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Abstract—Along with the development of technology as well 

as the explosion in digital data in the era of fourth industrial 

revolution, cyberattacks using ransomware are emerging as a 

serious threat to many agencies and organizations. The harm of 

ransomware is not limited to the areas of information technology 

and finance but also affects areas related to people's lives, such as 

the medical field. Therefore, research to identify and detect these 

types of malicious code is urgent. this paper present a novel 

approach of identifying and classifying ransomware based on 

dynamic analysis techniques combined with the use of machine 

learning algorithms. First, this research focused on the 

Application programming interface (API) call functions that are 

extracted during a dynamic analysis of executable samples using 

the Cuckoo sandbox. Second, research used LightGBM, a 

gradient boosting decision tree algorithm, for training and then 

detecting and classifying normal software and eight different 

types of ransomware. Experimental results showed that the 

proposed approach achieves an overall accuracy rate of 98.7% 

when performing multiclass classification. In particular, the 

detection rates of ransomware and normalware were both 

99.9%. At the same time, the accuracy in identifying two specific 

types of ransomware, WannaCry and Win32:FileCoder, reached 

100%. 

Keywords—Ransomware; machine learning; API call; dynamic 

analysis technique; gradient boosting decision tree; GBDT; 
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I. INTRODUCTION 

Ransomware is a form of malicious code which, upon 
infecting a victim's device, encrypts and then steals the 
victim’s data and prevents legitimate access to it until the 
victim pays a ransom. In early versions of ransomware, the 
code mainly performed the trick of locking the victim's system, 
aimed at non-computer savvy users. However, today's 
ransomware mainly uses crypto-viral extortion techniques. 
These methods take advantage of the most modern encryption 
techniques to encrypt almost all of the victim's personal data 
(e.g., photos, documents, texts). Even the most knowledgeable 
users or experts also face considerable difficulties. It is almost 
impossible to recover the data until receiving the decryption 
key. In a properly executed crypto-viral ransomware attack, 
recovering data without a decryption key is a problem that is 
difficult to solve. The attack also requires digital currencies 
that are difficult to track, such as Bitcoin, for ransom, making it 
even more difficult to investigate and track down the culprit. 

The use of ransomware is accelerated and becoming 
increasingly dangerous compared to levels seen in the past. 
Ransomware is now a national security issue for all countries 

around the world, and it will only become worse. In particular, 
during the recent Covid-19 pandemic, attacks on many 
hospitals and medical facilities indicate a new risk of 
ransomware, considering that its influence caused the death of 
a patient (Fireeye’s 2021 report). Ransomware at present is real 
threat to humans' lives. Threat actors will increasingly target 
the most critical assets, such as sensitive data and architectures, 
held by organizations, leading to much higher ransom amounts. 
Ransoms have already reached the tens of millions of dollars 
and are expect to grow. While many organizations pay ransoms 
and do regain access to their data. And they often forget that 
the attackers still have their data and can allow anyone to buy 
the data right from their websites (SophosLab’s Threat Report 
2021). Data theft creates a secondary extortion market. 

The continued success of ransomware poses a serious cyber 
security threat. According to the statistics of reputable security 
firms, ransomware can spread maliciously in many types of 
ways, via sophisticated techniques used to avoid detection by 
antivirus software. Therefore, the need to analyze these types 
of malware is urgent given the explosion of data in the fourth 
industrial revolution with millions of Internet of Things 
devices connected to the Internet every day. 

Attackers are increasingly turning to ransomware as a 
service (RaaS) with more customization capabilities that 
rapidly increase the number of ransomware variants and types. 
Therefore, traditional signature-based detection techniques are 
not effective. Current techniques often build on complex 
models that combine many features extracted through static 
analysis or dynamic analysis, along with various 
transformations to distinguish between ransomware and normal 
software. They are based on certain features extracted from a 
dynamic analysis or static analysis, such as API sequences, 
opcode strings of files, file entropy levels, and/or change in 
system files. The use of the API function call sequence to 
detect and classify ransomware types had been applied in many 
practical studies, such as in [1], [2], [3], [4], showing 
promising results. However, the fundamental problem of 
detection methods based on static analysis is weak detection 
when attackers use code obfuscation methods or zero-day 
attacks. Furthermore, the malicious code classification methods 
based on API functions extracted from static analysis lead to 
one drawback. These methods are easily evaded when an 
attacker inserts normal API calls or declares unused API 
functions during a ransomware execution. 

Among various features, this research focuses on the 
Windows API call frequency, which is extracted via a dynamic 
analysis technique. Proposal method use it as the primary 
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factor in conjunction with certain transformations that improve 
the speed and accuracy in identifying instances of malicious 
code extortion. Proposal method also applies LightGBM, a 
gradient boosting decision tree (GBDT) algorithm, to increase 
the accuracy and speed of detecting and classifying 
ransomware. 

The next sections of the paper are organized as follows: 
Section 2 presents ransomware detection techniques that are 
currently being studied. Section 3 describes the proposed 
approach and algorithms used, and Section 4 explains the 
collected dataset and the experimental method. Section 5 
analyzes the experimental results and Section 6 concludes the 
paper. 

II. RELATED RESEARCH 

There are two main approaches when analyzing and 
detecting ransomware: static analysis and dynamic analysis [5]. 
While the static analysis technique mainly focuses on 
analyzing and checking the file structure and executable file 
formats without running the file, a dynamic analysis allows 
malware to run to observe its behavior in the system ultimately 
to eliminate the infection. 

This Section reviews several ransomware analysis methods 
which are on the basis of the above two techniques in terms of 
the extracted information. Then, current multiclass 
classification methods will be reviewed. 

In terms of API sequences, to achieve malicious purposes 
especially when implementing ransomware, attackers must use 
and execute a specific API sequence. So there are big 
differences between malicious codes and normal software in 
API call sequences. There have been several studies focusing 
on an analysis of API call sequences to detect general malware 
as well as ransomware. For example, in [1] Sgandurra et al. 
presented a ransomware detection method based on dynamic 
analysis and applied a type of machine learning known as 
EldeRan. They collected several features extracted from their 
dynamical analysis, such as API calls, registry and file system 
change logs, dropped files, and crypto-function patterns in 
binary files. EldeRan studied a dataset with 1524 samples 
consisting of 582 ransomware and 942 benign samples. By 
using a regularized logistic regression method for 
classification, they could achieve 96.3% detection rate in 
binary classification. 

In [3] Hwang et al. combined a Markov model with random 
forest model to build two-stage mixed ransomware detection 
model. The Markov model is used to capture the characteristics 
of ransomware with the Windows API call sequence pattern 
that obtained by a dynamic analysis. During the second stage, 
the random forest machine learning model’s mission is to 
control misclassified samples in the remaining data. The 
accuracy of this two-stage mixed detection method is 97.3%. In 
binary classification, False positive (FP) and False negative 
(FN) rate are relatively high, 4.8% and 1.5% respectively. In 
[6], Bae et al. used the Intel PIN tool to extract Windows API 
call sequences and then generated n-gram sets from these API 
sequences. These n-gram sets were used to classify 
ransomware, malware and benign files. The authors concluded 

that their method could detect ransomware with a detection 
accuracy up to 98.65%. 

Several file-based techniques can identify the presence or 
existence of ransomware based on the transformation in files of 
system or in files of a particular format. In [7], after studying a 
dataset including 1359 ransomware samples from 2006 to 
2014, Kharraz et al. concluded that it is not complicated to 
design an advanced technique to block several types of 
ransomware by monitoring file system anomaly activities. This 
method can be effective even against those using sophisticated 
cryptographic malware or some types of zero-day ransomware 
attacks. In [8], Lee et al. measured the entropy of six different 
file formats and then used machine learning to detect infected 
files to protect the original file in a backup system while 
synchronizing the time. By identifying files infected with 
ransomware, this method allows the recovery of those files 
from system storage when the user's system is infected. 
Khammas [4] proposed a method that detects ransomware 
based on a static analysis. The method used frequent pattern 
mining and the gain ratio technique to extract 1000 features 
directly from raw binary files. A random forest technique is 
applied to the classification process. The dataset consists of 
1680 executable files made up of 840 ransomware and 840 
normal files. The accuracy rate was 97.7%. 

In network-based studies, Cabaj et al. [9] proposed a 
solution to identify ransomware based on HTTP traffic 
communication when the ransomware connects to the 
attacker’s C&C server. The experimental results obtained 
detection rates of 97–98%. However, the authors only 
monitored and observed the network traffic communication of 
two types of ransomware, CryptoWall and Locky. The author 
in [10] presented an advanced ransomware identification 
method based on an analysis of network traffic activities. The 
study observed TCP, HTTP, DNS, and NBNS traffic and 
extracted 18 different features. They prototyped a multi-
classifier network-based ransomware detection method that 
combines of two different levels: the packet level and the flow 
level. The highest detection accuracy rates for the two 
corresponding levels were 97.92% and 97.08%. However, this 
research only focused and analyzed on the Locky 
ransomware’s network activities and is thus not suitable for 
other types of ransomware. 

Other researchers also used a hybrid method that integrates 
dynamic and static analysis techniques to distinguish between 
ransomware and normalware. For instance, Shaukat et al. [11] 
presented a method called RansomwareWall. The set of 
features collected by static analysis and dynamic analysis is fed 
to the machine learning engine for binary classification of 
samples as ransomware or benign. Using a dataset of 574 
samples from 12 ransomware families, the experimental result 
presented detection rates ranging from 85.7% (using logistic 
regression) to 98.25% (using a gradient tree boosting 
algorithm). 

For multiclass classification, some researchers are not only 
working to distinguish between ransomware files and normal 
files but also looking for ways to distinguish between different 
types of ransomware. For example, Zhang et al. proposed an 
approach for multiple classifications of seven ransomware 
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families based on a static analysis [12]. They built N-gram 
sequences by extracting opcode sequences from Portable 
executable (PE) file samples and then calculated the term 
frequency - inverse document frequency (TF-IDF) to identify 
the feature N-gram vectors. The feature vectors were then 
subjected to five machine-learning methods to classify 
ransomware. The dataset included 1,787 ransomware samples 
of seven ransomware families crawled from VirusTotal that 
broke out from 2012 to 2017. In the experiments, the best 
accuracy achieved was 91.43% for the multiclass classification 
method when using a random forest algorithm and 99.3% for 
the binary classification of ransomware and 'goodware'. 

In [13], Baldwin et al. presented a WEKA toolset for 
ransomware multiclass classification based on a static analysis. 
They extracted 443 opcodes from binary files and used them to 
calculate the percentage of each opcode occurrence relative to 
the overall opcode. The support vector machine (SMV) 
learning technique was used for binary classification between 
benign and ransomware, while the PUK kernel was used for 
multiclass classification. The best accuracy gained from the 
results was approximately 96.5% when differentiating a dataset 
consisting of 443 samples of six classes (one benign and five 
ransomware families). Vinayakumar et al. studied a dataset of 
974 samples (219 benign files and 755 ransomware files from 
seven ransomware families) and focused on the API call 
sequence for ransomware detection [2]. Their method gathered 
131 API sequences with a dynamic analysis technique and used 
a multi-layer perceptron (MLP) model for classification. The 
experimental results showed that the best accuracy rate was 
98% for multiclass classification; however, the true positive 
rates (TPR) of crypto-locker and cryptowall ransomware were 
only 88.9% and 83.3%. 

Current studies mainly focus on binary classification 
between ransomware and normalware. However, with the rapid 
growth of blackmail attacks as well as the variety of types of 
ransomware, the detection and detailed classification of each 
ransomware family type are necessary at present. There have 
been a few studies related to multiclass classification, but those 
studies mainly focused on classifying categories together. 
Moreover, the accuracy when identifying each type of 
ransomware is not very high, leading to the ineffective 
prevention of malicious code, placing user data in danger. In 
order to overcome the drawbacks of previous multiclass 
classification techniques, this paper present a novel approach 
based on a dynamic analysis and the LightGBM algorithm to 
detect multiple types of ransomware and to distinguish 
between ransomware and benign files. 

III. PROPOSED METHOD AND ALGORITHM 

A. LightGBM Algorithm 

Decision trees “learn” by breaking down observations 
based on feature values. In the decision tree learning process, 
finding the best split is the most time-consuming stage. Two 
algorithms which use different gradient boosting decision tree 
(GBDT) implementations to find the best splits are as follows: 

 Pre-sort: Object values are pre-sorted and all split points 
can be evaluated. 

 Histogram-based: Continuous features are divided into 
separate bins used to create histograms for features. 

Histogram-based algorithms are more efficient in terms of 
memory consumption and training speeds. However, for every 
feature, all data instances must be scanned to find all possible 
split points. So that both pre-sorted and histogram-based 
methods become slower as the number of instances or features 
increases. The LightGBM algorithm aims to address the 
training speed and memory consumption issues associated with 
typical implementations of GBDT when working with large 
datasets. 

First, LightGBM grows the tree in a leaf-wise manner using 
a vertical growth strategy. This is different from the horizontal 
growth strategy (level-wise growth) tactics of the other 
decision tree algorithms. When growing leaf-wise, the 
gradient-based method can help the errors minimize and 
effectively reduce the loss. The balance of the tree is 
maintained via a level-wise growth strategy, whereas the leaf-
wise strategy helps to reduce the loss the most. With the same 
number of leaves, a leaf-wise-based tree will be deeper than 
other trees. In particular, when necessary leaf-wise growth can 
be used to grow a tree into a more balanced tree. Compared to 
horizontal growth, vertical planting can provide converge 
much more rapidly [14]. 

Secondly, LightGBM developed two techniques to reduce 
memory consumption and speed up the training time [15]. 
These are gradient-based one-side sampling (GOSS) and 
exclusive feature bundling (EFB). With GOSS, LightGBM 
reduces the number of instances by keeping all large instance 
gradients and random sampling instances with small gradient 
instances. The complexity of constructing the histogram for all 
features is O(#data *#features) and the complexity of 
subsequently finding the optimal split points is proportional to 
O(#bins * #features). Generally, #bins << #data. Therefore, 
this approach is computationally much more efficient than 
earlier approaches. 

Algorithm 1. Gradient-based One-Side Sampling (GOSS) Technique 

Input: I: training data, d: iterations 

Input: a: sampling ratio of large gradient data 

Input: b: sampling ratio of small gradient data 

Input: loss: loss function, L: weak learner 

models {}, fact  (1-b)/a 

topN  a × len(I), randN  b × len(I) 

for i = 1 to d do 

preds  models.predict(I) 

g  loss(I, preds), w  {1,1,...} 

sorted  GetSortedIndices(abs(g)) 

topSet  sorted[1:topN] 

randSet  RandomPick(sorted[topN:len(I)],randN) 

usedSet  topSet + randSet 

w[randSet] × = fact : Assign weight fact to the small gradient 
data. 

newModel  L(I[usedSet], - g[usedSet],w[usedSet]) 

models.append(newModel) 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 12, No. 10, 2021 

141 | P a g e  

www.ijacsa.thesai.org 

Step 1: Based on the list sorted according to the data 
instance gradient values, GOSS selects the top a× 100% largest 
gradient instances. 

Step 2: Perform random sampling b× 100% on the 
remaining instances with small gradients. 

Step 3: Recalculate the information gained by amplifying 
the sampled data of small gradients with (1-a)/b. 

In this way, LightGBM can focus more on larger gradient 
(under-trained) instances without altering the original data 
distribution much. 

EFB is a technique that uses a greedy algorithm to combine 
(or bundle) these mutually exclusive features into a single 
object (bundle of exclusive objects) and thus reduce the size. 
The complexity of feature histogram building is now 
proportional to the number of bundles O(#data * #bundle) 
rather than the number of features O(#data * # feature). With 
EFB, LightGBM can reduce the GBDT training time without 
having a great impact on the accuracy. 

Algorithm 2. Exclusive Feature Bundling (EFB) Technique 

Input: numData: number of data 

Input: F: One bundle of exclusive features 

binRanges {0}, totalBin 0 

for f in F do 

totalBin += f.numBin 

binRanges.append(totalBin) 

newBin  new Bin(numData) 
for i = 1 to numData do 

newBin[i]  0 

for j = 1 to len(F) do 

if F[j].bin[i] ≠ 0 then 

newBin[i]  F[j].bin[i] + binRanges[j] 

Output: newBin, binRanges 

By experimenting on several public datasets, the results 
demonstrated that using the LightGBM algorithm increased the 
training speed by more than 20 times while maintaining the 
same level of accuracy. 

In conclusion, LightGBM offers many advantages when 
used to address current practical issues: 

 Higher efficiency as well as faster training speeds. 

 Lower memory consumption. 

 Better accuracy. 

 Can handle large-scale data well. 

 Supports GPU and parallel learning. 

B. Proposed Ransomware Detection Method 

This approach fully utilizes the advantages of LightGBM 
algorithm described above and presented in some previous 
studies [16] and [17]. Because the API functions that used in 
the each sample (ransomware and benign) are very different, so 
that the dataset based on this features is spare. To fill the gap in 
current ransomware multiclass classification and to overcome 
the disadvantages of previous methods, this research present an 

approach based on a dynamic analysis and apply the 
LightGBM algorithm to process highly sparse data. By only 
using the API call sequence as the primary factor, this 
approach is more simple than others. 

To recognize a portable executable (PE) file as good 
software or ransomware and further to categorize ransomware 
into their respective categories, we utilize a machine learning 
architecture, as shown in Fig. 1. 

 

Fig. 1. Ransomware Multiple-Classification Proposed Method. 

In the first step, “tagged” PE files are analyzed by means of 
a dynamic analysis. After which information extraction of the 
API call sequence functions of each individual file were 
performed and consider them as key features in this proposal. 
For the second step, samples with corresponding features and 
assigned labels are passed as input to the LightGBM multiclass 
classifier to generate learning trees that help to distinguish 
between good software and ransomware. 

IV. DATASET AND EXPERIMENTAL METHOD 

A. Database Gathering and Analysis 

Currently, no complete dataset of ransomware on Windows 
platforms has been made public in cyberspace. Many authors 
have collected ransomware samples from multiple sources and 
built datasets for their own research. On the other hand, 
samples of ransomware often exist only sporadically in some 
test datasets. These dataset all malware marked ransomware, 
regardless of ransomware types. Previous researchers have also 
actively grouped ransomware types, but in experimental 
studies, they still mainly stop at distinguishing ransomware 
from normalware. Currently, there are very few researchers 
delving into the simultaneous identification and discernment of 
benign software and ransomware of various categories. 

Towards the above goal, this research attempt to build a 
ransomware dataset for research that not only helps to 
distinguish between ransomware and benign software but also 
improves the accuracy when classifying each type of 
ransomware. The dataset was constructed based on a number 
of scientific guidelines and best practices suggested by Rossow 
[18]. Ransomware samples were collected from two of the 
most popular data-sharing sources, VirusTotal

1
 and Virusshare

2
 

, under academic license and with the administrator's consent. 
Research focused on collecting both recent and earlier 
ransomware samples (from 2014 to early 2021) and worked to 
gather as much of each type of ransomware as possible. 
Because malicious samples were collected from two different 
sources, this research used a distinctive SHA hash to avoid 
duplications in the sample dataset. To be cautious when 
choosing the ransomware, we confirmed that an instance of 

                                                           
1 https://www.virustotal.com/ 
2 https://virusshare.com/ 
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malware is ransomware if at least five antivirus engines 
marked it belonging to this category. Research rely on the 
naming policy of the Avast engine to determine the family of 
each sample before starting the process of analyzing and 
collecting data about the behavior of ransomware. 

For benign samples, the executable files in the Windows 
system directory (…\Windows\System32) with a variety of 
functions and features of the files were selected. This could 
help to assess and classify malware in a more objective 
manner. 

While Table I shows information about the benign files and 
ransomware samples that were taken from the two main 
sources, Table II details the types of ransomware along with 
the number of samples collected in each case. 

After a dynamic analysis of 5,811 samples, we can realize 
that the number of API functions used by a sample ranges from 
01 to 172 with approximately 286 different API functions. 
Ransomware and benign files both use the same API functions, 
but for separate purposes. Moreover, the number of API 
function calls in each executable file differs significantly. 
There are functions that are only called and used one to two 
times in one PE file but are used many times in other 
executables. During the dynamic analysis, it was noted that 
there are API functions invoked and used by a file during its 
execution up to hundreds of thousands of times. At the same 
time, the number of APIs used by the each sample also differs 
across ransomware and benign files. While 'goodware' files 
mostly use 10-20 different API functions, the number of API 
functions used by ransomwares typically exceed 100. 
Therefore, the dataset is extremely sparse. This is highly 
suitable when applying the LightGBM algorithm given its 
many advantages when experimenting on this sparse dataset. 

B. Experiment 

The experimental process is depicted in Fig. 2 and is 
divided into five main steps, as follows: 

Step 1: Dynamic Analysis 

After being collected, the executable files were divided into 
categories, in this case benign files and ransomware files of 
different types (eight types of malicious codes). 

TABLE I. THE NUMBER OF FILE COLLECTED FROM EACH SOURCE 

Sample Source Number of sample 

Benign Windows system files 4,008 

Ransomware 
Virusshare.com 1,373 

Virustotal.com 430 

Total 
 

5,811 

TABLE II. RANSOMWARE FAMILIES 

No. Ransomware Family Number of sample 

1 Reveton 522 

2 TeslaCrypt 167 

3 Win32:Ransom 204 

4 Win32:Cryptor 123 

5 Win32:Crypt 146 

6 LockScreen 123 

7 WannaCry 491 

8 Win32:FileCoder 27 

Total (Ransomware) 1,803 

 

Fig. 2. Experimental Process. 
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The PE files are then put into the Cuckoo sandbox 
environment for a dynamic analysis. This is necessary and 
ensures safety and convenience during the dynamic analysis. 
The ransomware is executed in a simulated environment, 
during which all behaviors of every sample are collected in 
sandbox logs. Fig. 3 explains the Cuckoo architecture. 

 

Fig. 3. The Cuckoo Sandbox’s Architecture. 

Step 2: Extract API call sequence 

Then information regarding the API calls that were 
executed during the dynamic analysis is extracted, including 
information about the API functions list in the order of 
execution and the number of times each function was executed 
for each individual PE file, as displayed in Fig. 4. 

Step 3: Feature Engineering and Normalization 

The extracted data is then compiled into a summary of 
information for the entire sample. The information in the 
resulting table includes a list of all sample PE files along with 
information regarding the API calls that each file used and the 
number of times each function was used. With regard to API 
functions that are not called, the corresponding value for that 
function for the sample file is set to 0. At the same time, each 
executable file pattern is labeled corresponding to the type of 
ransomware or benign file, as in Table III. Because LightGBM 
works effectively with a sparse dataset, all features will be used 
in the training and testing phases. 

TABLE III. LIST OF CLASS LABELS 

No. Class name Label 

1. Benign 0 

2. Reveton 1 

3. TeslaCrypt 2 

4. Win32:Ransom 3 

5. Win32:Cryptor 4 

6. Win32:Crypt 5 

7. LockScreen 6 

8. WannaCry 7 

9. Win32:FileCoder 8 

Data Normalization: Research used the MinMaxScaler of 
scikit-learn for data normalization. Given that the scope of the 
raw data is very wide, for some machine learning algorithms 
their objective functions will not work properly and may 
produce bias when the data is not normalized. MinMaxScaler 
normalization scales the range of all features to the range of [0, 
1]. 

The transformation is given by Alg.3: 

Algorithm 3. The MinMaxScaler nomarlization 

     
      (      )

    (      )      (      )
 

             (       )      

Where: Xmin, Xmax: min, max of one feature 

min, max: min, max of overall data. 

The following Fig. 4 shows the data normalization process 
from after extracting sandbox log file to before feeding them to 
LightGBM algorithm. 

 

Fig. 4. The Transformation of the Data. 

All data is divided as follows: training set: 80%, test set: 
20%. Each dataset is then used for the subsequent training and 
test phases. 

Step 4: Training phase 

In [17], Dongzi et al. illustrated the LightGBM training 
process with the model consists M trees in Algorithm 4. 

Algorithm 4. The training of LightGBM 

Require: Input: Training set *(     )+   
  

Ensure: Output: LightGBM model  ̂ 
( )

 

1. Initialize the first tree as a constant:  ̂ 
( )
      

2. Train the next tree by minimizing the loss function: 

  (  )        
  

 ( )        
  

 (    ̂ 
(   )

   (  )) 

3. Get the next model in an additive manner: 

 ̂ 
( )
  ̂ 

(   )
   (  ) 

4. Repeat the Step 2 and Step 3 until the model reaches the stop 
condition. 

5. Obtain and return the final model: 

 ̂ 
( )
  ∑   (  )
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Here:   (  )      ̂ 
( )

: are correspondingly the learned 

function and predictive value of sample i at iteration t. 

 ( ) : The loss function represents the error between the 
prediction y   and the true value y. 

The stop condition of the training process occurs when the 
process reaches the M-th iteration or when the loss value of the 
model is lower than the predefined loss value. 

Step 5: Testing phase 

The test dataset is classified based on GBDT trees that have 
been created during training phase. 

V. EXPERIMENTAL RESULT 

A. Evaluation Criteria 

To evaluate the detection performance of the proposed 
method, this paper employed the following metrics: the 
accuracy of the entire model, precision, recall, the F1 measure 
of each class, and a confusion matrix. 

When evaluating each class, the class being evaluated is the 
positive class and the remaining eight classes are the negative 
class. True positive (TP) refers to the number of positive class 
samples that are correctly classified. False positive (FP) refers 
to the number of negative class samples that are misclassified 
into the class under evaluation. True negative (TN) represents 
samples in the negative class are correctly classified into the 
negative class. False negative (FN) represents samples in the 
consideration class that are misclassified. 

Precision is defined as the ratio of true positive scores 
among those classified as positive. 

           
  

     
 

Recall is the fraction of the relevant samples that are 
successfully classified. 

        
  

     
 

The F1 score is used to evaluate the quality of the model. 

            
                   

                   
 

Accuracy is determined simply by calculating the ratio 
between the number of correctly classified samples and the 
total in the test dataset. 

          
        

                  
 

For multiclass classification, the overall accuracy is the 
ratio of the sum of the true positives of all families divided by 
the total sample. It is determined according to the following 
formula. 

                  
                               

                          
 

The confusion matrix (CM), M = ,    -   , is used to 

evaluate the quality of the classifier's output on the dataset. The 
values of the diagonal elements represent the number of 
samples and the percentage of correct predictions, while the 
other elements represent the samples that have been classified 
incorrectly. A confusion matrix with higher diagonal values 
represents a higher percentage of correct predictions. 

B. Experimental Results 

As shown in Table IV, the classification accuracy is very 
high, with overall accuracy of about 98.7%. However, the 
correct identification rate for all ransomware is close to 96%, 
while the lowest rate of identification for TeslaCrypt is 89.5%. 

TABLE IV. CLASSIFICATION EVALUATION RESULTS 

No. Classes Size Precision Recall F1-Score 

1 Reveton 102 0.961 0.961 0.961 

2 TeslaCrypt 38 0.971 0.895 0.932 

3 Win32:Ransom 38 1.000 0.921 0.959 

4 Win32:Cryptor 25 0.885 0.920 0.902 

5 Win32:Crypt 21 0.800 0.952 0.870 

6 LockScreen 22 1.000 1.000 1.000 

7 WannaCry 100 0.980 1.000 0.990 

8 Win32:FileCoder 3 1.000 1.000 1.000 

9 Benign 814 1.000 0.999 0.999 

Total 1163 Overall accuracy = 0.987 

Fig. 5 presents the CM of the eight ransomware classes, in 
this case Reveton, TeslaCrypt, Win32:Ransom, 
Win32:Cryptor, Win32:Crypt, LockScreen, WannaCry, and 
Win32:FileCoder, along with the benign files in the 
experiments. The CM shows that the proposed method 
provides the best classification for three ransomware families, 
LockScreen, WannaCry and Win32:FileCoder, in which not a 
single sample is misclassified. This is followed by Reveton, 
with accuracy of approximately 96.1%. 

 

Fig. 5. Confusion Matrix. 
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Fig. 6 shows feature importance based on the number of 
times that a feature is used as split points in all learned trees. 
The most important API call function for detection and 
classification of the ransomware in this case is “NtOpenKey,” 
used more than 1000 times as a split point in a learned tree. 
This is followed by the two other API call functions of 
“NtAllocateVirtualMemory” and “NtTerminateProcess,” called 
995 and 866 times, respectively. The three API call functions 
above are also among the API call functions most commonly 
used by samples (ranks: “NtTerminateProcess:” 1st, 
“NtOpenKey:” 4th, and “NtAllocateVirtualMemory:” 21st). 
However, while the "NtAllocateVirtualMemory" and 
"NtTerminateProcess" functions were used many times by all 
PE files (19,564,674 and 5,182,284 times) and are 
correspondingly ranked 3rd and 12th, the “NtOpenKey” 
function was only called 86,487 times and is ranked 111th of 
286 (as showed in Table V). This shows that the importance of 
features in determining split points does not depend much on 
the number of times they are called or the number of file that 
used them. 

 

Fig. 6. The Top 30 Important Features in the Experiment. 

VI. ANALYSIS AND DISCUSSION 

The experimental results have shown that the method 
proposed here to identify and classify malicious codes based on 
API call functions obtained from dynamic analysis results 
combined with the GBDT LightGBM algorithm can achieve 
high performance. 

TABLE V. THE USE OF API CALL BY PE FILES 

No. API name Times used 

1 RegSetValueExA 26,547,071 

2 ShellExecuteExW 26,135,049 

3 NtAllocateVirtualMemory 19,564,674 

4 NtOpenFile 14,268,859 

5 OpenServiceW 9,484,238 

… … … 

12 NtTerminateProcess 5,182,284 

… … … 

111 NtOpenKey 86,487 

… … … 

286 NtShutdownSystem 1 

The proposed method identified ransomware samples with 
very high accuracy, reaching 100%. When evaluating the 
effectiveness of distinguishing between malicious code and 
normal software, the experimental results show that the system 
did not miss or miscategorized any ransomware sample as 
normal software. This promises to bring about a positive effect 
with regard to protecting system and user data. At the same 
time, the rate of misidentification of benign software was low, 
as less than 0.01% of benign samples were misidentified as 
malicious samples. Therefore, the proposed method will not 
affect system availability and allows the user experience to be 
retained. 

When evaluating the effectiveness of classifying 
ransomware types, out of eight types of malware conducted 
experimentally, the proposed method has the ability to identify 
sensitively three types of extortion malware. In this case 
LockScreen, WannaCry, and Win32:FileCoder, with absolute 
precision of 100%. In addition, there were a few small 
mistakes between different types of malware, such as 
TeslaCrypt, Win32:Ransom, and Win32:Crypt. 

The test results here also demonstrated the advantages of 
the dynamic analysis in support of ransomware detection. The 
method based on dynamic analysis greatly reduced the number 
of features in the sample database. According to this study of 
the collected dataset, the number of features (API call 
functions) that must be analyzed and processed during the 
static analysis method is very large at approximately 6,684 
different features with ransomware and nearly 28,500 different 
features in the benign case. Meanwhile, using the dynamic 
method, the number of API call functions to be processed for 
all ransomware and benign samples was only 282. This 
enhances the efficiency of the data analysis, classification and 
processing steps while also minimizing the time required for 
the training and detection phases, which are very time-
consuming steps given numerous features. The proposed 
method also minimizes interference from an attacker to bypass 
static-analysis-based methods, such as by adding normal API 
call patterns or by attempting to use an obfuscation technique. 

VII. CONCLUSION 

This chapter discusses the results of the proposed method, 
the advantages of the dynamic analysis technique in supporting 
ransomware detection and classification. 

In fact, proposal method achieves a 98.7% classification 
accuracy rate, with excellent ransomware recognition and a 
low error rate during benign software classification. Compared 
to previous studies, the experimental results not only dominate 
in terms of detection between ransomware samples and 
goodware (99.9% accuracy versus 98.65%, 97.74%, and 97.3% 
as in [6], [4] and [3] but is also more efficient when classifying 
ransom types of malware (between proposal method at 96% 
and corresponding rates of 88.9%, 94.2%, and 91.4% as in [2], 
[13], [12]. This helps to increase the efficiency of the 
identification process of malicious code, thereby accelerating 
the response and implementing countermeasures to protect the 
system when necessary. In particular, using LightGBM 
algorithm significantly shortens the time compared to other 
machine learning or GBDT algorithms. 
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The study also demonstrated the role of each API function 
in identifying and classifying ransomware by assessing the 
importance of each API function by determining the split 
points during the construction of the learning trees used here. 
This makes it possible for us to engage in more research and 
evaluations to reducing the number of attributes further when 
the number of file samples increases in the future. This helps to 
reduce the computational pressure while maintaining the 
accuracy of the method, thus enhancing the efficiency of the 
system. 

The proposed plan has shown very positive results. 
Experiments also highlighted the importance of each API 
function in the detection and classification process. Therefore, 
work to reduce the number of API functions when the numbers 
of ransomware samples and types increase in order to reduce 
the computational burden while ensuring high accuracy also 
represents a promising research direction for future studies. 
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