based its
work on exclusive read exclusive write shared memory.

V. EXAMPLE

Assume that we have six sorted arrays of total lengths equal
to 32 as in Fig. 1.

It is clear that k=6, n=32, n0=5, n1=11, n2=6, n3=1, n4=7,
and n5=2. Therefore, the number of processors required is 𝑝 =
⌊𝑛/ log2 𝑛⌋ = 6 and BR=5+1=6.

Now, we apply the first stage (local partitioning) on the six
sorted arrays as follows. For the sorted array A0, the details of
constructing the list AL0 are as follows. Initially, l0=0 and
AL0[0]=(0,0,0,) because i=0 and 2 Div 6 =0. For j=1, no
updating for AL0 because 5 Div 6 =2 Div 6. For the next
iteration, j=2, AL0 will be updated as AL0[0]=(0,0,0,1), l0=1 and

AL0[1]=(0,2,2,) because 13 Div 6 ≠5 Div 6. For next iteration,
j=3, no updating for AL0 because 13 Div 6 =13 Div 6. For last
value of j=3, the updating values of AL0 are as follows.
AL0[1]=(0,2,2,3), l0=2 and AL0[2]=(0,3,4,) because 23 Div 6

≠13 Div 6. Finally, the last component of the final element in
AL0 become AL0[2]=(0,3,4,4). Hence, the elements of AL0 are
(0,0,0,1), (0,2,2,3), and (0,3,4,4). The results of applying the
first stage on all sorted input arrays are as in Fig. 2.

Next, the algorithm starts to execute the global partitioning
stage by sorting the elements of all lists, AL0, AL1, AL2, AL3,
AL4, and AL5 to obtain a sorted list AL of l=17 elements as in
Fig. 3.

Initially, the processor p0 determines the start and the end
of the first and last partitions, respectively, as follows:

𝐴𝑃[0] ∙ 𝑠𝑡𝑎𝑟𝑡 = 0

 𝐴𝑃[16] ∙ 𝑒𝑛𝑑 = 16

After that, each processor assigned to three elements,
except the last processor has two elements, to determine the
first two components, start and end in the array AP. For more
details, the first three elements, (0,0,0,1), (1,0,0,1) and
(4,0,0,1), are assigned to the processor p0. The second three
elements, (1,1,2,4), (2,1,0,1), and (4,1,2,3), are assigned to the
processor p1, while the last two elements, (5,4,1,1) and
(1,5,10,10), are assigned to the processor p5.

Fig. 1. Input Data.

Fig. 2. Execution of Local Partition.

Fig. 3. First Step of Global Partition.

The processor p0 does not determine any components
because 𝐴𝐿[1] ∙ 𝑝𝑁𝑜 ≠ 𝐴𝐿[0] ∙ 𝑝𝑁𝑜 and 𝐴𝐿[2] ∙ 𝑝𝑁𝑜 ≠
𝐴𝐿[1] ∙ 𝑝𝑁𝑜 are false. The processor p1 determines the start of
the second partition and the end of the first partition because

 0 1 2 3 4

A0 2 5 13 13 23

 0 1 2 3 4 5 6 7 8 9 10

A1 0 4 6 8 10 18 18 21 22 28 30

 0 1 2 3 4 5

A2 8 9 15 16 17 27

 0

A3 19

 0 1 2 3 4 5 6

A4 1 3 8 11 24 25 29

 0 1

A5 7 26

 0 1 2

AL0 (0,0,0,1) (0,2,2,3) (0,3,4,4)

 0 1 2 3 4

AL1 (1,0,0,1) (1,1,2,4) (1,3,5,8) (1,4,9,9) (1,5,10,10)

 0 1 2

AL2 (2,1,0,1) (2,2,2,4) (2,4,5,5)

 0

AL3 (3,3,0,0)

 0 1 2

AL4 (4,0,0,1) (4,1,2,3) (4,4,4,6)

 0 1

AL5 (5,1,0,0) (5,4,1,1)

 0 1 2 3 4

AL (0,0,0,1) (1,0,0,1) (4,0,0,1) (1,1,2,4) (2,1,0,1)

 5 6 7 8 9

 (4,1,2,3) (5,1,0,0) (0,2,2,3) (2,2,2,4) (0,3,4,4)

 10 11 12 13 14

 (1,3,5,8) (3,3,0,0) (1,4,9,9) (2,4,5,5) (4,4,4,6)

15 16

(5,4,1,1) (1,5,10,10)

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 1, 2021

690 | P a g e
www.ijacsa.thesai.org

𝐴𝐿[3] ∙ 𝑝𝑁𝑜 ≠ 𝐴𝐿[2] ∙ 𝑝𝑁𝑜 is true. So, 𝐴𝐿[1] ∙ 𝑠𝑡𝑎𝑟𝑡 = 3
and 𝐴𝐿[0] ∙ 𝑒𝑛𝑑 = 2. On the other side, the two other elements
do not lead to new partition because 𝐴𝐿[4] ∙ 𝑝𝑁𝑜 ≠ 𝐴𝐿[3] ∙
𝑝𝑁𝑜 and 𝐴𝐿[5] ∙ 𝑝𝑁𝑜 ≠ 𝐴𝐿[4] ∙ 𝑝𝑁𝑜 are false. The last
processor p5 determines the start of the fifth partition and the
end of the fourth partition because 𝐴𝐿[16] ∙ 𝑝𝑁𝑜 ≠ 𝐴𝐿[15] ∙
𝑝𝑁𝑜 is true. So, 𝐴𝐿[5] ∙ 𝑠𝑡𝑎𝑟𝑡 = 16 and 𝐴𝐿[4] ∙ 𝑒𝑛𝑑 = 15 .
The array AP is shown in Fig. 4(a).

By applying Step 5 of the global partition phase, each
processor pi computes the number of elements in each
partition. For the processor p0, 𝐴𝑃[0] ∙ 𝑝𝑁𝑜 = 2 + 2 + 2 = 6,
while p1 computes 𝐴𝑃[1] ∙ 𝑝𝑁𝑜 = 3 + 2 + 2 = 7. The array
AP becomes as in Fig. 4(b).

In the last stage, each processor, pi, merges the different
subarrays of the ith partition. The results of implementing the
last stage consist of two steps. In the first step, each processor
computes the repetition of each element as shown in Fig. 5.
The results of the second step are shown in Fig. 6. The output
array is C=(C0, C1, C2, C3, C4, C5)= (0, 1, 2, 3, 4, 5, 6, 7, 8, 8, 8,
9, 10, 11, 13, 13, 15,16, 17, 18, 18, 19, 21, 22, 23, 24, 25, 26,
27, 28, 29, 30).

Fig. 4. Result of Global Partition.

Fig. 5. First Step of Merging Phase.

Fig. 6. Results of the Second Step of Merging Phase (Output).

VI. CONCLUSION

The paper addresses the problem of merging when the
number of input sorted arrays is k, 2 ≤ 𝑘 ≤ 𝑛. The output of
the merging is a new sorted array that contains all elements of
the input. Our main contribution is solving the k integer
merging problem under exclusive read exclusive write shared
memory. The proposed algorithm runs in 𝑂(log 𝑛) time using
𝑛/ log 𝑛 processors. Additionally, the total work done by the
proposed algorithm is 𝑂(𝑛), which is less than the best-known
k merging parallel algorithm that perform 𝛩(𝑛 log 𝑘) work.

REFERENCES

[1] D. Knuth. The art of computer programming: sorting and searching.
Addison–Wesley, Reading, 1973.

[2] P. Valduriez, G. Gardarin. “Join and semijoin algorithms for

multiprocessors database machines”. ACM Transaction Database
System Vol. 9, pp. 133–161, 1994.

[3] T. Merrett. Relational information systems. Reston Publishing Co.,

Reston, 1984.

[4] J. Bang-Jensen, et al. “Recognizing and representing proper interval
graphs in parallel using merging and sorting”. Discrete Applied

Mathematics, Vol. 155, No. 4, pp. 442–456, 2017.

[5] S. Olariu, et al. “Reconstructing binary trees in doubly logarithmic
CREW time”. Journal of Parallel and Distributed Computing, Vol. 27,

1995, pp. 100-105.

[6] O. Berkman, U. Vishkin. “On parallel integer merging”. Information and

Computation, Vol. 106, pp. 266–285, 1993.

[7] Th. Cormen, et al. Introduction to algorithms. MIT, Cambridge, 1990.

[8] T. Hayashi, et al. “Work-time optimal k-merge algorithms on the
PRAM”. IEEE Transaction on Parallel and Distributed Systems, Vol. 9,

No. 3, pp. 275-282, 1998.

[9] S. Akl. Parallel sorting algorithms. Academic Press, Orlando, 1985.

[10] S. Akl. Parallel computation: models and methods. Prentice Hall, Upper
Saddle River, 1997.

[11] A. Borodin, and J. Hopcroft . “Routing, merging, and sorting on parallel

models of computation”. Journal of Computer System Science, Vol. 30,
pp. 130–145, 1995.

 0 1 2 3 4 5

AP (0,2,) (3,6,) (7,8,) (9,11,) (12,15,) (16,16,)

(a)

 0 1 2 3 4 5

AP (0,2,6) (3,6,8) (7,8,5) (9,11,6) (12,15,6) (16,16,1)

(b)

 0 1 2 3 4 5

CA0 (0,1) (1,1) (2,1) (3,1) (4,1) (5,1)

 0 1 2 3 4 5

CA1 (6,1) (7,1) (8,3) (9,1) (10,1) (11,1)

 0 1 2 3 4 5

CA2 (12,0) (13,2) (14,0) (15,1) (16,1) (17,1)

 0 1 2 3 4 5

CA3 (18,2) (19,1) (20,0) (21,1) (22,1) (23,1)

 0 1 2 3 4 5

CA4 (24,1) (25,1) (26,1) (27,1) (28,1) (29,1)

 0 1 2 3 4 5

CA5 (30,1) (31,0) (32,0)

 0 1 2 3 4 5

C0 0 1 2 3 4 5

 0 1 2 3 4 5 6 8

C1 6 7 8 8 8 9 10 11

 0 1 2 3 4

C2 13 13 15 16 17

 0 1 2 3 4 5

C3 18 18 19 21 22 23

 0 1 2 3 4 5

C4 24 25 26 27 28 29

 0

C5 30

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 1, 2021

691 | P a g e
www.ijacsa.thesai.org

[12] T. Hagerup, and C. Rub. “Optimal merging and sorting on the EREW

PRAM”. Information Processing Letters, Vol. 33, pp. 181–185, 1989.

[13] C. Kruskal. “Searching, merging, and sorting in parallel computation”.
IEEE Transaction on Computers, Vol. 32, No. 10, pp. 942–946, 1993.

[14] S. Nagaraja, et al. “A parallel merging algorithm and its implementation

with JAVA threads”. In: The Mid-Atlantic student workshop on
programming languages and systems, IBM Watson Research Centre, 27

April 2001, 2001.

[15] A. Salah, et al. “Lazy-Merge: A Novel Implementation for Indexed
Parallel K-Way In-Place Merging”. IEEE Transaction on Parallel and

Distributed Systems, Vol. 27, No. 7, pp. 2049-2061, 2016.

[16] H. Bahig. “Parallel merging with restrictions”. The journal of
Supercomputing, Vol. 43, No. 1, pp. 99-104, 2018.

[17] H. Bahig. “Integer Merging on PRAM”. Computing, Vol. 91, No. 4, pp.
365-378, 2011.

[18] H. Bahig. “A new constant-time parallel algorithm for merging”. The

journal of Supercomputing, Vol. 72, No. 2, 968–983, 2019.

[19] T. Hagerup, M. Kutylowski. “Fast integer merging on the EREW

PRAM”. Algorithmica, Vol. 17, pp. 55–66, 1997.

[20] Z. Wen. “Multi-Way Merging in Parallel”. IEEE Transaction on Parallel
and Distributed Systems, Vol. 7, No. 1, pp. 11–17, 1996.

[21] B, Hazem and K, Ahmed. “Parallelizing K-Way Merging”. International

Journal of Computer Science and Information Security, Vol. 14, No. 4,
pp. 497-503, 2016.

[22] R. Karp, V. Ramachandran. “Parallel algorithms for shared-memory

machines”. In: Van Leeuven J (ed) Handbook of theoretical computer
science, Vol A: Algorithms and complexity. Elsevier, Amsterdam, 869–

941, 1990.

[23] G. Blelloch. “Prefix sums and their applications”. TR CMU-CS-9-190,
Carnegie Mellon University, 1990.

[24] S. Albers, T. Hagerup. “Improved Parallel Integer Sorting without
Concurrent Writing”. Information and Computation, Vol. 136, No. 1, pp.

25-51, 1997.

[25] H. Bahig. “Complexity analysis and performance of double hashing sort
algorithm”. Journal of the Egyptian Mathematical Society, 27, Article

number 3, 2019.

