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Abstract—Electronic health record systems work beyond just 

recording patients` health data. They have multiple secondary 

functionalities, such as data reporting and clinical decision 

support. As each of these systems` workloads has contradictory 

different needs, managing a multipurpose electronic health 

record is a challenge. This paper proposes a unified healthcare 

data framework that can simplify health information system 

infrastructure. It investigates the suitability of the document-

based NoSQL persistence mechanism, storing electronic health 

records data as a design choice for managing varied complexity 

ad hoc queries used in operational business intelligence. The 

performance of the most popular two document-based NoSQL 

back-ends, Couchbase Server and MongoDB, is compared 

according to the size of the database and query execution time. 

Results showed that while MongoDB can execute simple single-

document queries nearly in milliseconds. It does not provide 

satisfactory response time for unplanned complex queries 

spanning multiple documents. By utilizing its analytics services 

and multi-dimensional scaling architecture, Couchbase Server 

multi-node cluster outperforms the response times of MongoDB 

for both simple and complex healthcare data access patterns. The 

primary advantage of the proposed tightly coupled EHRs 

processing framework is its flexibility to manage workload 

according to changing requirements. 
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I. INTRODUCTION 

 Electronic health records (EHRs) system is a quintessential 
part of healthcare information system (HIS). It is an ecosystem 
for maintaining a long-term patient‟s health record. This 
system usually has multiple core functionalities. Primarily, it is 
used for storing and retrieving individual patient records for 
healthcare purposes. These EHRs data could be used in clinical 
decision support (CDS) to suggest the next steps for treatment 
or predict future conditions trends by analyzing transactional 
data [1]. EHRs data are not possessed by any particular 
healthcare provider. To interconnect these different healthcare 
practitioners, EHRs need to be interoperable through following 
certain standards to facilitate health information exchange 
(HIE) and sharing [2]. HIS workload usually encompasses two 
main practices: clinical use, which is regarded as a 
transactional workload, and research use which is dedicated to 
analytical workload. 

As each of these workloads has a different access pattern, 
they have seemingly contradictory solutions. There is also the 

operational business intelligence (BI) workload, including ad 
hoc queries, which are in the middle between primary and 
secondary uses. This data access pattern tends to be 
unpredictable; it typically involves reading an extensive 
amount of data at one time and can include various complex 
joins [3]. There are various architectural methodologies [4,5] to 
manage those conflicting workloads. Traditional HISs could 
use transactional systems for providing answers to analytical 
queries in one engine, but the system performance may 
degrade dependent on the number and the complexity of 
queries submitted to the database. Therefore, following the 
“one size does not fit all” rule [6], a clinical data warehouse 
(CDW) [7,8] a specialized storage structure, is used for data 
analysis to segregate tasks and maintain the performance at an 
acceptable level. It utilizes extract, transform, and load (ETL) 
to integrate patient-level data from separate silos inside or 
across healthcare organizations, facilitating analysis and 
reporting. Thus, various healthcare application frameworks [9] 
have been introduced to offer diversified EHRs data analytical 
capabilities. 

Earlier healthcare data persistence systems [10] were built 
depending on the relational schema approach. However, these 
traditional relational database management systems RDBMS 
are built for strong consistency level and data control [11]. 
With the rise of the “no one size fits all” concept [12], several 
alternative NoSQL stores have been developed [13] to address 
the shortcomings of RDBMS. NoSQL databases refer to a 
category of flexible data storage systems that manage data 
using a key-value structure. They are clustered into four main 
classes [14,15] based on their data model: (1) key-value data 
stores, (2) document data stores, (3) column-family stores, and 
(4) graph data stores. This categorization is necessary since 
each data storage architecture provides different solutions 
depending on the application‟s needs. 

Healthcare data is complex, dynamic, intermittent, and 
diverse in nature. Furthermore, HIS applications` access 
patterns usually need their scale, performance, and flexibility 
requirements to surpass their transactional needs [16,17]. Thus, 
NoSQL data stores are more suitable to meet the specifications 
of distributed EHRs systems [18]. There are several criteria, 
such as data model, performance, data persistence, and CAP 
support[19], which must be considered when choosing which 
NoSQL store to be used. Various data modeling approaches 
[3,20–27] have been introduced for medical data persistence 
according to use case scenarios. These works investigate not 
only the type of NoSQL store that has to be chosen but which 
NoSQL products in that type will be used [19]. 
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Managing a fully functional EHRs system with the 
involvement of all healthcare participants is not a simple task 
because of the rapid development and growth of medical 
knowledge. To fulfill a variety of use cases, organizations 
nowadays commonly end up deploying different databases, 
leading to a “database sprawl” that causes delayed analytics. 
This layered architecture approach was challenged by the white 
paper [28] which argued that advances in memory technology 
enable data to be stored just once without compromising either 
transactions or analytical workloads. Massive parallel 
processing (MPP) database platform is considered as another 
architectural alternate to CDWs that could support medical 
data analytics [29]. It could be used for ad hoc population 
queries, which may not be quickly obtained from the CDW. 

The capability to store data quickly is not a problem. But 
the challenge is the capability to do meaningful and quick 
insights with that data. Recently, Analytical application 
characteristics diverged from the typical characteristics of the 
online analytical processing (OLAP) system and become more 
real-time, operational, and proactive. Modern applications 
frameworks require blurring borders between operational and 
analytical workload [4]. Several terms, such as Hybrid 
Transactional and Analytical (HTAP) databases [30,31], are 
being used to describe this general trend in databases that 
supports hybrid workload processing requirements within a 
single logical database. Couchbase Server recently introduces 
multi-dimensional scaling (MDS) architecture [33] to support 
scaling workload independently according to the changing 
needs. It aims to offer a single, integrated platform that can be 
used for almost all varied complexity operational workloads as 
well as operational analytics. The motivation for this paper is 
that nevertheless, these hybrid data processing and 
management techniques [16,32] could provide solutions to a 
wide range of healthcare data problems, such as data silos. Few 
researchers evaluate their performance in the healthcare sector. 

The main contribution of this paper is it proposes a unified 
multipurpose HIS framework that could improve healthcare 
services provision. This flexible Couchbase-based healthcare 
architectural framework provides different levels of services 
that could be efficiently adapted according to varied 
application workload requirements. As both database selection 
and its related schema architecture are aspects that affect the 
effective management of healthcare data, particularly in real-
time usage systems [10]. This paper first discusses the 
suitability of the document data model as storage persistence 
for managing EHRs data. After that Couchbase Server and 
MongoDB which are the most popular document-oriented 
database management systems (DODBMSs) are evaluated for 
BI workload. These two storage back-ends storing EHRs are 
compared on the subject of their execution time and storage 
space requirements for handling varied queries complexities. 

The rest of this paper is organized as follows: Section 2 
reviews document-based data modeling techniques and their 
suitability for the healthcare domain. Section 3 describes the 
experimental environment, including datasets, workload 
specifications, and query implementation. Section 5 reports the 
experimental results for the two different size datasets. 
Section 4 briefly discusses the obtained results. 

II. DOCUMENT DATA MODELING 

A document database is a set of key-value in which each 
key corresponds to a complex data structure value known as a 
document. Each document holds a unique automatically 
generated key which not only enables gathering related 
documents. But also enables an application to perform keys-
based document lookup, which is extremely fast. A document‟s 
structure in the document model database is made up of the 
arrangement of its internal attribute-value pairs [34]. In 
document-oriented databases, stored values are arranged, in a 
self-descriptive document that can be examined easily. There 
are several advantages of using document-oriented modeling, 
unlike relational databases that force applications to fit data 
into predefined models, regardless of their needs [35]. First, 
there is no impedance mismatch between application objects 
models and documents data models [36]. Second, they do not 
impose standard document structures, even across several 
documents. It allows a schema to gradually evolve by adding 
properties and structures to the document as required without 
the need to update other documents in the same way. Thus, the 
schema is explicit but variable, since attributes may vary 
among instances [37]. This allows applications to change their 
behavior without having to overhaul all the source data or take 
applications offline to make a basic change. Therefore, they 
offer faster write performance than the conventional relational 
model, besides efficient indexing features. In relational 
databases, [38] children use foreign keys to refer to their 
parents. On the other hand, parents refer to their children in 
document databases. This is because, unlike a field in a row, a 
field within a document can have several values. 

Embedding and referencing are two techniques that could 
be used to link documents. Document embedding concerns 
nesting documents into another. It entails merging subclass 
entities into superclass entities and denormalizing relationships 
without the need for a reference table. On the other side, 
document refereeing is based on two separate documents, and 
one is refereeing into another. It involves adding a key to the 
object [34,39] and it is good when the referenced objects and 
relationships are static. Usually, deciding how to model related 
data documents normalized, denormalized or a hybrid is based 
on the type of relationship and the access pattern.  

 In today‟s market, there are a variety of document-oriented 
NoSQL databases; Couchbase [40] and MongoDB [41] are the 
most popular. Couchbase is a scalable in-memory NoSQL 
database, which was designed particularly for distributed 
processing and has native support for JSON documents[42,43]. 
It was created through merging two complementary 
technologies: Membase Server, a distributed key-value 
database based on Memcached, and CouchDB, a single-node 
document database supporting JSON. It has N1QL, a 
declarative query language that can manipulate JSON 
documents. A Couchbase node usually comprises of cluster 
manager and, optionally, data, query, index, analytics, search, 
and eventing services. Couchbase Server introduces MDS 
architecture, which is independent scaling architecture, for 
minimizing interference between services [33]. MongoDB uses 
a slightly modified version of JSON called BSON (Binary 
JSON). It has its own DBMS, including the full set of CRUD 
(create, read, update and delete) operations. 
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A. Document-based EHRs Data Modeling 

Because of the special persistence policies of EHRs data. 
NoSQL systems fit better [20,21], as they allow healthcare data 
to be stored in a structure that is much closer to its real 
representation. NoSQL databases are aggregate-oriented data 
stores [36], as the aggregate is the unit of operation and 
consistency. They can be more scalable and faster where data 
volumes are extremely large, or when there are no internal 
document references that might degrade the performance or 
data consistency. On the other hand, healthcare applications 
could be an obvious example of an application type, where the 
presence of connections between various documents and their 
subcomponents has no impact on the application‟s basic 
functionality and consistency. This is because, if part of these 
data is updated during such medical treatment, a new extract 
with new information and their appropriate connections should 
be created, rather than overwriting any previously stored data 
elements [18]. This is a rigorous medical information 
constraint since it may be used to make medical 
decisions.When using a document-based store instead of a 
relational system, information about a particular patient is 
easily isolated from other patients' information. 

So, healthcare tasks could be considered document-based 
tasks. Retrieving all patients‟ demographic data and linked 
hospital admissions. These flexible modeling approaches could 
efficiently adapt to the nature of healthcare data. Thus, several 
studies have been initiated along this path [3,20,24 ,44–47]. 
According to related work [20] result, MongoDB is best for 
handling single patient queries because of their concurrency. 
While Couchbase in [3,24] achieved better query response 

times and throughput. Thus, it is the best for handling the 
analytical workload of scalable, large data size. 

III. PROPOSED DOCUMENT-BASED ELECTRONIC HEALTH 

RECORDS FRAMEWORK 

In multi-node cluster topology, the Couchbase Server 
services are distributed across several nodes within the cluster, 
rather than a single node cluster. The main aim of this 
microservices architecture is deploying both query and 
analytics services, which are complementary services with 
contradicting workload needs, into two independent nodes 
within the cluster. Query service is used to support many users 
in making inexpensive operational queries. While analytics 
service is used to support complex and expensive analytical 
queries made by a much smaller number of users [43]. Data 
and query services provide user-facing applications with low-
latency key-value and/or query-based access to their data. For 
analytics service, operational EHRs data is pushed into shadow 
buckets of the same data for immediate analysis by a dedicated 
massively parallel processing (MPP) analytics engine. These 
shadowed buckets are copies of data that are linked directly to 
the operational data in real-time. So, these analytical queries do 
not affect the performance of operational data queries. Cross 
data-center replication (XDCR) is used to replicate EHRs data 
per bucket basis between two data nodes in different clusters 
depending on application requirements. These replicated 
vBuckets can support read requests as they are kept constantly 
up to date by receiving a continuous stream of mutations from 
the active vBucket through database change protocol (DCP). 
Fig. 1 shows a high-level illustration of the deployed EHRs 
multi-node topology for varied access patterns. 

 

Fig. 1. Proposed Document-based Multifunctional EHRs Persistence Framework. 
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IV. EXPERIMENTAL SETUP 

Two NoSQL database management systems: Couchbase 
6.6.2 and MongoDB 4.4.3 are used to assess the suitability of 
document-based persistence to store and retrieve EHRs objects. 
The two NoSQL products were deployed in a single machine 
with the following specifications: Intel core i7 -10750h CPU @ 
2.60GHz, with 16GB of memory and an SSD storage system of 
256GB, running windows 10 _64 bits. 

The workloads were tested under the following conditions: 
data fit the memory, and replication is set to “1” signifying that 
just a single replica is available for each dataset. All executions 
are warm runs, so either caching techniques must be disabled, 
or each query must be performed individually to fill the cache. 
Queries must be prepared according to the native scripting 
language of the target database and run directly from the 
command line interpreter within the chosen system. 

A. Dataset 

Our experiment investigates the performance of the 
document-oriented database to store Fast Healthcare 
Interoperability Resources (FHIR) [48] compliant EHRs data. 
The used EHRs data is two different size synthetic patient 
datasets with COVID-19 [49,50]. These synthetic datasets have 
been generated by SyntheaTM [51], an open-source patient 
population simulation available from the MITRE Corporation. 

SyntheaTM is a synthetic patient generator [52] that 
simulates the medical history of synthetic patients. Patient data 
and related health records covering several aspects of 
healthcare are realistic but not genuine. Every record in this 
EHRs dataset contains administrative, demographic, and 
healthcare information concerning a patient. These records are 
subdivided into different data sources or categories that 
encompass all the different aspects of healthcare. They also 
span practitioner, care team, device, organization, location, 
healthcare service, diagnostic, medications, as well as the 
financial tasks, such as insurance coverage. Core data elements 
are presented in Table I. 

FHIR specification is a next-generation standard 
framework developed by HL7 to facilitate faster and more 
efficient integration, exchange, and retrieval of EHRs data. It 
bases on the concept of “resources”. One of the key objectives 
of FHIR is that it does not enforce the exchange of whole 
documents, but it allows the exchange of specific pieces of 
information. Hence, enabling interoperability across various 
functional applications and ultimately reducing the cost of the 
implementation. FHIR data model is relational in nature. It 
centers around the „patient‟ object or resource. Each object has 
a unique identifier „id‟ field. This id is used to reference most 
resources to the „patient‟ object. As a result, the patient 
resource collection has been normalized into individual 
resource-type documents in which the objects that are 
associated with a patient are linked by the patient‟s id in the 
subject field. 

B. Workload 

HIS workload usually involves clinical practice queries 
which are used to get single patient data and research queries 
that are dedicated analytical workloads. 

TABLE I. DATASETS SIZE AND THEIR ATTRIBUTE NUMBER 

Objects 10k patient  100k patient  

Allergies 5,417 51,592 

Careplans 37,715 377,726 

Conditions 114,544 1,143,900 

Devices 2,360 23,694 

Encounters 321,528 3,188,675 

Imaging_Studies 4,504 45,609 

Immunizations 16,481 168,160 

Medications 431,262 4,227,723 

Observations 1,659,750 16,219,969 

Organizations 5,499 9,175 

Patients 12,352 124,150 

Payer_Transitions 41,392 409,553 

Payers 10 10 

Procedures 100,427 979,564 

Providers 31,764 60,534 

Supplies 143,110 1,389,858 

Total Item Number 2928115 28419892 

MongoDB Size 878.732 MB 8.17 GB 

Couchbase Size  1.37GB 14.2GB 

CSV Data File Size 504 MB 4.78 GB  

Operational BI workload is read-intensive, with writes that 
do not conflict with reading queries. It resembles the workload 
of an OLTP application, where quick response times are 
desired. This workload includes a type of ad hoc query that is 
used for real-time reporting. 

The motivation behind this paper was the belief that ad hoc 
queries are not planned before, thus having any query indexing. 
It investigates two back-ends behaviors for ad hoc queries that 
are examples of real-time analytical queries with different 
levels of complexity and may have joins and aggregations. The 
performance of each database was evaluated under queries 
range in complexity, from simple ad hoc read queries to 
complex join queries. Simple read workload usually includes 
filtering constraints and sorting operations and aggregate 
lookups. While join workload involves join operations with 
grouping and aggregation functions. These queries declared in 
Table II and Table III were identified and written according to 
each database query language. Specific queries whose behavior 
could differ widely from the others are chosen to differentiate 
the performance of the databases and avoid bias. 

C. Query Implementation 

Two database architectural topologies for the two storage 
back-ends storing EHRs were deployed to investigate for 
handling different queries complexities. MongoDB 
experiments were deployed to single unsharded data cluster 
architecture. While Couchbase Server investigates two 
database topologies, which are single node cluster and multi-
node cluster. 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 12, No. 10, 2021 

151 | P a g e  

www.ijacsa.thesai.org 

TABLE II. SIMPLE AD HOC READ QUERIES 

Q1 Retrieve patients‟ names and their age  

Q2 Rank the encounter count of hospitals 

Q3 Find all dead patients‟ data.  

Q4 The number of inpatients. 

Q5 Arrange conditions according to their co-occurring  

Q6 
Arrange encounters according to the number of conducted 

encounter class  

Q7 Count of non-survivor 

Q8 The age of dead patients 

Q9 The average age of non-survivor 

Q10 Max-age of non-survivors 

Q11 Mortality by sex  

Q12 Mortality by age  

Q13 Total count of supplies  

Q14 
Medications dispensed to patients with COVID-

19 since January 20, 2020 

Q15 
Total cost for every 

medication dispensed to patients with COVID-19 

Q16 Number of patients required ventilator 

Q17 All the conditions starting after January 20, 2020 

Q18 Cumulative case count of covid over time  

Q19 Number of patients with COVID-19 conditions 

Q20 The max duration length of any COVID-19 patients 

Q21 Care plans for all COVID-19 patient 

Q22 Allergies ordered according to co-occurrence  

Q23 Maximum observed temperature  

Q24 The total number of patients who take influenza immunizations 

Q25 The max cost of procedures  

TABLE III. COMPLEX JOIN QUERIES 

Q1 Retrieve patients‟ names and their current unresolved conditions  

Q2 All patients who were at Beverley hospital on 2011-08-18 

Q3 Patients‟ names with their insurance claim cost 

Q4 Merge patients‟ names with their COVID-19 conditions  

Q5 Period time every covid patient connected to a ventilator  

Q6 Total cost for every covid patient  

Q7 The total cost of medication for every covid patient 

Q8 The number and total cost of immunization for every patient 

Q9 Period time for every covid patient  

Q10 Number of female and male patients with covid 

Q11 Number of providers in every organization 

Q12 All observations for patients with covid 

Q13 All observations for patients who are not diagnosed 

For Single node topology in MongoDB, the aggregation 
pipeline framework is used to implement queries using the 
concepts of multi-stage data processing pipelines. It uses the 
$lookup operator to apply left outer JOIN queries over an 
unshared collection in the same database [53]. 

For Couchbase Server single node cluster topology, all 
database services (query, index, and data) are contained in a 
single zone. In such architecture, the query service is used to 
handle all different complexity workload types. While for 
multi-node cluster topology, the Couchbase Server services are 
distributed across several nodes across several nodes rather 
than a single node. 

V. EXPERIMENTAL RESULTS 

A. Evaluation Criteria 

The majority of the healthcare system‟s tasks usually entail 
searching the databases. An EHRs system‟s execution time is 
an essential performance parameter, and storage space 
efficiency could decrease future maintainability costs. Thus, 
reducing database query response time significantly improves 
the EHR system‟s performance and functionality [54]. This 
paper evaluates how DODBMSs store and retrieve EHRs in the 
context of storage space and response time. 

B. Database Size 

Both 10k and 100k patients' datasets files [55] are initially 
available in the SCV format with approximately 500 megabyte 
and 5-gigabyte sizes. Table I shows the two data sets‟ sizes 
when stored in each backend. To upload data into the 
Couchbase server, a command-line utility, $cbimport, is used 
to import synthase COVID-19 CSV files into JSON Couchbase 
format. While for uploading data into MongoDB, the 
mongoimport tool is used. Couchbase and MongoDB demand 
2.9 and 1.7 times more space correspondingly than CSV 
storage space for both datasets of different sizes. 

VI. RESPONSE TIME 

Database performance is defined by the speed at which a 
database process workload. In our evaluation, the primary 
factors related to the performance of the database are the query 
complexity level and the size of the dataset. To investigate the 
scaling capability of the two back-ends, the same queries were 
applied to both 10k patients and 100 k patients‟ datasets, 
respectively. All queries` response time and the number of 
examined documents grouped by the database are represented 
in the following tables. Queries are mainly divided into two 
types. Simple ad hoc read queries that retrieve data from a 
single collection or bucket and complex join queries that span 
multiple collections to get data. 

Table IV and Table V respectively show simple retrieval 
queries‟ execution times for the two datasets. There is a linear 
complexity increase in query response time as the database size 
grows. This is because the database execution time increases 
with the same queries, by scaling the dataset from 10k patients 
to 100k patients. However, query optimization techniques like 
indexing are not likely to be used for that type of ad hoc 
analytical query. Execution time was reported with and without 
documents indexing for the small dataset to declare the benefit 
of indexing to enhance query performance. Even Q23 scanned 
the observation document, which has the largest size. It 
achieved the smallest execution time value because the two 
attributes of the query are indexed to make a covering query. 
Covered queries usually retrieve results directly from the index 
without the need to access datasets documents. Without 
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indexing, Q23 achieved the highest execution time for both 
databases. The same explanation is for Q7, Q8, Q9, and Q10 
execution time. These queries utilized indexing deathdate and 
birthdate attributes as a covering index. Q24 achieved the 
lowest execution time because the number of scanned 
attributes is quite smaller than many other queries besides that 
it used the covering index. Even with indexing, Q6 reported 
high response time values. This is because of the low 
selectivity of the encounter class‟s attribute values. MongoDB 
reported observable better execution time than Couchbase in 
the case of simple queries scanning the small 10k patient 
dataset. 

For the larger 100k patient dataset, MongoDB still reports 
better execution time than Couchbase except for Q4, Q6, and 
Q13. This is because of the large number of the queries` 
scanned attributes and usually, Couchbase is reported to be 
better for large-scale data. By utilizing Couchbase analytical 
services in multi-node architecture, database performance was 
enhanced significantly. 

TABLE IV. SIMPLE QUERIES EXECUTION TIME FOR 10K PATIENT 

DATASET 

  
Execution time (ms) with 

index 

Execution time (ms) 

without index 

Number 
of 

examined 

documents  

  Couchbase MongoDB Couchbase MongoDB   

Q1 311 39 731.6 64 12352 

Q2 411.4 12 419.1 42 5499 

Q3 413.9 5 812.1 19 12352 

Q4 22700 319 50200 871 321528 

Q5 7300 288 5800 453 114544 

Q6 20500 505 48900 806 321528 

Q7  266.3 2  691.5 53 12352 

Q8 158.6 11 721.5 22 12352 

Q9 169.5 11 778.6 56 12352 

Q10 241.4 13 840.8 26 12352 

Q11  240.4 11 690.4 66 12352 

Q12 173.5 14 670.4 77 12352 

Q13 12900 132 7000 452 143110 

Q14 25800 814 1m0.8s  631 431262 

Q15 23800 858 1m11.1s  1073 431262 

Q16 88.9 11 235 20 2360 

Q17 7200 111 6200 246 114544 

Q18 468.7 81 5800 102 114544 

Q19 200.5 11 6200 142 114544 

Q20 1300 51 5900 123 114544 

Q21 2300 34 2400 328 37715 

Q22 328.1 11 352.5 35 5417 

Q23 3800 51 4m28s  3498 1659750 

Q24 50 2 821.1  36 16481 

Q25 6800 111 5400 200 100427 

TABLE V. SIMPLE QUERIES EXECUTION TIME FOR 100K PATIENT 

DATASET 

  
Execution time (ms) with 

a primary index 

Execution time 

(ms) without index 

Number of 

examined 
documents 

  Couchbase MongoDB Couchbase analytics 
 

Q1 4600  1169 1500 124150  

Q2 377 129 111.90 3188675 

Q3  3900 899 323.55  124150  

Q4 4700 12137 1990 3188675 

Q5 6600 3142 1830  1143900 

Q6 7.900 15136 3720  3188675 

Q7 5200 447 111.76  124150  

Q8 4400 694 86.31 124150  

Q9 4400 579 95.64 124150  

Q10 4300 864 98.67 124150  

Q11 4600 420 78.66  124150  

Q12 4700 344 122.34 124150 

Q13 1400 5136 867.99 1389858 

Q14 24800 13236 4800  4227723 

Q15 49200 8974 5.24s  4227723 

Q16 919.1  46 128.67  23694 

Q17 2800 1796 2210 1143900 

Q18 17800 1400 673.41 1143900 

Q19 8100 1876 557.71 1143900 

Q20 7200  1678 757.81  1143900 

Q21 13500 1211 607.60  377726 

Q22 1700  439 146.02  51592 

Q23 10m0s 31427 19510  16219969 

Q24 5100 766 370.29  168160 

Q25 21700  3039 781.44  979564 

For complex join queries, Table VI and Table VII show 
execution time for the two datasets correspondingly. For the 
10k dataset, Couchbase achieved better response time than 
MongoDB except for Q2 and Q7, which scanned few 
attributes. Q12 achieved the highest response time for both 
back-ends. As it both examined and retrieved many documents. 
Conversely, Q2 achieved the lowest response time for both 
back-ends besides Q6 for Couchbase. The number of scanned 
attributes results from the total number of joined documents 
attributes. MongoDB was considerably slower than Couchbase 
for join queries. It was not investigated against join queries for 
the 100k patient dataset, as it reported a very long response 
time for the small dataset. Even there is no indexing and there 
are many examined documents. Couchbase Analytics service 
enhances the execution time of ad hoc join workload 
dramatically. Q11 and Q12 reported the lowest and the highest 
execution time, respectively. This is because the Couchbase 
Analytics service is usually based on parallel join and those 
two queries examine the largest and the smallest number of 
scanned attributes. For two different queries with the same 
complexity and attribute number, the execution time is 
approximately the same. 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 12, No. 10, 2021 

153 | P a g e  

www.ijacsa.thesai.org 

TABLE VI. JOIN QUERIES RESPONSE TIME FOR 10K PATIENT DATASET 

Join 

query 

Couchbase 

execution Time 

MongoDB 

execution Time 

Number of examined 

documents 

Q1 26500 6205489 321528 

Q2 1800 251 5499 

Q3 32800 562485 12,352 

Q4 16400 192263 114544 

Q5 2700 6725 2360 

Q6 1100 31164 321528 

Q7 19800 744 431262 

Q8 6000 373802 16481 

Q9 1600 195980 114544 

Q10 1700 67823 321528 

Q11 5000 322827 31764 

Q12 51900 3085553 1659750 

Q13 6900 3002136 1659750 

TABLE VII. JOIN QUERIES RESPONSE TIME FOR 100K PATIENT DATASET 

WITH ANALYTICS SERVICE 

Join query 
Execution Time Couchbase 

analytical service 
num. of docs scanned 

Q1 10800 3312825 

Q2 2400 3322000 

Q3 15570  3312825  

Q4 1920 1268050 

Q5 13730 3212369 

Q6 3030 3312825 

Q7 3320 1050668  

Q8 876.43 292310 

Q9 2510 3312825  

Q10 2210 3312825 

Q11 350.12 69709 

Q12 39300  19408644  

Q13 37980 19408644  

VII. DISCUSSION 

This research investigates the appropriateness of two 
DODBMS storing EHRs data for BI workload. For single-node 
topology, MongoDB performed better for simple look-up 
queries, but their performance decreased with JOIN queries 
spanning multiple collections and involving aggregation. It was 
considerably slower than Couchbase for join queries of larger 
datasets. Conversely, Couchbase single node cluster reported 
better performance for complex join queries, but their 
performance decreased for simple lookup queries. 

These results motivated us to utilize Couchbase server 
MDS architecture to distribute services across several nodes 
rather than a single node. An interesting result of the 
Couchbase multi-node cluster performance analysis is that, by 
using an analytics service with no index, the Couchbase server 
reported better response times than MongoDB for both types of 
ad hoc queries. This multi-service architecture decreased the 
query latency dramatically. 

MongoDB uses the $lookup operator to apply JOIN 
operations, which traverse several collections. According to the 
result, this costly operation significantly increases latency and 
overall strain on the database. An alternative solution to handle 
these costly join operations in MongoDB is to denormalize the 
data model by embedding elements into their parent objects 
and performing a regular query. The major disadvantage of this 
denormalization approach, especially in a distributed system, is 
that it leads to data redundancy, which causes a significant 
write-performance downgrade to maintain consistency across 
multiple copies through multiple write operations. 
Furthermore, this modeling approach brings additional storage 
costs. It could be considered as an optimal response scenario 
with only one user submitting a single query at a time. Besides 
that, MongoDB provides a native connector for BI, which 
could provide support for real-time analytics by integrating 
with a leading BI and analytics tool. 

The proposed converged Couchbase EHRs system 
infrastructure has significant advantages compared to the other 
loosely coupled alternatives. It supports using a common 
flexible document data model for both operational and 
analytical data with no transformation required for analysis. So, 
it could offer fast reporting and decision-making capabilities 
based on real-time and advanced analytics for large volumes of 
data without needing to move data around. Instead of 
managing and synchronizing many systems with several 
connections points [31]. 

The analytical workload is usually read and compute-
intensive because it entails more massive costly calculations 
over data. So, it is typically ideal to perform analytical 
workload in isolation. Couchbase Server separates the 
competing workloads into independent services and isolates 
them from each other. Consequently, interference among them 
is minimized. Operational workload latency and throughput are 
isolated from analytical query workload slowdowns but 
without the complexity of operating a separate analytical 
database. It allows running analytics in extremely current data 
with no ETL process that delays data. 

 An important principle in medical systems is that when 
any data element is modified, it will not be overwritten. Rather, 
a new element with a suitable link is added. On the other hand, 
large-scale healthcare applications scenarios usually do not 
strictly enforce ACID properties. They deploy optimistic 
locking, as they desire isolation, but not at the rate of a 
significant performance penalty. For such scenarios, 
Couchbase Server, which is an append-only store that enforces 
the BASE (Basically Available, Soft State, Eventually 
Consistent) philosophy, seems to be a promising solution 
covering many EHRs systems use-cases. Their flexible MDS 
framework enables users to scale or shrink their cluster, 
involving data management resources as requirements change. 

VIII. CONCLUSION 

This paper investigates the appropriateness of DODBMS 
for handling operational BI workload. MongoDB does not 
provide satisfactory response time for unplanned join queries 
spanning multiple documents contrarywise Couchbase which 
reports better performance for these complex queries. By 
utilizing its analytics services and multi-dimensional scaling 
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architecture, Couchbase Server multi-node cluster outperforms 
the response times of MongoDB for both simple and complex 
healthcare data access patterns. Couchbase is the ideal solution 
for our needs as long as we need to store unstructured health 
data in various EHR systems. This paper proposes a tightly 
coupled Couchbase healthcare framework that can efficiently 
adapt to different workload needs. Along this path, using 
complementary Couchbase services for architecting a 
monolithic framework enables new technical capabilities 
which serve as the foundation for a new class of intelligent 
applications such as machine learning, real-time operational 
reporting. Finally, the emergence of HTAP DBMSs does not 
imply the end of the massive, monolithic OLAP warehouse. 
But such systems will be required to serve as a universal back-
end database for all an organization‟s front-end OLTP silos. 
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