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Abstract—The advancement in deep learning is increasing
day-by-day from image classification to language understanding
tasks. In particular, the convolution neural networks are revived
and shown their performance in multiple fields such as natural
language understanding, signal processing, and computer vision.
The property of translational invariance for convolutions has
made a huge advantage in the field of computer vision to
extract feature invariances appropriately. When these convolu-
tions trained using back-propagation tend to prove their results
ability to outperform existing machine vision techniques by
overcoming the various hand-engineered machine vision models.
Hence, a clear understanding of current deep learning methods is
crucial. These convolution neural networks have proven to show
their performance by attaining state-of-the-art performance in
computer vision over years when applied on humongous data.
Hence in this survey, we detail a set of state-of-the-art models
in image classification evolved from the birth of convolutions
to present ongoing research. Each state-of-the-art model evolved
in the successive year is illustrated with architecture schema,
implementation details, parametric tuning and their performance.
It is observed that the neural architecture construction i.e.
a supervised approach for an image classification problem is
evolved as data construction with cautious augmentations i.e.,
a self-supervised approach. A detailed evolution from neural
architecture construction to augmentation construction is il-
lustrated by provided appropriate suggestions to improve the
performance. Additionally, the implementation details and the
appropriate source for the execution and reproducibility of results
are tabulated.
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I. INTRODUCTION

Previous machine vision methods mostly use hand-
engineered features. They mostly rely on the morphology
of the image sometimes [1]. This can eventually cause a
problem in designing a model to capture essential features.
To overcome this deep learning models are adapted. Deep
learning is advancing in numerous domains such as image
recognition, speech recognition [2-6], signal processing [7-
12], language processing [13-18], and graphs [19-24]. This
leverage in the use of deep learning-initiated advancements
in the development of highly scalable hardware architectures
which perform large computations. The availability of huge
data with high computing resources eventually helped in
developing deep architectures which are utilized for large
scale tasks. Specifically, in computer vision, deep learning has
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advanced in numerous subdomains such as image classification
[25-30], object recognition [31-43], pose estimation [44-48],
image segmentation [49-54], and visual question answering
[55-60]. The previous research states that these advancements
are held on a large scale to attain state-of-the-art results. In
most of the tasks, the generic method applied is convolution
neural networks (convnets). There are variant hyperparameters
involved in building an effective neural architecture. There are
definite properties of convolution neural networks and these
properties act as advancements to the current research building
large scale architectures. Hence, in this introduction a certain
set of relevant concepts regarding Convnets are detailed. In the
next section, a set of contributions are detailed explicitly.

II. CONTRIBUTION

The contributions of this survey to the present existing
literature are described as,

1)  Firstly, a prerequisite introduction to convnets is
provided and the successive advancements and the
individual parameters involved in architecture are
detailed.

2)  The evolution of the convnets from its beginning is
explained and a sequential state-of-the-art advance-
ment in image classification utilizing the convnets are
elaborated in detail.

3) Finally, a set of recommendations are provided to
enhance the neural architectures to obtain successive
state-of-the-art performance and pave a path to future
advancements.

III. ORGANIZATION OF THE SURVEY

The organization of this survey is described in three phases.
Further, Fig. 1 describes the complete flow of this survey.

1) The first phase gives a complete description of the
convolution neural networks i.e. specifically describ-
ing the components involved in convolutions and their
visual illustrations are provided equivalently. This
section provides a clear intuition of the working of
convnets with a glimpse of the terminology used.
Finally, the advantages and disadvantages are equally
provided to understand where convnets can perform
best and fail.
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Fig. 1. The Visual Illustration of the Complete Organization of the Survey.

2) In the second phase, a clear understanding of the
state-of-the-art networks is provided. Each architec-
ture is described in detail by detailing the method im-
plied and hyperparameters tuned for variant settings.
This gives insights to the reader to understand the
flow and the evolution of convnets and its developing
aspects in the current research.

3) 3. The final phase provides suggestions to construct
a novel architecture to provide a good transferability
of features with low computational expense by con-
sidering various factors.

IV. THE CONVOLUTION NEURAL NETWORKS

First, it is aimed to discuss the mathematical intuition of
convolution neural networks and next, the first implementation
of convnets is described. Next, a set of components involved
in the construction of convolution architecture are described
accordingly. Subsequently, a set of properties for convnets are
detailed. Finally, the advantages and the disadvantages carried
by convolution neural networks are specifically mentioned [61,
62].

A. The Initiation of Convnets

The convnets are inspired by the convolution theorem.
Convolution is a combinatory operating between two functions
where their arguments are real.

Conv(y) + / f(@)-gly — x)dx

The equation above, Conv(.) is a convolution operation.
This convolution operation is mentioned typicallyﬂ as,

Conv(y) < (f *9)(y)

The first function f(.), denotes a probability density func-
tion which is referred to as input. The second argument, g(.) is

The * mentioned denotes the convolution operation.

Vol. 12, No. 10, 2021

referred to as kernel . Hence, these mathematical implications
are helped in building the first convolution neural network.

The first convolution neural network was observed in the
literature by LeCun. Y et al. [63]. The main object of this
research was to implement a convnets to recognize handwritten
postal zip codes. To train the model, backpropagation was
implied and then successively able to extract variant features.
The complete architecture has 1 input layer, two convolution
layers and two fully connected layers. This first work helped
revolutionize the convnets to a greater extent.

Subsequently, work by LeCun. Y et al. [64] implemented
multi-layered NN by training the model end-to-end using
backpropagation. This helped to learn and implement gradient-
based optimization. In addition to the previous work, this
work implemented a graph transformer network for language
understanding which utilizes convnets by training with global
techniques. The convolution architecture proposed is known as
LeNet-5 which had 4 convolution layers and 3 fully connected
layers. The final fully connected layer i.e. final activations are
Gaussian connections. This initial conceptualization of con-
vnets produced rigorous outcomes after the evolution of large
computational devices to obtain state-of-the-art performance
every year in large scale visual recognition challenge ILSVRC-
12.

B. Components in Convnets

There are a set of components involved in convnets and
this help understand the terminology regarding the convnets.
A visual illustration of individual components is provided
accordingly.

a) Kernel: The kernel is described as a grid or a matrix
that convolves on the input.

b) Stride: The stride is a step taken after each convo-
lution i.e., the number of steps moved by the kernel on the
input.

c) Feature Map: The feature map is considered as the
output activation incurred after completion of the convolution
operation.

d) Padding: The padding is the process of filling the
borders of the input equivalently in every dimension i.e.,
mathematically the input is surrounded by zero eventually
increasing the size of the input.

Hence, In Fig. 2 these components involved in convolution
are explained in detail. The blue component which is of size
2x2 is input. The grey 3x3 size matrix refers to the kernel.
Next, the dotted square grid bordered around the input is
called padding. The dark green component which is projected
on the top of the input is a feature map obtained. Hence,
the convolution operation is carried by moving the kernel
onto the input. This kernel applies dot product on the input
and a set of values are obtained. Further, these values are
aggregated using a sum function. Then, a feature map is
obtained accordingly. This process is iterated till the complete
input is convolved. In a convnet, kernel size determines the
shape of the kernel to perform the convolution operation. The
number of kernels determines the number of variant types of
kernels with varying values inserted into them. Next, padding
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Fig. 2. Visual Illustration of Convolution Operation.

is generally used to produce similar dimensional output. In the
next section, a set of advantages and disadvantages involved
in convolutions are detailed. Further, a detailed explanation
is provided by considering varying situations and altering the
above-mentioned components in the work [65].

C. Pros and Cons of Convnets

The convnets do have certain abilities which provide higher
performance on multi-domain tasks. Even having definite
advantages, convolutions carry a set of disadvantages which
are discussed in detail.

a) Advantages:

e  Transferability: The previous deep networks such as
Restricted Boltzmann Machines, deep belief networks
and fully connected neural networks do not persist
with transferability of weights. But, the convnets are
provided with transferability of features. Hence, a
certain layer in architectures can be extracted to re-
produce the weights for variant tasks. It can be further
implicated in architecture pruning for improving the
feature extraction for variant tasks.

e Sparse Connections:The connections in most of the
previous existing neural networks have dense connec-
tions i.e. having an extreme number of connections
which in turn increases the computational budget of
the model. But, whereas convnets have sparse connec-
tions reducing the redundant connectivity and reducing
the computational expense.

b) Disadvantages:

e Rotational Sensitivity:The convnets cannot extract
the features of the entity residing an input which is
rotated until and unless the objects in the images are
rotationally symmetrical. Hence, to overcome these
many techniques are implied such as augmentation.
Horizontal flip, vertical flip and angular rotations are
provided to an individual image to extract features
even having rotational changes.

e  Time-Variant signals: The convolutions lack in un-
derstanding the signal processed during a variant time
pattern to that of a non-linear system. This can lead to
the problem is speech specifically problem underlying
the acoustic detections. But this problem is not seen
in image recognition.

V. STATE-OF-THE-ART VISION MODELS

A. Alex-Net

Krizhevsky et al. [66] proposed an end-to-end trainable
deep convolutional network for large scale image classification
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i.e., on IN12. They observed the problem of using ML methods
for image classification. They developed an eight layered deep
NN which has 5 conv layers and 3 fully connected layers. The
kernel size and stride implied are clearly illustrated in figure.3.

Firstly, they used relu [67] as non-linearity to forward the
activations from one layer to another where they observed
speeding up of convergence when relu is used as non-linearity.
Second, they used GPU’s for training their network in which,
two GPU’s are used with parallelized computing and having
communication mutually layer to layer. This improved the
performance of the model by reducing T-1 error and T-5 error
by 0.017 and 0.012 respectively. Next, for normalization a
technique (which is a similar normalization technique to that
of [68]), named local response normalisation, is operated for
conv layers which are tuned while validation procedure. This
improved the performance of the model by reducing the T-
1 error and T-5 error by 0.014 and 0.012 respectively. Next,
the overlapping pooling technique is utilized which pools
the pixels which are not only adjacent but also which are
overlapping with correspondence. It is achieved by reducing
the step during convolution. This reduced error-rate of T-1 and
T-5 activations by 0.004 and 0.003 respectively.

The constructed architecture has consumed 60 M parame-
ters which are mentioned in Fig. 3. To have good generalization
a sequence of tasks was done to reduce the problem of
overfitting in the networks. Firstly, data augmentation is done.
In this step, the samples regarding an image are increased
either translating the image in horizontal (or vertical) directions
or the pixels of the images are changed in terms of colour
intensities. This is done by considering the principal com-
ponents of images and adding weight to pixels accordingly.
This procedure led to an increment of T-1 accuracy by 1%.
Secondly, the fully connected layers are attached with two
dropout layers [69] (for the last two layers excluding class
activations) with a drop ratio of 50% i.e. 50% of the neurons
are inactive during the training and the network tend to learn
during validation.

The complete model was trained on 90 epochs. It is
optimized using SGD with an initial learning rate of 1072
and 9 x 10~ as momentum through 128 batches (batches
considered per iteration). When no convergence invalidation
was observed in the learning, the rate was decreased 10 times
to that of initial learning. The model achieved a T-1 error rate
of 37.5% and a T-5 error rate of 17%. Further, the model
was altered in various types and different accuracy score are
obtained. These details are tabulated in the Table I.

128

2048' 204 \dense
128 Max

Max 128 Max pooling 2
pooling pooling

Fig. 3. Alex-Net Architecture with Varying Strides and Filters.
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Fig. 4. Ze-Net Architecture with Varying Strides and Filters [5].

B. Ze-Net

Matthew D. Zeiler et al. [70] proposed a Conv NN which
is very similar to Alex-Net by visualizing the feature maps
and kernels for better understanding internal computations of
the convnets. They developed an eight layered deep NN which
has 5 conv layers and 3 fully connected layers. The kernel size
and stride implied are clearly illustrated in figure.4.

The architecture of the model is designed with a decoder
and an encoder which extracts latent representations and
reconstructs the image respectively. Several conv layers are
used to extract the spatial features with ReLu as activation
throughout the network. The decoder helps in unspooling
the visual representations by a switch variable. This switch
variable is used for memorizing the pooled information in the
encoder structure and mapping it on the decoder structure.
Further, to observe feature extraction, translation scaling and
rotation mechanisms are performed in which the convnets were
invariant to translation and scaling but not for the rotation.
Finally, to observe the localization ability of convnets a certain
part of the image consisting of important feature is occluded.
It is observed that convnets significantly degraded in terms of
performance due to occlusion.

The model implied is very similar to that of AlexNet with
two variations, the filter size is reduced in the first layer from
11x11 to 7x7 and stride 4 of convolution is reduced to stride
2. Augmentation is performed by subtracting the input with
individual pixel mean and used 10 variant sub crops techniques
such as horizontal flip, vertical flip etc. The learning rate
with which the SGD optimizer was initialized as 0.01. A
momentum of 0.9 was implied for faster training. The bias
components were initialized with zero and 50% of the densely
connected layers are dropped during the training process. The
model acquired T-1 and T-5 error rates of 36% and 14.7%
respectively. Further, the network pre-trained on ImageNet is
implied on Caltech-101 dataset with an accuracy score of 83.8
for 15 images per class whereas increasing 30 images per class
it obtained an accuracy score of 86.5%.

C. OverFeat

This work was inspired by the standard concepts that
injected good improvement in the field of classification [71-
74]. Sermanet et al. [75] proposed a framework implying
CNN’s not only for classification but also for detection and
localization. The novel localization criterion in this work is
obtained by capturing and aggregated to multiple object bound-
aries. When the localization task is performed on ImageNet the
best performing OverFeat model secured the first position in
the 2013 challenge.

The main objective of the OverFeat is to perform classi-
fication by simultaneously locating and detecting the objects
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with the use of a single conv architecture. A novel method
is implied to detect and localize the bounding boxes of the
image which is predicted by the neural architecture. With a
combination of various localization predictions, the process of
detection acquires good features and hence the performance
is increased and eventually training time can be reduced. This
method not only helps to provide less computation but also
with greater performance acquiring higher accuracy scores.

The complete OverFeat model has three ideologies and the
methodology is implemented accordingly,

1) Initially, a conv net is applied at variant locations cap-
tured in the specified image. Sequentially, a sliding
window approach is implied using different scales.
This eventually helped to provide a better classifi-
cation model but, the localization performance was
degraded.

2) The system was not only trained to produce distri-
bution for the set of categories but also improved
localization by properly constructing the size of the
bounding box to capture the region of interest for that
specified category.

3) Lastly, a proof of concept was provided for a specific
category at individual locations.

The implementation works by training a conv net by using
a sliding window as the decision box by choosing the centre
pixel and classifying it accordingly to a definite object. The
advantages of this method are the bounding contours utilized
for localization need not be rectangular. The disadvantage
of the model is that it acquires numerous pixel-level labels
which in turn increases computations cost. This work was the
first implementation of localization, and the detection task for
ImageNet by using a unified framework. The localization and
detection task performed by overfeat is done by allowing the
model to guess the labels for the specified object five times
and if the probability of the guess turns to be 0.5 and above
(matching the ground truth label) then, a definite label for the
object is assigned to definite class accordingly. The five times
guess the pattern is chosen to specify the correct object in the
presence of multiple objects without labels.

During the construction of the OverFeat, a set of hyperpa-
rameters are tuned and are mentioned individually. The opti-
mizer implied in this method is SGD with an initial learning
rate of 5 x 1072. A momentum was used to faster the training
procedure (an initial momentum of 0.6 was implied). Weight
decay for the L2 regularization is initialized as 10~°. ReLU
is used as an activation function at the utmost every layer.
The initial five layers of the model implied are very similar
to AlexNet with ReLU activations and successive pooling
layers (max-pooling layers). But with many similarities, certain
differences are to be noted and they are mentioned. No local
response normalization is utilized in this work as it did not
improve performance. The pooling layers implemented do not
overlap as they depicted better performance. Further, implying
small stride in the first two layers, better invariances was
obtained i.e., large stride speedups the training process but
performance in terms of accuracy can be degraded.

The OverFeat proposed 8 models of which, two are en-
semble models. The fast ensemble model with four scales and
fine stride acquires a T-1 error rate of 35.10% and a T-5 error
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rate of 13.86%. Whereas, an accurate model acquired a T-1
error rate of 33.96% and a T-5 error rate of 13.24%.

D. VGGNets

Simonyan et al. [76] worked on deep neural networks with
different depth of layer’s in them to know the changing rate
of accuracy concerning the depth of the neural network. The
depth of the neural networks proposed in this paper varied
from 11 to 19 layers. Six different types of networks were
used by the author to know how the models perform based on
different configurations in it. The kernel size or the receptive
field is set to the size of 3X3 rather than 5XS5 or 7X7 because
a smaller receptive field help in capturing the details of the
image in a more specific way and use fewer parameters. The
six types of networks built in this paper have been given the
following names A, A-LRN, B, C, D and E. These networks
differ by the depth of layers. An A-LRN is the two networks
with a depth of 11 layers, the only difference is that in A-
LRN, Local Response Normalization (LRN) is used to check
how the accuracy is varied when LRN is used in a network. It
was observed that adding LRN to the network was not much
of use to improve the accuracy score. B has a depth of 13
layers, C is just an extension of B where there are 3 extra
1X1 convolutional layers in it. D and E have 16 and 19 layers
of depth in their network configurations respectively.

In the aforementioned networks, a max-pooling layer is
present after a few convolutional layers or a block of these
layers. Inside each block, there is a combination of 3X3 and
1X1 convolutional layers accordingly. The input image is of
size 224X224 pixels, which is downsampled by the convo-
lution and max-pooling layers next the extracted features are
passed into the dense layer for the classification or detection
task of the image. These architectures used Stochastic Gradient
Descent (SGD) with 0.9 momentum and has a batch size of
256. Drop out was also used in two fully connected layers
followed by a dense layer and a softmax layer to predict the
class of the image. The learning rate was set to 10-2 and this
was decreased by a factor of 10 if the accuracy got saturated
at a point. Training of these networks was completed after 74
epochs. During the training time, Lr was decreased by a factor
of 10 for 3 times in total. First, the networks (A, A-LRN,
B) were trained on a single scale of 256 and the remaining
networks (C, D, E) were trained using multiple scaled images
(scale jittering) with the scale ranging from 256 to 512. It
was observed that the performance of these networks improved
significantly with the use of scale jittering and by increasing
the depth of the network, E convnet got a top-5 Val-error of
8% which is a competitive score.

To further assess the capabilities of the network, the VGG
team used scale jittering even more aggressively on the train-
test set this time and saw that convnets D and E got a
top-5 Val-error of 7.5%. Multiple crops were also used in
the next experiment and it was compared with the dense
evaluation method. From this experiment, it is concluded that
the multiple crop method outperforms the dense method. The
testing method shown by the VGG team was very different
from the previously mentioned works, where the last FC layer
was converted into a convolutional layer and this receptive field
was put on a whole image and then obtained a single vector
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Fig. 5. Naive Inception Module.

with the individual class score. The vector was pushed into the
softmax layer to get the prediction score.

An ensemble of all there convnets was made and it was
seen that the seven networks ensemble model has a test error of
7.3% and the ensemble of D and E convnets had a test error of
6.8%. The 2 convnet ensemble networks secured second place
in the ILSVRCV-2014 challenge. But the margin between
the scores was very close when compared to Google Net
(first place). The single net performance of VGG architecture
outperforms all the other architectures (even Google Net) with
a large margin of 0.9%.

E. Google-Net and InceptionV2

Szegedy et al. [77] presented a deep learning model which
has an inception module in it. Google-Net mainly focuses
was to develop a deep neural network architecture with a
less computational expense. As the network goes deeper the
arithmetic operations performed by the models also increases
and this gives scope for newer error that occurs with computing
gradients. Because of the previously mentioned reasons the
author suggests creating a sparse network rather than a fully
connected network. The goal is very simple all we have to do
is find optimal weights through a sparse network that could
approximate or predict an image. Translation invariances added
in this work by building a network through several convolution
layers.

Fig. 5 shows the naive inception module which applies
convolution to the input image with a kernel size of 1x1,3x3,

Filter
concatenation

L 3x3 com 5x5 oo ns 1x1 convolutions
1x1 convolutions [ [] [}
K > 1x1 con 1x1 cod ns 3x3 max pooling
N
— S

Previous layer

Fig. 6. Dimensionality Reduced Inception Module.
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Fig. 7. Detailed Architecture of Google-Net.

and 5x5. Next, pooling is done to the input image and these
activations are concatenated using correlation statistics instead
of stacking up the layers can increase computational expense.
With this understanding, a new inception module is created,
and the dimensions are reduced by bottleneck convolutions i.e.,
1x1 convolution kernel to the input image and it is observed
that lower-dimensional space preserve the information of the
corresponding image. These dimensionality reduced inception
modules are now stacked on each other by applying max
pooling layer of stride 2 in between the modules occasionally.
The proposed Google-Net architecture consists of 22 layers in
total. An ensemble of 7 such models was created and tested
on IL-14 for classification as well as detection.

Fig. 6 shows the architecture of GoogleNet. In between this
network for few inception modules, a classifier was assigned
to them. This has helped to generalize images more precisely.
These classifiers contain a 1x1 convolutional filter with 128
filters in it. Next, the convolutional layer is stacked with a fully
connected layer with 1024 neurons in it. Followed by a dropout
layer and a SoftMax layer to provide the probabilities of each
class and then predict the image class. In this network, every
layer uses the ReLU non-linearity function for the activation
of each neuron in the network.

Seven distinct types of networks were built based on the
new inception module to train them on the ImageNet dataset
with different learning rates and sampling methodologies. The
probabilities of all these networks were averaged to get the
output. With this ensemble method, Google Net got a top-5
error rate of 6.67% on testing and validating set. An ensemble
of 6 models was used in the ILSVRC 2014 detection challenge
which achieved map of 43.9% and secured first place in both
the classification and detection challenges. From this work, it
can be deduced that the sparse network can be useful in deep
neural networks to know the deep representation of the image
while using less computational resources. Kindly refer Fig. 7
for detailed understanding of architecture.

A certain problem, covariant shift is observed while train-
ing a deep neural network is addressed and solved by im-
plementing the Batch Normalization (BN) procedure. This
paradigm was proposed by Sergey loffe and Christian Szegedy
[78-80]. BN procedure was implemented on Inception en-
semble with an Image resolution of 224x224 produced a T-1
accuracy score of 79.9% and T-5 accuracy score of 95.1%.

F. InceptionV3

Szegedy et al [81] implied the aforementioned Inception
architecture and scaled the convolution layer to provide higher
performance by decreasing computational expense. This is the
upgraded version of GoogleNet and maintained appropriate
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convolution by doing defiant regularization throughout the
network. The authors illustrated the work by defining a set of
principles and scale the conv layer by optimizing techniques.
The principles are defined in such a way that they performed
experimentation on different datasets by considering much
architecture. The principles of the network are

e A cautious decrement in representation is preferable,
instead of bottleneck layers at the beginning of the
network.

e  Higher dimensions in the network are easier to process
with piling up the activations in a conv network for
extracting invariant features.

e Even though pooling provides faster learning, spatial
aggregation in the network holds the representational
features without any loss in the lower dimensions.

o  The width and depth of the network must be optimally
selected with a balanced criterion.

Generally, a 5x5 or large conv layers can capture the
activations of the previous layers. Reducing the feature map
size would decrease the no of parameters, training time and
computational cost of the network. The inception module
consists of 5x5 conv layers, instead of these, the authors have
replaced 5x5 conv layers with two 3x3 conv layers which
are shown in Fig. 8 with 28% relative gain. But this method
has a problem of loss of expressiveness or using a low filter
size (below 3x3) which may produce the best outcome. So,
the authors have come up with an idea of using asymmetric
convolutions. The concept of asymmetric convolution is any
nxn convolution can be replaced by 1xn convolution which is
followed by nx1 convolution. As n increases the computation
of the model decreases. The 3x3 convolutions in the network
are replaced by 1x3 and 3x1 as shown in the figure.9. By
using this method, it reduces the computation cost by 33%. The
activation maps in the network filters are improved because to
get rid of the bottleneck representation. The network consists
of 42 layers and has 2.5% more computation than GoogLeNet.

The concept of asymmetric convolution is any nxn convo-
lution can be replaced by 1xn convolution which is followed by
nx1 convolution. As n increases the computation of the model
decreases. The 3x3 convolutions in the network are replaced
by 1x3 and 3x1 as shown in the figure.9. By using this method,
it reduces the computation cost by 33%. The activation maps
in the network filters are improved because to get rid of the
bottleneck representation. The network consists of 42 layers
and has 2.5% more computation than GoogLeNet.

The model takes SGD as an optimizer with a batch size
of 32 which is trained across 100 epochs by considering a
learning rate of 0.045. The model achieves the state-of-the-
art results with T-1 and a T-5 error rate of 21.2% and 5.6%
respectively. By ensembling 4 Inception-v3 models they got a
T-1 and T-5 error rate of 17.2% and 3.58% respectively.

G. Inception-v4, Inception-ResNet

Szegedy et al [82]. has extended the idea of Inception-
v3 by combining residual connections to it with accelerating
training. This model has won the 2015 ILSVRC challenge
by acquiring state of the art performance. The authors have
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Fig. 8. Illustration of the Variation of Bottleneck from 5x5 to two 3x3
Convolution Blocks.
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Fig. 9. Illustration of the Variation of Bottleneck from a 3x3 to 1x3 and 3x1
Convolution Blocks.

provided proof of the residual connections speed up the train-
ing of Inception networks. As the Inception networks are very
deep, the filter concatenation stages in the network are replaced
by residual connections. By increasing the depth and width
of the Inception-v3 networks they proposed another network
called Inception-v4. To provide an optimised network, the
layers are tuned cautiously. To connect Residual versions with
the Inception network, a cheaper Inception block is implied
rather than the original Inception. Fig. 10 shows the whole
architecture with residual connections inside an Inception
network. There are filter expansion layers (1x1 convolutions
with no activation) inside the network. Batch-normalizations
are omitted on the top of the network and overall the no of
inception blocks was added subsequently. While experimen-
tation the authors have found that if the networks have more
than 1000 filters, the model has died before the training has
started. There is no use in increasing the batch size or lowering
the learning rate. It seemed to stabilize the training process by
scaling the residuals and then adding to the before layers.

Using RMSProp [83] as an optimizer and learning rate of
0.045 they achieved a T-1 and T-5 error rate of 19.9% and
4.9% respectively on ILSVRC 2012 by considering Inception-
ResNet-V2 as the base model. By combining three residual
and one Inception-v4 they achieved a T-5 error rate of 3.08%
on the ImageNet classification challenge.

H. ResNext

Saining Xie et al [84] has developed a model succeeding
the ResNet model which is known as “ResNext”. This model
is the 1%' runner-up in ILSVRC 2016 competition. This
model contains extra dimensionality called cardinality which
deals with the depth and width of the network. The ResNext
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Fig. 10. The above Figure Illustrates the Complete Architectural Details of
Inceptionv4.

Fig. 11. The Neural Weight Transformation with Varying Inputs and Weights.

architecture consists of aggregated transformations by splitting,
transforming and aggregating a single neuron.

The model embraces the method of repeating layers in
VGG and ResNet’s by making use of the spilt-transform-
merge strategy in the Inception model. The neuron in the
network splits the input and transforms the weighted sum to
low dimensions by aggregating through summation fig(11).

Each neuron in the network carries out a non-linear func-
tion due to the addition of the new dimension (cardinality). The
ResNext model replaces the elementary transformation with a
signified function and constructed by combing a set of residual
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Fig. 12. Three Variant Architecture Designs Implemented in the ResNeXt.

blocks which are subjected by two rules first, maintaining the
same shape in the spatial maps i.e. ensuring width size and
a filter size of each block are the same. Second, it maintains
the complexity of the network where width is multiplied by
2 when the spatial maps are down sampled. This model takes
fewer parameters when compared to existing ResNet’s with
4.2210™ FLPOs.

Each block in the ResNext network has the same number
of internal dimensions. ResNext-50 (32x4d) indicates four
internal dimensions with 32 paths (cardinality=32). When
compared with the Inception-ResNet block ResNext model
is designed with less effort in each path and implemented
in different forms illustrated in the figure.12. The third form
of the network is chosen because it is much faster and
has grouped convolutions than the other two models. The
grouped convolutions consist of 32 convolutions with input
and output of 4 dimensions. The experiments were carried
out with increasing the cardinality and width which results
in the increase of FLOPs by a factor of 2. By increasing the
cardinality, the error is reduced by 1.3% to 20.7% rather than
increasing the width of the network. The ResNext-101 (64x4d)
has obtained a T-1 error rate of 20.4% and a T-5 error rate of
5.3% with an image size of 224x224. They also evaluated this
model on different dataset like ImageNet-5K and got an error
rate of 40.1% which reduces the error by 2.3% when compared
to ResNet-101.

1. Dual Path Networks

Y. Chen et al [85] proposed an architecture Dual path
network (DPN). It is the combination of a residual network
(ResNet) and a Densely connected network (DenseNet). The
proposed architecture takes the feature reusage from ResNet
and feature exploration from DenseNet by maintaining low
complexity and more number of parameters. DPN includes
higher-order recurrent neural networks (HORNN) which ben-
efit from sharing weights throughout the network and also
proves that ResNets and DenseNets are the same by using
HORNN. By optimizing the network they had achieved a state
of the art results on ImageNet-1k.

To understand the connection between the two networks
they formulated the HORNN as

L B i—1 i,
W =p Zé}:o R’ (i9)

Where 47 is the state which is hidden in RNN at a particular
step which is denoted by Q, the current step is indicated by
j- Ry (.) function is for extracting features. Ry, (.) and p’(.)
do not share weights but extracts the same features more

times. So that it may lead to feature redundancy this is one of
the drawbacks of the network. ResNet has the problem with

Vol. 12, No. 10, 2021

v
«|«|«
1 v
|«
«

<]

«

v
v
|«

« |‘|*|+
“ |

<1

+ |«

v
< ‘4 « SoE Tl

() Residual Network () Densely Connected Network  (c) Densely Co
(with shar

ctwork (d) Dual Path Architecture (&) DPN

Fig. 13. Visual Illustration of Networks from Deep Residual Network to
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finding new features while DenseNet has the problem with
high feature redundancy. The DPN architecture has a 1x1 conv
layer, 3x3 conv layer and 1x1 conv layer as last layer figure.
13. The output of the network has divided into two parts first,
the element-wise addition of residual combinations. Second,
adjoined with DenseNets to improve the learning ability of
individual micro-block. The second conv layer in the network
is replaced by ResNext. ResNet is widely used so the authors
choose it as the main part of the network which is combined
with DenseNets to construct the architecture. A DPN can
implement either by adding a “slice layer” or “concat layer”
to the residual network which consumes extra memory usage
and computational cost. DPN has 26% fewer parameters when
compared to ResNext-101 (64x4d). The model is implemented
on 40 k80 graphic cards with a batch size of 32 on individual
GPU. The proposed architecture DPN-131 (40x4d) has got a
T-1 error rate of 18.55% and a T-5 error rate of 4.16%. The
model is also evaluated on different dataset like places 365
standard datasets where it got T-1 and T-5 accuracy scores of
56.84% and 86.69

J. NASNets

Zoph et al. [86] contribute a new search space for con-
structing neural architectures by transferring the weights from
a smaller dataset to that of the larger one. This research
introduces a new regularization method (known as scheduled-
drop-path) for the models developed through their proposed
search space which improves generalization. The efficient
model developed through this search space attains SOTA
results in classification (IN-12 dataset). Additionally, utilizing
the R-CNN framework the learned representations are captured
through the best model attains SOTA on the CoCo dataset. The
proposed NAS (Neural Architecture Search) [87] implements a
reinforcement strategy to optimize the configurations to design
a good neural architecture. This method implies 2 different
cells with a similar structure and separate weights. These cells
are normal and reduction which is shown in Fig. 14. The nor-
mal cell input and output are of the same dimensions whereas,
the reduction cell reduces the shape of input dimensions to half
the previous input (i.e. stride 2 is applied). These cells provide
faster and efficient search with appropriate generalization. The
NAS which is mentioned in Fig. 14. has a controller block is
a recurrent neural network that predicts multiple architectures
with multiple probabilities. Then a small network (child) is
trained to reach convergence with a certain accuracy score.
The gradients of multiple probabilities attained are scaled in
such a way to attain new accuracy scores and are updated to
the controller.

www.ijacsa.thesai.org

112|Page



(IJACSA) International Journal of Advanced Computer Science and Applications,

i IS

4 3
HE BE BE
iy iy

Normal Cell

Reduction Cell

Fig. 14. Detailed Architecture of Normal and Reduction cell of NAS-Net.

Sample architecture A
with probability p

Y

Train a child network
with architecture A to
convergence to get
validation accuracy R

The controller (RNN)

Scale gradient of p by R
to update the controller

Fig. 15. A Brief Illustration of Neural Architecture Search.

Observing the Fig. 14 the cells have two hidden states.
The input of the hidden states is passed from the output of the
preceding cells. If there are no previous cells then each hidden
state takes an image as input. The architecture is formed by
predicting subsequent convolution which can be formed using
those two hidden states. The complete algorithm for NAS is
determined [87]. Instead of random search, NAS provides a
reinforming learning strategy to construct a deep architecture.
The random search lack in providing significant result only
for CIFAR-10 dataset and Fig. 15 illustrates the NAS search
architecture.

The architectures which attained greater performance for
the ImageNet, as well as CIFAR-10, are mentioned in Fig.
16. The controller is trained on the PPO criterion [88]. The
learning rate was set as 35100 — 5). All the activations of the
convolution are fed using relu as non-linearity with successive
batch normalization layers. Additionally, implied bottleneck
convolutions i.e. 1x1 convolutions and implied RMS prop as
the optimizer. The best performing model takes 331x331 input
image size and attains a T-1 accuracy score of 82.7% and T-5
accuracy score of 96.2% with 88.9 Million parameters. As a
note, for object detection NAS-Net implied in Faster-RCNN
obtained state-of-the-art mAP of 43.1%.

K. PNASNets

C. Liu et al [89] proposed a network by using reinforce-
ment learning and different algorithms. Sequential model-
based optimization (SMBO) is used in the model which finds
for structures in the network by increasing complexity with
simultaneous learning. The model is compared with the previ-
ous method which is efficient up to 5 times within the same
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search space. The architecture consists of a search algorithm
where it finds the best conv “cell”. Each cell includes a certain
number of blocks where it consists of two input tensors with a
combination operator. These blocks are stacked and determined
based on the training time this approach easy transfer datasets
from one to another. The search space in the network is based
on the heuristic approach which starts with a basic model
and improved complexity as the search goes on. The detailed
architecture of the model is shown in Fig. 17.

The architecture details of the PNASNet.

e  Considering simple structures, the training of the
model becomes faster and inherit the process quickly.

e A set of surrogates (proxy) are requested to obtain the
predictions of the quality of the structures which tend
to be higher from the input is received.

o  The search space is factorized by multiplying smaller
search spaces which give the advantage of finding
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more block with the precise model.

The model is trained on ImageNet with RMSProp as an
optimizer, an initial learning rate of 0.04 and decayed after
2.2 epochs with a batch size of 32. The architecture consists
of 86.1M parameters which are smaller than NASNet. The
model has achieved a state of the art results with T-1 and T-5
accuracy of 82.9% and 96.2% respectively.

L. EfficientNet

M. Tan and Quoc V. Le proposed a model by scaling the
depth of the network, width of the network and resolution of
the image [90]. The model is developed by using a combination
of MobileNets and ResNets. By scaling those parameters,
the model led to better performance with less computation
cost. The scaling of the network is done in such a way they
maintained a constant ratio throughout the network this scaling
method is known as effective compound scaling. The scaling
of the model is done as shown in Fig. 18. Due to various
resources, they face a problem while scaling the convnet. So,
they increased the depth, width and resolution of the image
by a factor of P*, Q% and RF respectively where P, Q, R are
small grid constant coefficients. By increasing the depth of the
network, a convnet can apprehend more complicated features.
Here, a problem of vanishing gradients arises and it is very
complicated to train the network. By scaling the depth with
a coefficient P, they maintained balance in the network. The
next constraint is to balance the width of the network which
is usually done in very small models. Increasing the width
can capture more fine-grained features and takes less time for
training. Their experimentations have shown, the wider the
network, the more is the drop in accuracy. The resolution
of the image is scaled by a factor R because of the higher
resolution of the image takes more time for training. The
proposed method enhances the accuracy and optimizes the
FLOPS. By examining the depth, width and resolution values
of the network to be 1.4, 1.2 and 1.3 respectively are found to
be accurate with 2.3B FLOPS.

The model (EfficientNet-B7) achieved a T-1 and T-5 accu-
racy of 84.4% and 97.1% respectively with 66M parameters
which are 8.4x smaller than the previous state-of-the-network.

M. FixResNeXt

Hugo et al. [91] performed augmentation trails for acquir-
ing better generalization by choosing appropriate train and
test size for a network. During experimentation, it is justified
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that, lower training resolution for an image and higher testing
resolution eventually improved the performance to a greater
extent by reducing training computational cost. This proce-
dure was implemented on ResNeXt-101 by outperforming
the existing models and obtained state-of-the-art performance
on 2019 ILSVRC. There was a good significant shift in the
model when the training and the testing methods are fine-tuned
separately. A joint optimization is done by scaling the train-test
resolutions equivalently by maintaining individual RoC (region
of classification) sampling. To overcome the distribution, shift
the first two layers of the model are prioritized to fine-tune
by varying the crop resolution. A detailed analysis is done
to pre-process the model by increasing the crop resolution at
the testing phase and during training, roc sampling is done
appropriately. This eventually, acquired a good generalization
by providing lower train resolutions and higher test resolutions.
The computation is reduced by 3-fold by halving training
resolution which in turn speed up the training procedure. Im-
plying larger batches for training impacted a good performance
with saving GPU memory. A further modification is done
to the model by adjusting activation statistics of the layer
which is preceding the global average pooling (GAP) layer.
When these techniques are implemented on ResNet-50 by
varying the test size the results obtained are mentioned (CR is
equivalent to crop resolution). First, with 64 as CR, the model
obtained an accuracy score of 29.4% on ImageNet. Further,
with an increase in resolution by 128 the model obtained an
accuracy score of 65.4%. A higher accuracy score of 78.4%
was obtained for 288 as CR.

It is observed that increasing test resolution further (more
than 288) the accuracy score was gradually decayed. Even
after assigning appropriate test resolution a set of skewed
activations were observed and they were addressed by two
methods. First, a parametric adaption is chosen and the other
is an adaption by tuning appropriately i.e., fine-tuning. Hence
the parameters of the architecture are to be addressed in
detail with experimental results. Instead of performing the
train-test method for generalization 10-fold cross-validation is
implied with mean and standard deviation for each execution.
During the training process, extra training data was provided
for most of the implementations. The best performing model
(ResNeXt-101) acquired parameters of 829 M. While training
ResNet-50 learning rate was initialized as 0.1 and is decayed
by 10 for every 30 epochs. Initially, 512 samples were fed
into the network as a batch with a horizontal flip, color
jittering and random resize crop as augmentation parameters.
The experimentation was performed on eight Tesla V100
GPUs. Subsequently, a set of 80 CPU clusters were inserted
along with GPUs. The experimentation was carried out on
standard pre-trained networks such as ResNet-50, ResNeXt-
101 and PNASNet. Large network classification was done by
complete fine-tuning PNASNet-5-Large with a train resolution
of 331x331 which obtained the highest T-1 accuracy and T-
5 accuracy of 83.7% and 98.0% on 480x480 test resolution
respectively. Whereas, ResNeXt-101 was trained on 224x224
as a resolution to obtain a state-of-the-art accuracy of 86.4%
with 320x320 as test image resolution. Further, this method
was effective even on various transfer learning tasks and it
obtained state-of-the-art performance for CUB-200-2011 and
Birdsnap datasets.
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TABLE I. IMPLEMENTATION DETAILS AND SOURCE CODE REGARDING STATE-OF-THE-ART MODELS

SOTA Works Source Code with Implementation Details
AlexNet https://worksheets.codalab.org/worksheets/Oxfafccca55b584e6eb1cf71979ad8e778 | |
ZeNet https://github.com/atriumlts/subpixel
VGGNet https://github.com/tensorflow/models/blob/master/research/slim/nets/vgg.py
InceptionV2 https://github.com/tensorflow/models/blob/master/research/slim/nets/inception_v2.py
InceptionV3 https://github.com/tensorflow/models/blob/master/research/slim/nets/inception_v3.py
InceptionV4 https://github.com/tensorflow/models/blob/master/research/slim/nets/inception_v4.py
ResNeXt https://github.com/facebookresearch/ResNeXt
DPN https://github.com/rwightman/pytorch-image- models
PNAS* https://github.com/chenxil 16/PNASNet.pytorch
NASNet https://github.com/tensorflow/models/blob/master/research/slim/nets/nasnet/nasnet.py
NoisyStudent https://github.com/google-research/noisystudent
EfficientNet* https://github.com/tensorflow/tpu/tree/master/models/official/amoeba_net
FixResNext https://github.com/facebookresearch/FixRes
BiT https://github.com/google-research/big_transfer
ViT https://github.com/google-research/vision_transformer
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Fig. 19. The Working Principle behind the NoisyStudent Procedure.

N. NoiseStudent

Q. Xie et al. [92] implied self-supervised for training large
scale images. This approach is based on a student-teacher
learning paradigm. First, EfficientNet is trained on a set of
labelled images(as a teacher model) of ImageNetand then
produced pseudo labels by evaluating on a different data set
which consists of 300 Images. Second, the larger EfficientNet
model is considered as a student model and this is trained on
the grouped labels i.e., pseudo labelled and labelled images.
Next, the student model is replaced with the teacher and
this process is iterated to attain significant performance. It is
observed that the teacher model dose does not contain nosy
labels as they were trained through a supervised approach.
In the student model, a noise component such as dropout,
stochastic depth, and random augmentations are implied. These
implementations helped the student model to have greater
generalization to that of the teacher model.

There are certain hyperparameters involved in tuning the
model. The batch size is assigned as 2048 as default. A
varying batch was implied i.e. 512, 1024, and 2048 to the
EfficientNet model and all the batches turned out to have
the same performance. The student model was trained for

350 epochs and smaller student models were trained for 700
epochs. The noise implied to student model with a dropout
of 50%. Further, the random augmentation [18 for STNS]
provided a magnitude of 27 for two operations. Finally, the
probability of survival is set to 0.8 for the stochastic depth.
The Noisy Student model beats the current state-of-the-art
BiT Large with a 0.9% increment in accuracy i.e., the best
performing NoisyStudent acquired an accuracy score of 88.4%
T-1 accuracy and 98.7% T-5 accuracy respectively. This model
consumed 480 Million parameters and which is approximately
half the computational resource of the previous state-of-the-art
by training the model with 300 unlabelled samples considered
from the JFT dataset. The best performing model considered
EfficentNet-L2 as the backbone to imply the NoisyStudent
approach as mentioned in the Fig. 19. Further, the importance
of adding a noise component in training the student model is
discussed and evaluated. The training signal tends to vanish
if the student samples were trained in a similar approach to
that of a teacher by attaining zero cross-entropy loss. The
T-1 accuracy obtained on ImageNet is 83.9%. This indeed
shows large variation from the proposed method i.e., high
variance from the current state-of-the-art. The co-training helps
in segregating the two disjoint segments and training two
models in a student-teacher self-supervised fashion helped in
improving the performance to a greater extent.

O. BiT (Big Transfer)

Kolesnikov et al [93], performed transfer learning on large
scale image recognition to improve tuning of hyperparameters
and sample efficiency. The parameters are tuned cautiously
by focusing on certain components for various vision tasks to
improve performance with feature reproducibility. To provide
greater performance transferability is provided on large scale
vision tasks and performed transfer learning to produce three
variant models BiT-Small, BiT-Medium and BiT-Large. The
models were trained by fixing the architecture and varying
the size of the data. Where small is performed on ILSVRC-
2012 consisting of 1.2 million samples with 1000 classes. The
medium is trained on full ImageNet with 14.2 million samples
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with 21 thousand labels. Finally, the large utilized JFT dataset
consisting of around 300 million samples and approximately
1.2 labels per sample. A set of tricks are considered by under-
standing certain components to attain higher performance for
a neural network. They addressed two necessary components
to build an effective neural architecture which is upstream and
downstream components.

Upstream Components: Upstream components are im-
plied for pre-training definite task. The components considered
during up-stream pre-training are scale, Group normalization,
and Weight standardization. Properly adjusting these compo-
nents led to having a lower computational budget and greater
efficiency. Further, group normalization and weight standard-
ization obliged faster training over large batch structures.

Downstream Components: Whereas, Downstream com-
ponents are applied for fine-tuning a similar visual task. In
this, a heuristic rule is applied by discarding computationally
expensive hyperparameters. Simple image pre-processing tech-
niques such as resizing input to squared shape, cropping a short
square randomly, and performing horizontal flip at training
time. The parameters tuned while pre-training the model, at
upstream and downstream are discussed independently. Most
of the BiT models utilize ResNetV2 as backbone architecture
to imply transferability. The upstream models utilize SGD
as an optimizer and initializing the learning rate by 3x10-
2. Additionally, a momentum of 0.9 was induced for faster
convergence. The input samples were isotopically resized to
224x224 shape. Next, the small and medium models were
trained with 90 epochs. But the training procedure was dif-
ferent as the learning rate was reduced by 10 after 30, 60
and 80 epochs. Subsequently, the large model was trained by
decaying learning rate after 25%, 57.5%, 75% and 92.5% of
the training progress. Similarly, for the downstream task, the
SGD was implied as an optimizer with a learning initializer
of 0.03 and to progress convergence, a momentum of 0.9 is
added. The input shapes were reshaped appropriately to the
context of the dataset. In a large scale visual classification
challenge, the T1 accuracy obtained by the BiT-Large model
on ImageNet-1K is 87.54% (with a standard deviation of 0.02).
It remained a state-of-the-art model not only for ImageNet
but also, for multiple standard data sets such as CIFAR-
10, CIFAR-100, Pets, Flowers, VTAB. Further, the BiT was
analysed on object detection, which implied RetinaNet as the
backbone. This attained a state-of-the-art average precision of
43.8. With the BiT transferability, the object detection model
attained an improvement of around 7.3%.

P. ViT (Visual Transformer)

Dosovitskiy et al. [94] utilized a transformer, the stan-
dard neural architecture for natural language processing onto
computer vision task to drive self-attention for large scale
visual recognition. This visual transformer was able to drive
present state-of-the-art with lower computational cost to that of
Convnets. The transformer is implied invariant fields depicting
its performance. A Visual Transformer (ViT) is trained by
appropriately setting the input embedding to the transformer to
extract visual representations. The patch embeddings are ob-
tained by resizing the image of a 2D image into sequential 2D
patches. These embeddings are inserted into the transformer
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TABLE II. IT GIVES DETAILS ABOUT THE ACCURACY SCORES
OBTAINED BY SOTA MODELS.

SOTA Methods | Top-1 accuracy | Top-5 accuracy
AlexNet 62.5 83
ZeNet 64.0 85.3
Overfeat 66.0 86.7
VGGNet 76.3 93.2
InceptionV2 79.9 95.1
InceptionV3 78.8°9 4.4
InceptionV4 80.1 95.1
ResNeXt 79.6 94.7
DPN 814 95.8
PNASNet 82.9 96.2
NASNet 82.7 96.2
NoisyStudent 88.4 98.7
EfficientNet 84.4 97.1
FixResNext 83.7 98.0
BiT 87.5 -
ViT 85.5 -

similar to that of BERT’s model class token. The architecture
and patch embeddings are visually described in the Fig. 20.

The ViT model and the models considered for comparison
were trained on certain parameters. The optimizer implied
is adam with an initial learning rate set to default (0.001).
Further, the §,and [y were set as 0.9 and 0.999 respectively.
A weight decay of 0.1 was applied and it helped to construct
good performance. Further, to fine-tune the model was initiated
with a batch size of 512 and the optimizer as SGD. A small
momentum was applied to improve the training speed. A
maximum dropout of 0.1 was used for the ViT model trained
on a large ImageNet dataset. Self-attention is provided by the
transformer helped to combine the features extraction at the
lower layer on focusing on the definite set of entities residing
in the image.

VI. SUGGESTIONS FOR ARCHITECTURE CONSTRUCTION

Observing the state-of-the-art literature in the convnets
there are certain factors observed in the construction of a novel
architecture with greater performance and lower computational
cost. These certain factors are constructed by analysing the
minute parameters providing a better model. The performance
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of various SOTA models is produced in Table II.

A. Architecture Tips

The architecture tips fairly include all the factors influ-
encing to develop a resilient architecture that extracts invari-
ant features. Larger kernel size in the beginning layers of
the convolution provides loss of information which degrades
performance but, speeds the training process. Similarly, the
higher the stride faster the model is trained but the accuracy
degrades successively. Without adding residual connections
developing a model just by increasing the depth can lead to
the problem of degradation. A network architecture without
bottleneck activations can explode in terms of computational
cost hence, a set of bottleneck activations are to be implanted
into the networks. The varying dimensionality of the receptive
field can provide invariant features. An architecture trained on
very small data cannot perform well on most of the unseen
samples. Hence, solutions for these problems are explicitly
provided for building a resilient convnet.

e A small receptive field provides a set of variant
abstract features which carry detailed invariances.

e A smaller stride can eventually provide good represen-
tation by reducing the loss of the information through
excessive pooling.

e To skip the problem of degradation, residual con-
nections can be implied accordingly. Further, this
improves the performance and also reduces the com-
putational cost for deeper architectures

e A set of bottleneck connections can provide a generic
feature representation and reduce computational effort
while developing a convent width-wise.

e The asymmetric receptive fields with an appropriate
bottleneck layer provide a greater representation of
features.

e  Finally, a model trained on multiple tasks with an
appropriate set of samples can eventually improve in
terms of performance acquiring state-of-the-art with-
out much effort in parametric tuning.

B. Optimization Tips

The optimization tips include developing representation
in convnets by altering the hyperparameters and indicating
their right implementation. The hyperparameters which are
widely implied in the deep learning paradigm to observe a
conventional change in the model behaviour during stochastic
optimization are described in detail.

e  Dropout: Dropout helps in generalizing the model by
halting a set of neurons during training and releasing
them during the validation or testing time. Hence,
selecting the percentage of dropout is crucial. Ac-
cording to the present implementations, most of the
research implies 50%. But it can be varied from 30-
50% and choosing it in this interval provides good
generalisation is densely connected networks.

e  Normalization: Local response normalization imple-
mented in AlexNet did not perform well in most of the
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instances. As it has a huge number of hyperparameters
it is a complicated task to imply such a normalization
technique. Further, the Batch normalization technique
was implied and it provided a great deal of succession
in convnets by solving the problem of covariate shift.
It is mostly utilized in the present research as it
does not include very few parameters to tune and it
works globally for variant architectures. Next, some
problems were addressed in batch normalization and
overridden by group normalization. It shows very
minute performance variation when incurred on a
smaller task but has a good variety when applied on
large scale. Hence, group normalization can be used
while developing a deeper model and for a small archi-
tecture batch normalization and group normalization
works equivariantly.

e To skip the problem of degradation, residual con-
nections can be implied accordingly. Further, this
improves the performance and also reduces the com-
putational cost for deeper architectures

e  Lastly selecting optimizer and scheduling the learning
rates is still tedious. Hence, most of the research imply
SGD with varying learning rate based on the problem
and varying momentum by observing the convergence.
Hence, for building a small scale convnets Adam
optimizer with small learning rates and high batch size
is provided for good performance. Whereas, training
a large-scale model the parameters might vary from
the architecture and choice of dataset.

VII. CONCLUSION

A detailed survey regarding the previous state-of-the-art is
conducted. Additionally, a section explicitly gives an intuition
of developing a good model with high performance and
less computational power. This illustrates developing resilient
architecture by tuning specific hyperparameters which as in-
sightful in developing deep models.

Further, a set of details are not mentioned in this survey are
to be described and held as our future direction. There a variant
model which is developed in between these high-performance
models which are not mentioned in this work. A set of small-
scale models which resolve the problems in convolutions (i.e.
Capsule Networks) does not describe explicitly. A detailed set
of implementation framework which can reduce the effort of
the implicit utility of architectures is not provided. These are
taken as a challenge for the successive research and designing
a framework overhauling these problems is chosen as future
scope of work.
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