
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 10, 2021

147 | P a g e

www.ijacsa.thesai.org

Integrated Document-based Electronic Health

Records Persistence Framework

Aya Gamal
1
*

Faculty of Computers and Artificial Intelligence

South Valley University, Hurghada, Egypt

Sherif Barakat
2
, Amira Rezk

3

Information System Department, Faculty of Computers and

Information, Mansoura University, Egypt

Abstract—Electronic health record systems work beyond just

recording patients` health data. They have multiple secondary

functionalities, such as data reporting and clinical decision

support. As each of these systems` workloads has contradictory

different needs, managing a multipurpose electronic health

record is a challenge. This paper proposes a unified healthcare

data framework that can simplify health information system

infrastructure. It investigates the suitability of the document-

based NoSQL persistence mechanism, storing electronic health

records data as a design choice for managing varied complexity

ad hoc queries used in operational business intelligence. The

performance of the most popular two document-based NoSQL

back-ends, Couchbase Server and MongoDB, is compared

according to the size of the database and query execution time.

Results showed that while MongoDB can execute simple single-

document queries nearly in milliseconds. It does not provide

satisfactory response time for unplanned complex queries

spanning multiple documents. By utilizing its analytics services

and multi-dimensional scaling architecture, Couchbase Server

multi-node cluster outperforms the response times of MongoDB

for both simple and complex healthcare data access patterns. The

primary advantage of the proposed tightly coupled EHRs

processing framework is its flexibility to manage workload

according to changing requirements.

Keywords—Electronic health records; operational business

intelligence; document data model; NoSQL; health information

system; persistence framework; Couchbase server

I. INTRODUCTION

 Electronic health records (EHRs) system is a quintessential
part of healthcare information system (HIS). It is an ecosystem
for maintaining a long-term patient‟s health record. This
system usually has multiple core functionalities. Primarily, it is
used for storing and retrieving individual patient records for
healthcare purposes. These EHRs data could be used in clinical
decision support (CDS) to suggest the next steps for treatment
or predict future conditions trends by analyzing transactional
data [1]. EHRs data are not possessed by any particular
healthcare provider. To interconnect these different healthcare
practitioners, EHRs need to be interoperable through following
certain standards to facilitate health information exchange
(HIE) and sharing [2]. HIS workload usually encompasses two
main practices: clinical use, which is regarded as a
transactional workload, and research use which is dedicated to
analytical workload.

As each of these workloads has a different access pattern,
they have seemingly contradictory solutions. There is also the

operational business intelligence (BI) workload, including ad
hoc queries, which are in the middle between primary and
secondary uses. This data access pattern tends to be
unpredictable; it typically involves reading an extensive
amount of data at one time and can include various complex
joins [3]. There are various architectural methodologies [4,5] to
manage those conflicting workloads. Traditional HISs could
use transactional systems for providing answers to analytical
queries in one engine, but the system performance may
degrade dependent on the number and the complexity of
queries submitted to the database. Therefore, following the
“one size does not fit all” rule [6], a clinical data warehouse
(CDW) [7,8] a specialized storage structure, is used for data
analysis to segregate tasks and maintain the performance at an
acceptable level. It utilizes extract, transform, and load (ETL)
to integrate patient-level data from separate silos inside or
across healthcare organizations, facilitating analysis and
reporting. Thus, various healthcare application frameworks [9]
have been introduced to offer diversified EHRs data analytical
capabilities.

Earlier healthcare data persistence systems [10] were built
depending on the relational schema approach. However, these
traditional relational database management systems RDBMS
are built for strong consistency level and data control [11].
With the rise of the “no one size fits all” concept [12], several
alternative NoSQL stores have been developed [13] to address
the shortcomings of RDBMS. NoSQL databases refer to a
category of flexible data storage systems that manage data
using a key-value structure. They are clustered into four main
classes [14,15] based on their data model: (1) key-value data
stores, (2) document data stores, (3) column-family stores, and
(4) graph data stores. This categorization is necessary since
each data storage architecture provides different solutions
depending on the application‟s needs.

Healthcare data is complex, dynamic, intermittent, and
diverse in nature. Furthermore, HIS applications` access
patterns usually need their scale, performance, and flexibility
requirements to surpass their transactional needs [16,17]. Thus,
NoSQL data stores are more suitable to meet the specifications
of distributed EHRs systems [18]. There are several criteria,
such as data model, performance, data persistence, and CAP
support[19], which must be considered when choosing which
NoSQL store to be used. Various data modeling approaches
[3,20–27] have been introduced for medical data persistence
according to use case scenarios. These works investigate not
only the type of NoSQL store that has to be chosen but which
NoSQL products in that type will be used [19].

*Corresponding Author

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 10, 2021

148 | P a g e

www.ijacsa.thesai.org

Managing a fully functional EHRs system with the
involvement of all healthcare participants is not a simple task
because of the rapid development and growth of medical
knowledge. To fulfill a variety of use cases, organizations
nowadays commonly end up deploying different databases,
leading to a “database sprawl” that causes delayed analytics.
This layered architecture approach was challenged by the white
paper [28] which argued that advances in memory technology
enable data to be stored just once without compromising either
transactions or analytical workloads. Massive parallel
processing (MPP) database platform is considered as another
architectural alternate to CDWs that could support medical
data analytics [29]. It could be used for ad hoc population
queries, which may not be quickly obtained from the CDW.

The capability to store data quickly is not a problem. But
the challenge is the capability to do meaningful and quick
insights with that data. Recently, Analytical application
characteristics diverged from the typical characteristics of the
online analytical processing (OLAP) system and become more
real-time, operational, and proactive. Modern applications
frameworks require blurring borders between operational and
analytical workload [4]. Several terms, such as Hybrid
Transactional and Analytical (HTAP) databases [30,31], are
being used to describe this general trend in databases that
supports hybrid workload processing requirements within a
single logical database. Couchbase Server recently introduces
multi-dimensional scaling (MDS) architecture [33] to support
scaling workload independently according to the changing
needs. It aims to offer a single, integrated platform that can be
used for almost all varied complexity operational workloads as
well as operational analytics. The motivation for this paper is
that nevertheless, these hybrid data processing and
management techniques [16,32] could provide solutions to a
wide range of healthcare data problems, such as data silos. Few
researchers evaluate their performance in the healthcare sector.

The main contribution of this paper is it proposes a unified
multipurpose HIS framework that could improve healthcare
services provision. This flexible Couchbase-based healthcare
architectural framework provides different levels of services
that could be efficiently adapted according to varied
application workload requirements. As both database selection
and its related schema architecture are aspects that affect the
effective management of healthcare data, particularly in real-
time usage systems [10]. This paper first discusses the
suitability of the document data model as storage persistence
for managing EHRs data. After that Couchbase Server and
MongoDB which are the most popular document-oriented
database management systems (DODBMSs) are evaluated for
BI workload. These two storage back-ends storing EHRs are
compared on the subject of their execution time and storage
space requirements for handling varied queries complexities.

The rest of this paper is organized as follows: Section 2
reviews document-based data modeling techniques and their
suitability for the healthcare domain. Section 3 describes the
experimental environment, including datasets, workload
specifications, and query implementation. Section 5 reports the
experimental results for the two different size datasets.
Section 4 briefly discusses the obtained results.

II. DOCUMENT DATA MODELING

A document database is a set of key-value in which each
key corresponds to a complex data structure value known as a
document. Each document holds a unique automatically
generated key which not only enables gathering related
documents. But also enables an application to perform keys-
based document lookup, which is extremely fast. A document‟s
structure in the document model database is made up of the
arrangement of its internal attribute-value pairs [34]. In
document-oriented databases, stored values are arranged, in a
self-descriptive document that can be examined easily. There
are several advantages of using document-oriented modeling,
unlike relational databases that force applications to fit data
into predefined models, regardless of their needs [35]. First,
there is no impedance mismatch between application objects
models and documents data models [36]. Second, they do not
impose standard document structures, even across several
documents. It allows a schema to gradually evolve by adding
properties and structures to the document as required without
the need to update other documents in the same way. Thus, the
schema is explicit but variable, since attributes may vary
among instances [37]. This allows applications to change their
behavior without having to overhaul all the source data or take
applications offline to make a basic change. Therefore, they
offer faster write performance than the conventional relational
model, besides efficient indexing features. In relational
databases, [38] children use foreign keys to refer to their
parents. On the other hand, parents refer to their children in
document databases. This is because, unlike a field in a row, a
field within a document can have several values.

Embedding and referencing are two techniques that could
be used to link documents. Document embedding concerns
nesting documents into another. It entails merging subclass
entities into superclass entities and denormalizing relationships
without the need for a reference table. On the other side,
document refereeing is based on two separate documents, and
one is refereeing into another. It involves adding a key to the
object [34,39] and it is good when the referenced objects and
relationships are static. Usually, deciding how to model related
data documents normalized, denormalized or a hybrid is based
on the type of relationship and the access pattern.

 In today‟s market, there are a variety of document-oriented
NoSQL databases; Couchbase [40] and MongoDB [41] are the
most popular. Couchbase is a scalable in-memory NoSQL
database, which was designed particularly for distributed
processing and has native support for JSON documents[42,43].
It was created through merging two complementary
technologies: Membase Server, a distributed key-value
database based on Memcached, and CouchDB, a single-node
document database supporting JSON. It has N1QL, a
declarative query language that can manipulate JSON
documents. A Couchbase node usually comprises of cluster
manager and, optionally, data, query, index, analytics, search,
and eventing services. Couchbase Server introduces MDS
architecture, which is independent scaling architecture, for
minimizing interference between services [33]. MongoDB uses
a slightly modified version of JSON called BSON (Binary
JSON). It has its own DBMS, including the full set of CRUD
(create, read, update and delete) operations.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 10, 2021

149 | P a g e

www.ijacsa.thesai.org

A. Document-based EHRs Data Modeling

Because of the special persistence policies of EHRs data.
NoSQL systems fit better [20,21], as they allow healthcare data
to be stored in a structure that is much closer to its real
representation. NoSQL databases are aggregate-oriented data
stores [36], as the aggregate is the unit of operation and
consistency. They can be more scalable and faster where data
volumes are extremely large, or when there are no internal
document references that might degrade the performance or
data consistency. On the other hand, healthcare applications
could be an obvious example of an application type, where the
presence of connections between various documents and their
subcomponents has no impact on the application‟s basic
functionality and consistency. This is because, if part of these
data is updated during such medical treatment, a new extract
with new information and their appropriate connections should
be created, rather than overwriting any previously stored data
elements [18]. This is a rigorous medical information
constraint since it may be used to make medical
decisions.When using a document-based store instead of a
relational system, information about a particular patient is
easily isolated from other patients' information.

So, healthcare tasks could be considered document-based
tasks. Retrieving all patients‟ demographic data and linked
hospital admissions. These flexible modeling approaches could
efficiently adapt to the nature of healthcare data. Thus, several
studies have been initiated along this path [3,20,24 ,44–47].
According to related work [20] result, MongoDB is best for
handling single patient queries because of their concurrency.
While Couchbase in [3,24] achieved better query response

times and throughput. Thus, it is the best for handling the
analytical workload of scalable, large data size.

III. PROPOSED DOCUMENT-BASED ELECTRONIC HEALTH

RECORDS FRAMEWORK

In multi-node cluster topology, the Couchbase Server
services are distributed across several nodes within the cluster,
rather than a single node cluster. The main aim of this
microservices architecture is deploying both query and
analytics services, which are complementary services with
contradicting workload needs, into two independent nodes
within the cluster. Query service is used to support many users
in making inexpensive operational queries. While analytics
service is used to support complex and expensive analytical
queries made by a much smaller number of users [43]. Data
and query services provide user-facing applications with low-
latency key-value and/or query-based access to their data. For
analytics service, operational EHRs data is pushed into shadow
buckets of the same data for immediate analysis by a dedicated
massively parallel processing (MPP) analytics engine. These
shadowed buckets are copies of data that are linked directly to
the operational data in real-time. So, these analytical queries do
not affect the performance of operational data queries. Cross
data-center replication (XDCR) is used to replicate EHRs data
per bucket basis between two data nodes in different clusters
depending on application requirements. These replicated
vBuckets can support read requests as they are kept constantly
up to date by receiving a continuous stream of mutations from
the active vBucket through database change protocol (DCP).
Fig. 1 shows a high-level illustration of the deployed EHRs
multi-node topology for varied access patterns.

Fig. 1. Proposed Document-based Multifunctional EHRs Persistence Framework.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 10, 2021

150 | P a g e

www.ijacsa.thesai.org

IV. EXPERIMENTAL SETUP

Two NoSQL database management systems: Couchbase
6.6.2 and MongoDB 4.4.3 are used to assess the suitability of
document-based persistence to store and retrieve EHRs objects.
The two NoSQL products were deployed in a single machine
with the following specifications: Intel core i7 -10750h CPU @
2.60GHz, with 16GB of memory and an SSD storage system of
256GB, running windows 10 _64 bits.

The workloads were tested under the following conditions:
data fit the memory, and replication is set to “1” signifying that
just a single replica is available for each dataset. All executions
are warm runs, so either caching techniques must be disabled,
or each query must be performed individually to fill the cache.
Queries must be prepared according to the native scripting
language of the target database and run directly from the
command line interpreter within the chosen system.

A. Dataset

Our experiment investigates the performance of the
document-oriented database to store Fast Healthcare
Interoperability Resources (FHIR) [48] compliant EHRs data.
The used EHRs data is two different size synthetic patient
datasets with COVID-19 [49,50]. These synthetic datasets have
been generated by SyntheaTM [51], an open-source patient
population simulation available from the MITRE Corporation.

SyntheaTM is a synthetic patient generator [52] that
simulates the medical history of synthetic patients. Patient data
and related health records covering several aspects of
healthcare are realistic but not genuine. Every record in this
EHRs dataset contains administrative, demographic, and
healthcare information concerning a patient. These records are
subdivided into different data sources or categories that
encompass all the different aspects of healthcare. They also
span practitioner, care team, device, organization, location,
healthcare service, diagnostic, medications, as well as the
financial tasks, such as insurance coverage. Core data elements
are presented in Table I.

FHIR specification is a next-generation standard
framework developed by HL7 to facilitate faster and more
efficient integration, exchange, and retrieval of EHRs data. It
bases on the concept of “resources”. One of the key objectives
of FHIR is that it does not enforce the exchange of whole
documents, but it allows the exchange of specific pieces of
information. Hence, enabling interoperability across various
functional applications and ultimately reducing the cost of the
implementation. FHIR data model is relational in nature. It
centers around the „patient‟ object or resource. Each object has
a unique identifier „id‟ field. This id is used to reference most
resources to the „patient‟ object. As a result, the patient
resource collection has been normalized into individual
resource-type documents in which the objects that are
associated with a patient are linked by the patient‟s id in the
subject field.

B. Workload

HIS workload usually involves clinical practice queries
which are used to get single patient data and research queries
that are dedicated analytical workloads.

TABLE I. DATASETS SIZE AND THEIR ATTRIBUTE NUMBER

Objects 10k patient 100k patient

Allergies 5,417 51,592

Careplans 37,715 377,726

Conditions 114,544 1,143,900

Devices 2,360 23,694

Encounters 321,528 3,188,675

Imaging_Studies 4,504 45,609

Immunizations 16,481 168,160

Medications 431,262 4,227,723

Observations 1,659,750 16,219,969

Organizations 5,499 9,175

Patients 12,352 124,150

Payer_Transitions 41,392 409,553

Payers 10 10

Procedures 100,427 979,564

Providers 31,764 60,534

Supplies 143,110 1,389,858

Total Item Number 2928115 28419892

MongoDB Size 878.732 MB 8.17 GB

Couchbase Size 1.37GB 14.2GB

CSV Data File Size 504 MB 4.78 GB

Operational BI workload is read-intensive, with writes that
do not conflict with reading queries. It resembles the workload
of an OLTP application, where quick response times are
desired. This workload includes a type of ad hoc query that is
used for real-time reporting.

The motivation behind this paper was the belief that ad hoc
queries are not planned before, thus having any query indexing.
It investigates two back-ends behaviors for ad hoc queries that
are examples of real-time analytical queries with different
levels of complexity and may have joins and aggregations. The
performance of each database was evaluated under queries
range in complexity, from simple ad hoc read queries to
complex join queries. Simple read workload usually includes
filtering constraints and sorting operations and aggregate
lookups. While join workload involves join operations with
grouping and aggregation functions. These queries declared in
Table II and Table III were identified and written according to
each database query language. Specific queries whose behavior
could differ widely from the others are chosen to differentiate
the performance of the databases and avoid bias.

C. Query Implementation

Two database architectural topologies for the two storage
back-ends storing EHRs were deployed to investigate for
handling different queries complexities. MongoDB
experiments were deployed to single unsharded data cluster
architecture. While Couchbase Server investigates two
database topologies, which are single node cluster and multi-
node cluster.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 10, 2021

151 | P a g e

www.ijacsa.thesai.org

TABLE II. SIMPLE AD HOC READ QUERIES

Q1 Retrieve patients‟ names and their age

Q2 Rank the encounter count of hospitals

Q3 Find all dead patients‟ data.

Q4 The number of inpatients.

Q5 Arrange conditions according to their co-occurring

Q6
Arrange encounters according to the number of conducted

encounter class

Q7 Count of non-survivor

Q8 The age of dead patients

Q9 The average age of non-survivor

Q10 Max-age of non-survivors

Q11 Mortality by sex

Q12 Mortality by age

Q13 Total count of supplies

Q14
Medications dispensed to patients with COVID-

19 since January 20, 2020

Q15
Total cost for every

medication dispensed to patients with COVID-19

Q16 Number of patients required ventilator

Q17 All the conditions starting after January 20, 2020

Q18 Cumulative case count of covid over time

Q19 Number of patients with COVID-19 conditions

Q20 The max duration length of any COVID-19 patients

Q21 Care plans for all COVID-19 patient

Q22 Allergies ordered according to co-occurrence

Q23 Maximum observed temperature

Q24 The total number of patients who take influenza immunizations

Q25 The max cost of procedures

TABLE III. COMPLEX JOIN QUERIES

Q1 Retrieve patients‟ names and their current unresolved conditions

Q2 All patients who were at Beverley hospital on 2011-08-18

Q3 Patients‟ names with their insurance claim cost

Q4 Merge patients‟ names with their COVID-19 conditions

Q5 Period time every covid patient connected to a ventilator

Q6 Total cost for every covid patient

Q7 The total cost of medication for every covid patient

Q8 The number and total cost of immunization for every patient

Q9 Period time for every covid patient

Q10 Number of female and male patients with covid

Q11 Number of providers in every organization

Q12 All observations for patients with covid

Q13 All observations for patients who are not diagnosed

For Single node topology in MongoDB, the aggregation
pipeline framework is used to implement queries using the
concepts of multi-stage data processing pipelines. It uses the
$lookup operator to apply left outer JOIN queries over an
unshared collection in the same database [53].

For Couchbase Server single node cluster topology, all
database services (query, index, and data) are contained in a
single zone. In such architecture, the query service is used to
handle all different complexity workload types. While for
multi-node cluster topology, the Couchbase Server services are
distributed across several nodes across several nodes rather
than a single node.

V. EXPERIMENTAL RESULTS

A. Evaluation Criteria

The majority of the healthcare system‟s tasks usually entail
searching the databases. An EHRs system‟s execution time is
an essential performance parameter, and storage space
efficiency could decrease future maintainability costs. Thus,
reducing database query response time significantly improves
the EHR system‟s performance and functionality [54]. This
paper evaluates how DODBMSs store and retrieve EHRs in the
context of storage space and response time.

B. Database Size

Both 10k and 100k patients' datasets files [55] are initially
available in the SCV format with approximately 500 megabyte
and 5-gigabyte sizes. Table I shows the two data sets‟ sizes
when stored in each backend. To upload data into the
Couchbase server, a command-line utility, $cbimport, is used
to import synthase COVID-19 CSV files into JSON Couchbase
format. While for uploading data into MongoDB, the
mongoimport tool is used. Couchbase and MongoDB demand
2.9 and 1.7 times more space correspondingly than CSV
storage space for both datasets of different sizes.

VI. RESPONSE TIME

Database performance is defined by the speed at which a
database process workload. In our evaluation, the primary
factors related to the performance of the database are the query
complexity level and the size of the dataset. To investigate the
scaling capability of the two back-ends, the same queries were
applied to both 10k patients and 100 k patients‟ datasets,
respectively. All queries` response time and the number of
examined documents grouped by the database are represented
in the following tables. Queries are mainly divided into two
types. Simple ad hoc read queries that retrieve data from a
single collection or bucket and complex join queries that span
multiple collections to get data.

Table IV and Table V respectively show simple retrieval
queries‟ execution times for the two datasets. There is a linear
complexity increase in query response time as the database size
grows. This is because the database execution time increases
with the same queries, by scaling the dataset from 10k patients
to 100k patients. However, query optimization techniques like
indexing are not likely to be used for that type of ad hoc
analytical query. Execution time was reported with and without
documents indexing for the small dataset to declare the benefit
of indexing to enhance query performance. Even Q23 scanned
the observation document, which has the largest size. It
achieved the smallest execution time value because the two
attributes of the query are indexed to make a covering query.
Covered queries usually retrieve results directly from the index
without the need to access datasets documents. Without

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 10, 2021

152 | P a g e

www.ijacsa.thesai.org

indexing, Q23 achieved the highest execution time for both
databases. The same explanation is for Q7, Q8, Q9, and Q10
execution time. These queries utilized indexing deathdate and
birthdate attributes as a covering index. Q24 achieved the
lowest execution time because the number of scanned
attributes is quite smaller than many other queries besides that
it used the covering index. Even with indexing, Q6 reported
high response time values. This is because of the low
selectivity of the encounter class‟s attribute values. MongoDB
reported observable better execution time than Couchbase in
the case of simple queries scanning the small 10k patient
dataset.

For the larger 100k patient dataset, MongoDB still reports
better execution time than Couchbase except for Q4, Q6, and
Q13. This is because of the large number of the queries`
scanned attributes and usually, Couchbase is reported to be
better for large-scale data. By utilizing Couchbase analytical
services in multi-node architecture, database performance was
enhanced significantly.

TABLE IV. SIMPLE QUERIES EXECUTION TIME FOR 10K PATIENT

DATASET

Execution time (ms) with

index

Execution time (ms)

without index

Number
of

examined

documents

 Couchbase MongoDB Couchbase MongoDB

Q1 311 39 731.6 64 12352

Q2 411.4 12 419.1 42 5499

Q3 413.9 5 812.1 19 12352

Q4 22700 319 50200 871 321528

Q5 7300 288 5800 453 114544

Q6 20500 505 48900 806 321528

Q7 266.3 2 691.5 53 12352

Q8 158.6 11 721.5 22 12352

Q9 169.5 11 778.6 56 12352

Q10 241.4 13 840.8 26 12352

Q11 240.4 11 690.4 66 12352

Q12 173.5 14 670.4 77 12352

Q13 12900 132 7000 452 143110

Q14 25800 814 1m0.8s 631 431262

Q15 23800 858 1m11.1s 1073 431262

Q16 88.9 11 235 20 2360

Q17 7200 111 6200 246 114544

Q18 468.7 81 5800 102 114544

Q19 200.5 11 6200 142 114544

Q20 1300 51 5900 123 114544

Q21 2300 34 2400 328 37715

Q22 328.1 11 352.5 35 5417

Q23 3800 51 4m28s 3498 1659750

Q24 50 2 821.1 36 16481

Q25 6800 111 5400 200 100427

TABLE V. SIMPLE QUERIES EXECUTION TIME FOR 100K PATIENT

DATASET

Execution time (ms) with

a primary index

Execution time

(ms) without index

Number of

examined
documents

 Couchbase MongoDB Couchbase analytics

Q1 4600 1169 1500 124150

Q2 377 129 111.90 3188675

Q3 3900 899 323.55 124150

Q4 4700 12137 1990 3188675

Q5 6600 3142 1830 1143900

Q6 7.900 15136 3720 3188675

Q7 5200 447 111.76 124150

Q8 4400 694 86.31 124150

Q9 4400 579 95.64 124150

Q10 4300 864 98.67 124150

Q11 4600 420 78.66 124150

Q12 4700 344 122.34 124150

Q13 1400 5136 867.99 1389858

Q14 24800 13236 4800 4227723

Q15 49200 8974 5.24s 4227723

Q16 919.1 46 128.67 23694

Q17 2800 1796 2210 1143900

Q18 17800 1400 673.41 1143900

Q19 8100 1876 557.71 1143900

Q20 7200 1678 757.81 1143900

Q21 13500 1211 607.60 377726

Q22 1700 439 146.02 51592

Q23 10m0s 31427 19510 16219969

Q24 5100 766 370.29 168160

Q25 21700 3039 781.44 979564

For complex join queries, Table VI and Table VII show
execution time for the two datasets correspondingly. For the
10k dataset, Couchbase achieved better response time than
MongoDB except for Q2 and Q7, which scanned few
attributes. Q12 achieved the highest response time for both
back-ends. As it both examined and retrieved many documents.
Conversely, Q2 achieved the lowest response time for both
back-ends besides Q6 for Couchbase. The number of scanned
attributes results from the total number of joined documents
attributes. MongoDB was considerably slower than Couchbase
for join queries. It was not investigated against join queries for
the 100k patient dataset, as it reported a very long response
time for the small dataset. Even there is no indexing and there
are many examined documents. Couchbase Analytics service
enhances the execution time of ad hoc join workload
dramatically. Q11 and Q12 reported the lowest and the highest
execution time, respectively. This is because the Couchbase
Analytics service is usually based on parallel join and those
two queries examine the largest and the smallest number of
scanned attributes. For two different queries with the same
complexity and attribute number, the execution time is
approximately the same.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 10, 2021

153 | P a g e

www.ijacsa.thesai.org

TABLE VI. JOIN QUERIES RESPONSE TIME FOR 10K PATIENT DATASET

Join

query

Couchbase

execution Time

MongoDB

execution Time

Number of examined

documents

Q1 26500 6205489 321528

Q2 1800 251 5499

Q3 32800 562485 12,352

Q4 16400 192263 114544

Q5 2700 6725 2360

Q6 1100 31164 321528

Q7 19800 744 431262

Q8 6000 373802 16481

Q9 1600 195980 114544

Q10 1700 67823 321528

Q11 5000 322827 31764

Q12 51900 3085553 1659750

Q13 6900 3002136 1659750

TABLE VII. JOIN QUERIES RESPONSE TIME FOR 100K PATIENT DATASET

WITH ANALYTICS SERVICE

Join query
Execution Time Couchbase

analytical service
num. of docs scanned

Q1 10800 3312825

Q2 2400 3322000

Q3 15570 3312825

Q4 1920 1268050

Q5 13730 3212369

Q6 3030 3312825

Q7 3320 1050668

Q8 876.43 292310

Q9 2510 3312825

Q10 2210 3312825

Q11 350.12 69709

Q12 39300 19408644

Q13 37980 19408644

VII. DISCUSSION

This research investigates the appropriateness of two
DODBMS storing EHRs data for BI workload. For single-node
topology, MongoDB performed better for simple look-up
queries, but their performance decreased with JOIN queries
spanning multiple collections and involving aggregation. It was
considerably slower than Couchbase for join queries of larger
datasets. Conversely, Couchbase single node cluster reported
better performance for complex join queries, but their
performance decreased for simple lookup queries.

These results motivated us to utilize Couchbase server
MDS architecture to distribute services across several nodes
rather than a single node. An interesting result of the
Couchbase multi-node cluster performance analysis is that, by
using an analytics service with no index, the Couchbase server
reported better response times than MongoDB for both types of
ad hoc queries. This multi-service architecture decreased the
query latency dramatically.

MongoDB uses the $lookup operator to apply JOIN
operations, which traverse several collections. According to the
result, this costly operation significantly increases latency and
overall strain on the database. An alternative solution to handle
these costly join operations in MongoDB is to denormalize the
data model by embedding elements into their parent objects
and performing a regular query. The major disadvantage of this
denormalization approach, especially in a distributed system, is
that it leads to data redundancy, which causes a significant
write-performance downgrade to maintain consistency across
multiple copies through multiple write operations.
Furthermore, this modeling approach brings additional storage
costs. It could be considered as an optimal response scenario
with only one user submitting a single query at a time. Besides
that, MongoDB provides a native connector for BI, which
could provide support for real-time analytics by integrating
with a leading BI and analytics tool.

The proposed converged Couchbase EHRs system
infrastructure has significant advantages compared to the other
loosely coupled alternatives. It supports using a common
flexible document data model for both operational and
analytical data with no transformation required for analysis. So,
it could offer fast reporting and decision-making capabilities
based on real-time and advanced analytics for large volumes of
data without needing to move data around. Instead of
managing and synchronizing many systems with several
connections points [31].

The analytical workload is usually read and compute-
intensive because it entails more massive costly calculations
over data. So, it is typically ideal to perform analytical
workload in isolation. Couchbase Server separates the
competing workloads into independent services and isolates
them from each other. Consequently, interference among them
is minimized. Operational workload latency and throughput are
isolated from analytical query workload slowdowns but
without the complexity of operating a separate analytical
database. It allows running analytics in extremely current data
with no ETL process that delays data.

 An important principle in medical systems is that when
any data element is modified, it will not be overwritten. Rather,
a new element with a suitable link is added. On the other hand,
large-scale healthcare applications scenarios usually do not
strictly enforce ACID properties. They deploy optimistic
locking, as they desire isolation, but not at the rate of a
significant performance penalty. For such scenarios,
Couchbase Server, which is an append-only store that enforces
the BASE (Basically Available, Soft State, Eventually
Consistent) philosophy, seems to be a promising solution
covering many EHRs systems use-cases. Their flexible MDS
framework enables users to scale or shrink their cluster,
involving data management resources as requirements change.

VIII. CONCLUSION

This paper investigates the appropriateness of DODBMS
for handling operational BI workload. MongoDB does not
provide satisfactory response time for unplanned join queries
spanning multiple documents contrarywise Couchbase which
reports better performance for these complex queries. By
utilizing its analytics services and multi-dimensional scaling

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 10, 2021

154 | P a g e

www.ijacsa.thesai.org

architecture, Couchbase Server multi-node cluster outperforms
the response times of MongoDB for both simple and complex
healthcare data access patterns. Couchbase is the ideal solution
for our needs as long as we need to store unstructured health
data in various EHR systems. This paper proposes a tightly
coupled Couchbase healthcare framework that can efficiently
adapt to different workload needs. Along this path, using
complementary Couchbase services for architecting a
monolithic framework enables new technical capabilities
which serve as the foundation for a new class of intelligent
applications such as machine learning, real-time operational
reporting. Finally, the emergence of HTAP DBMSs does not
imply the end of the massive, monolithic OLAP warehouse.
But such systems will be required to serve as a universal back-
end database for all an organization‟s front-end OLTP silos.

REFERENCES

[1] F. Winter, A., Haux, R., Ammenwerth, E., Brigl, B., Hellrung, N., Jahn,
Health Information Systems: Architectures and Strategies, Springer-
Verlag London, 2011. https://doi.org/DOI 10.1007/978-1-84996-441-8.

[2] G. Pradeep K. Sinha, A.D. Sunder, Prashant Bendale, Manisha Mantri,
Electronic Health Record Standards, Coding Systems, Frameworks, and
Infrastructures, Wiley, 2013. https://doi.org/10.1055/s-0038-1638463.

[3] S.M. Freire, D. Teodoro, F. Wei-Kleiner, E. Sundvall, D. Karlsson, P.
Lambrix, Comparing the performance of NoSQL approaches for
managing archetype-based electronic health record data, PLoS One. 11
(2016) 1–20. https://doi.org/10.1371/journal.pone.0150069.

[4] R. Jain, In Search of Database Nirvana:The Challenges of Delivering
Hybrid Transaction/Analytical Processing, (2016).

[5] F. Özcan, Hybrid Transactional Analytical Processing : A Survey,
(2017) 1771–1775. https://doi.org/https://dl.acm.org/doi/10.1145/
3035918.3054784.

[6] M. Stonebraker, U. Çetintemel, „One size fits all‟: An idea whose time
has come and gone, Proc. - Int. Conf. Data Eng. (2005) 2–11.
https://doi.org/10.1109/ICDE.2005.1.

[7] M.J.S. Benjamin M. Davis, Glen F. Rall, Using Electronic Health
Records for Population Health Research: A Review of Methods and
Applications, Physiol. Behav. 176 (2017) 139–148.
https://doi.org/10.1016/j.physbeh.2017.03.040.

[8] L. Marco-Ruiz, D. Moner, J.A. Maldonado, N. Kolstrup, J.G. Bellika,
Archetype-based data warehouse environment to enable the reuse of
electronic health record data, Int. J. Med. Inform. 84 (2015) 702–714.
https://doi.org/10.1016/j.ijmedinf.2015.05.016.

[9] V. Palanisamy, R. Thirunavukarasu, Implications of big data analytics in
developing healthcare frameworks – A review, J. King Saud Univ. -
Comput. Inf. Sci. 31 (2019) 415–425. https://doi.org/10.1016/
j.jksuci.2017.12.007.

[10] K.K.Y. Lee, W.C. Tang, K.S. Choi, Alternatives to relational database:
Comparison of NoSQL and XML approaches for clinical data storage,
Comput. Methods Programs Biomed. 110 (2013) 99–109.
https://doi.org/10.1016/j.cmpb.2012.10.018.

[11] S. Navathe, R. Elmasri, Fundamentals of Database Systems, 7th ed.,
Addison-Wesley, USA, 2016.

[12] M. Stonebraker, S. Madden, D.J. Abadi, S. Harizopoulos, N. Hachem, P.
Helland, The end of an architectural Era (It‟s time for a complete
rewrite), 33rd Int. Conf. Very Large Data Bases, VLDB. (2007) 1150–
1160. https://doi.org/10.1145/3226595.3226637.

[13] N. Leavitt, Will NoSQL Databases Live Up to Their Promise?,
Computer (Long. Beach. Calif). 43 (2010) 12–14.
https://doi.org/10.1109/mc.2010.58.

[14] R. Cattell, Scalable SQL and NoSQL data stores, SIGMOD Rec. 39
(2010) 12–27. https://doi.org/10.1145/1978915.1978919.

[15] A. Davoudian, L. Chen, M. Liu, A survey on NoSQL stores, ACM
Comput. Surv. 51 (2018). https://doi.org/10.1145/3158661.

[16] C.S. Kruse, C. Kristof, B. Jones, E. Mitchell, A. Martinez, Barriers to
Electronic Health Record Adoption: a Systematic Literature Review, J.
Med. Syst. 40 (2016). https://doi.org/10.1007/s10916-016-0628-9.

[17] T. Nguyen, Big data system for health care records, J. Sci. Policy
Manag. Stud. 33 (2017) 146–156. https://doi.org/10.25073/2588-
1116/vnupam.4101.

[18] M.Z. Ercan, M. Lane, Evaluation of NoSQL databases for EHR systems,
Proc. 25th Australas. Conf. Inf. Syst. ACIS. (2014).

[19] P.P. Khine, Z. Wang, A review of polyglot persistence in the big data
world, Information. 10 (2019). https://doi.org/10.3390/info10040141.

[20] R. Sánchez-De-Madariaga, A. Muñoz, R. Lozano-Rubí, P. Serrano-
Balazote, A.L. Castro, O. Moreno, M. Pascual, Examining database
persistence of ISO/EN 13606 standardized electronic health record
extracts: Relational vs. NoSQL approaches, BMC Med. Inform. Decis.
Mak. 17 (2017) 1–14. https://doi.org/10.1186/s12911-017-0515-4.

[21] K. Kaur, R. Rani, Managing Data in Healthcare Information Systems:
Many Models, One Solution, Computer (Long. Beach. Calif). 48 (2015)
52–59. https://doi.org/10.1109/MC.2015.77.

[22] H.M. Kruse, A. Helhorn, L.A. Phan-vogtmann, E. Thomas, A.J. Heidel,
K. Saleh, A. Scherag, Modeling a Graph Data Model for FHIR
Resources, (2019) 398355.

[23] S. Kalogiannis, K. Deltouzos, E.I. Zacharaki, A. Vasilakis, K.
Moustakas, J. Ellul, V. Megalooikonomou, Integrating an openEHR-
based personalized virtual model for the ageing population within
HBase, BMC Med. Inform. Decis. Mak. 19 (2019) 1–15.
https://doi.org/10.1186/s12911-019-0745-8.

[24] D. Teodoro, E. Sundvall, M.J. Junior, P. Ruch, S.M. Freire, ORBDA:
An openEHR benchmark dataset for performance assessment of
electronic health record servers, PLoS One. 13 (2018) 1–22.
https://doi.org/10.1371/journal.pone.0190028.

[25] S. El Helou, S. Kobayashi, G. Yamamoto, N. Kume, E. Kondoh, S.
Hiragi, K. Okamoto, H. Tamura, T. Kuroda, Graph databases for
openEHR clinical repositories, Int. J. Comput. Sci. Eng. 20 (2019) 281–
298. https://doi.org/10.1504/IJCSE.2019.103955.

[26] H.Y. Yip, N.A. Taib, H.A. Khan, S.K. Dhillon, Electronic health record
integration, Encycl. Bioinforma. Comput. Biol. 1–3 (2018) 1063–1076.
https://doi.org/10.1016/B978-0-12-809633-8.20306-3.

[27] E. Choi, M.W. Dusenberry, G. Flores, Z. Xu, Y. Li, Y. Xue, A.M. Dai,
Learning Graphical Structure of Electronic Health Records with
Transformer for Predictive Healthcare, ICML 2019 Work. Learn.
Reason. with Graph-Structured Data. (2019).
https://graphreason.github.io/papers/38.pdf.

[28] H. Plattner, A common database approach for OLTP and OLAP using
an in-memory column database, SIGMOD-PODS‟09 - Proc. Int. Conf.
Manag. Data 28th Symp. Princ. Database Syst. (2009) 1–2.
https://doi.org/10.1145/1559845.1559846.

[29] E. Begoli, D. Kistler, J. Bates, Towards a heterogeneous, polystore-like
data architecture for the US Department of Veteran Affairs (VA)
enterprise analytics, IEEE Int. Conf. Big Data. (2016) 2550–2554.
https://doi.org/10.1109/BigData.2016.7840896.

[30] N. Yuhanna, M. Gualtieri, Emerging Technology: Translytical
Databases Deliver Analytics At The Speed Of Transactions Next-
Generation Databases Seamlessly Support Both Transactions And
Analytics, (2015). http://www.odbms.org/wp-content/uploads/2017/10/
Forrester-report-Translytical-Databases.pdf.

[31] F. Biscotti, M. Pezzini, N. Rayner, J. Unsworth, R. Edjlali, S. Tan, E.
Rasit, A. Norwood, A. Butler, W. Roy Schulte, Real-time Insights and
Decision Making using Hybrid Streaming, (2015).
http://www.gartner.com/technology/about/ombudsman/omb_guide2.jsp.

[32] K. Jee, G.H. Kim, Potentiality of big data in the medical sector: Focus
on how to reshape the healthcare system, Healthc. Inform. Res. 19
(2013) 79–85. https://doi.org/10.4258/hir.2013.19.2.79.

[33] M. Al Hubail, A. Alsuliman, M. Blow, M. Careyl, D. Lychagin, I.
Maxon, T. Westmannl, Couchbase analytics: NoETL for scalable
NoSQL data analysis, Proc. VLDB Endow. 12 (2018) 2275–2286.
https://doi.org/10.14778/3352063.3352143.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 10, 2021

155 | P a g e

www.ijacsa.thesai.org

[35] C.P. Services, data modeling guide, Ann. Oncol. 32 (2021) iii.
https://doi.org/10.1016/s0923-7534(21)01110-8.

[36] M. Sandeep Kumar, J. Prabhu, Comparison of nosql database and
traditional database-an emphatic analysis, Int. J. Informatics Vis. 2
(2018) 51–55. https://doi.org/10.30630/joiv.2.2.58.

[37] P. Sadalage, M. Fowler, NoSQL Distilled: A Brief Guide to the
Emerging World of Polyglot Persistence, 1st ed., Addison-Wesley
Professional, 2012. https://doi.org/0321826620.

[38] V. Herrero, A. Abelló, O. Romero, NOSQL design for analytical
workloads: Variability matters, Lect. Notes Comput. Sci. (Including
Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics). 9974
LNCS (2016) 50–64. https://doi.org/10.1007/978-3-319-46397-1_4.

[39] Couchbase, Moving from Relational to NoSQL : How to Get Started,
(2020).

[40] R.A.S.N. Soransso, M.C. Cavalcanti, Data modeling for analytical
queries on document-oriented DBMS, in: Proc. ACM Symp. Appl.
Comput., 2018: pp. 541–548. https://doi.org/10.1145/3167132.3167191.

[41] Apache, Apache CouchDB, (2018) 495. http://couchdb.apache.org/.

[42] MongoDB, (2020). https://www.mongodb.com/.

[43] D. Borkar, R. Mayuram, G. Sangudi, M. Carey, Have your data and
query it too: From key-value caching to big data management, Proc.
ACM SIGMOD Int. Conf. Manag. Data. 26-June-20 (2016) 239–251.
https://doi.org/10.1145/2882903.2904443.

[44] Couchbase, Couchbase Under the Hood - An Architectual Overview,
(2019) 1–32.

[45] A.M.C. de Araújo, V.C. Times, M.U. da Silva, PolyEHR: A Framework
for Polyglot Persistence of the Electronic Health Record, He 17th Int.
Conf. Internet Comput. Internet Things. (2016) 71–78.
http://worldcomp-proceedings.com/proc/p2016/ICM3836.pdf.

[46] R. Sreekanth, G. Rao, S. Nanduri, Big Data Electronic Health Records
Data Management and Analysis on Cloud with MongoDB: A NoSQL
Database, Ijaegt.Com. (2015). http://ijaegt.com/wp-content/uploads/
2015/05/409533-pp-946-949-venu.pdf.

[47] F. Khennou, Y.I. Khamlichi, N.E.H. Chaoui, Improving the use of big
data analytics within electronic health records: A case study baseD
OpenEHR, Procedia Comput. Sci. 127 (2018) 60–68. https://doi.org/
10.1016/j.procs.2018.01.098.

[48] O. Schmitt, T.A. Majchrzak, Using document-based databases for
medical information systems in unreliable environments, 9th Int. Conf.
Inf. Syst. Cris. Response Manag. (2012) 1–10. https://www.researchgate
.net/profile/Oliver_Wannenwetsch/publication/272885088_Using_Docu
ment-Based_Databases_for_Medical_Information_Systems_in
Unreliable_Environments/links/5825780908ae61258e456ad3/Using-
Document-Based-Databases-for-Medical-Information-.

[49] FHIR, Fast Healthcare Interoperability Resources, https://fhir.org/.

[50] J. Walonoski, S. Klaus, E. Granger, D. Hall, A. Gregorowicz, G.
Neyarapally, A. Watson, J. Eastman, SyntheaTM Novel coronavirus
(COVID-19) model and synthetic data set, Intell. Med. 1–2 (2020)
100007. https://doi.org/10.1016/j.ibmed.2020.100007.

[51] Synthea, (n.d.). https://synthea.mitre.org/downloads.

[52] The MITRE Corporation, Synthea by the Standard Health Record
Collaborative, (2017). https://synthetichealth.github.io/synthea/.

[53] J. Walonoski, M. Kramer, J. Nichols, A. Quina, C. Moesel, D. Hall, C.
Duffett, K. Dube, T. Gallagher, S. McLachlan, Synthea: An approach,
method, and software mechanism for generating synthetic patients and
the synthetic electronic health care record, J. Am. Med. Informatics
Assoc. 25 (2018) 230–238. https://doi.org/10.1093/jamia/ocx079.

[54] MongoDB, MongoDB : Delivering Real-Time Insight with Business
Intelligence & Analytics, MongoDB White Pap. (2017). http://s3.
amazonaws.com/info-mongodb-com/MongoDB_BI_Analytics.pdf.

[55] S. Balsamo, A. Di Marco, P. Inverardi, M. Simeoni, Model-based
performance prediction in software development: A survey, IEEE Trans.
Softw. Eng. 30 (2004) 295–310. https://doi.org/10.1109/TSE.2004.9.

[56] CSV File Data Dictionary • synthetichealth/synthea Wiki • GitHub,
(n.d.). https://github.com/synthetichealth/synthea/wiki/CSV-File-Data-
Dictionary .

