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Abstract—Medical images naturally occur in smaller 

quantities and are not balanced. Some medical domains such as 

radiomics involve the analysis of images to diagnose a patient’s 

condition. Often, images of sick inaccessible parts of the body are 

taken for analysis by experts. However, medical experts are 

scarce, and the manual analysis of the images is time-consuming, 

costly, and prone to errors. Machine learning has been adopted 

to automate this task, but it is tedious, time-consuming, and 

requires experienced annotators to extract features. Deep 

learning alleviates this problem, but the threat of overfitting on 

smaller datasets and the existence of the “black box” still lingers. 

This paper proposes a capsule network that uses Local Binary 

Pattern (LBP), Gabor layers, and K-Means routing in an attempt 

to alleviate these drawbacks. Experimental results show that the 

model produces state-of-the-art accuracy for the three datasets 

(KVASIR, COVID-19, and ROCT), does not overfit on smaller 

and imbalanced datasets, and has reduced complexity due to 

fewer parameters. Layer activation maps, a cluster of features, 

predictions, and reconstruction of the input images, show that 

our model is interpretable and has the credibility and trust 

required to gain the confidence of practitioners for deployment 

in critical areas such as health. 

Keywords—Convolutional neural networks; deep learning; 

Gabor filters; k-means routing; local binary pattern; power squash 
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I. INTRODUCTION 

Health is among the top critical areas that affect human life. 
For instance, 50,000 people die each year from pneumonia in 
the United States whereas colorectal polyps are projected to 
increase by 60% in 2030 which is likely to increase the number 
of causalities [1]. Images, videos, and text are the commonly 
generated and analyzed data used for the evaluation of most 
medical conditions. The analysis of these data requires the 
expertise of professionals which is rare and expensive in some 
regions and additionally susceptive to human errors [2], less 
effective [3], and falls below recommended levels in clinical 
procedures [4]. This calls for computer vision-assisted 
diagnosis. Machine learning-based methods such as support 
vector machines have been employed to assist in the effective 
diagnosis of medical diseases [5]. However, the performance 
of these methods was below the standard practices and the 
feature extraction procedure is time-consuming. To address 

these issues, deep learning models such as convolutional neural 
networks (CNNs) were adopted to improve feature extraction. 
Interestingly, CNNs achieved performance rivaling human 
experts. For example, a CNN model made up of 121 layers 
(termed CheXNet), was trained on 100,000 frontal view chest 
X-rays and performed far better than 4 radiologists [6]. 

Regardless of CNN’s good performance, the research 
identified certain limitations such as being translationally 
invariant [7], requiring large datasets, being computationally 
expensive [8], and following certain criteria for effective 
feature selection [9]. In health, the availability of a large 
dataset is a major challenge coupled with the lack of 
unavailability of qualified annotators [8]. Therefore, to prevent 
CNNs from overfitting on these small datasets, data 
augmentation techniques are employed. These data 
augmentation techniques are time-consuming and laborious. 

To address these challenges, Capsule Network (CapsNet) 
[7] was introduced, and unlike CNNs, they do not require large 
datasets making them suitable for health applications. 
Notwithstanding, CapsNets also have their limitations. They 
perform poorly on complex images and images with varied 
backgrounds, have complex routing processes, poor learning of 
lower-level description [10], and polarization. 

The contributions of this paper, therefore, are a) 
architectural innovation: we propose a Local binary pattern 
(LBP) – Gabor Capsule Network to address the weak feature 
extraction problem and the inability of CapsNets to learn 
lower-level descriptions of a complex image, b) algorithmic 
innovation: we adopt K-means routing, power squash, and 
sigmoid functions to complement the feature extraction 
abilities of the LBP-Gabor layers, c) explainable artificial 
intelligence (XAI): we provide extensive visualizations of the 
outputs of our network in an attempt to “open” the “black box” 
in deep learning models for enhanced credibility and 
understandability. 

The rest of the paper is organized as follows: Section 2 
presents the related work leading to Section 3 where the 
proposed methods are outlined. The experiments and 
experimental results are presented in Section 4 and the work 
concluded in Section 5. 
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II. RELATED WORK 

The limitations of human-centered diagnosis led to the 
adoption of algorithms for predicting medical conditions found 
in domains such as “radiomics”. Radiomics involves the use of 
data-characterization algorithms to extract features from 
radiographic images. Studies in the literature, such as Saif et al. 
[5] proposed a Capsule Network algorithm for the recognition 
of musculoskeletal conditions from radiographic images. The 
proposed model outperformed a 169-layer DenseNet in 
recognizing abnormality in musculoskeletal radiography. To 
address the inability of CNNs in encoding part-whole 
relationships, Mobiny et al. [11] proposed an efficient bi-
directional long short-term recurrent capsule network for the 
recognition of apoptosis (cell death). The proposed model 
achieved competitive performance and outperformed CNNs 
especially when the number of training samples is small. 

One of the deadliest medical conditions is brain tumors. 
Detection of the correct type of brain tumor at an early stage is 
vital to enable early treatment and reduce mortality in both 
children and adults. Consequently, there has been a surge of 
interest in developing efficient brain tumor detection 
algorithms. Afshar et al. [12] proposed a capsule network 
algorithm for the detection of a brain tumor on segmented 
images generated from the training images. The segmentation 
was done to avoid the negative effect of miscellaneous 
background objects on the model’s performance. Afshar et al. 
[13] proposed a focus-oriented capsule network algorithm that 
takes coarse boundaries of brain tumor images as extra inputs 
to diagnose brain tumors.  The proposed model achieved 
overall recognition accuracy of 90.89%. 

Given the challenges encountered during human-centered 
diagnosis of other lung infections and COVID computed 
tomography (CT) scan and X-ray images, Afshar et al. [14] 
proposed a capsule network termed COVID-Caps. The 
proposed model achieved an accuracy of 95.7%, sensitivity of 
90%, and specificity of 90% on small datasets of COVID-19. 
This study is more related to the works in [15, 16] and [17] 
where transfer learning and custom-built CNNs are designed to 
diagnose diseases such as COVID-19 and retinal diseases from 
Chest X-ray and retinal optical coherence tomography (ROCT) 
images respectively. However, we leverage on CapsNet’s 
ability to avoid overfitting and identify the pose and 
deformation of objects and object parts to diagnose medical 
conditions from challenging medical images. Furthermore, the 
aforementioned works did extensive data preprocessing, 
augmentation, segmentation, and balancing of datasets 
(especially [15]) before fitting their models. We, however, used 
the raw datasets without augmentation and preprocessing to 
understand the model’s performance on the natural data since it 
may not be feasible to perform augmentation or segmentation 
during a medical emergency. Although the work in [15] 
provided images of the regions recognized by the model, we 
provide elaborate visualizations of image regions that attract 
the attention of parts of our model, clusters of features at the 
class capsule layer to measure the performance of the routing 
algorithm, performance on imbalanced datasets in the form of 
Precision-Recall (PR) curves, and reconstruction of input 
images as a way to enhance model transparency and 
understandability. 

III. PROPOSED METHODS 

In this section, we present the model modifications and the 
methodology adopted to achieve our objective of designing a 
capsule network with superior feature extraction capabilities 
compared to the original CapsNet. We avoid shallowness and 
at the same time strive to reduce the number of parameters by 
using layers that generate no or less trainable parameters. 

A. K-Means Routing 

We adopt the K-means routing in [18] with  Sigmoid 

normalization, Power squash    ‖  ‖
   

‖  ‖
, and a modified 

logit updates procedure, instead of dynamic routing [7] in an 
attempt to minimize the problem of polarization [19] leading to 
improved performance on difficult medical images. Instead of 
using dot product and initializing     with zero and adding the 

old logits to perform updates, our method respectfully uses the 

   distance measure, initializes     as   
   

 ∑ ‖      
 
   

  
   

‖
 
 and does not add old logits to new logits during updates. 

Algorithm 1 shows the K-means routing procedure. 

Algorithm 1 K-Means Routing for image classification [18] 

1. procedure ROUTING (    ) 

2.  Initialize   
   

 
 

 
∑      

 
    

3.                
   

 ∑ ‖        
   

‖
 

 
      

4. for r iterations do 

5.       ∑ ‖        ‖
  

      

6.              (   )    

7.      ∑         
 
     

 8. return        (  ) 

B. Feature Extraction with LBP and Gabor 

Both LBP [20] and Gabor filters [21] have each been 
shown to be superior edge and texture feature extractors [22, 
23] than convolutional layers [18, 24, 25]. 

Gabor filters belong to a special class of bandpass filters 
with frequency and orientation representation mimicking those 
of the mammalian cortex. They are made up of real and 
imaginary parts. It is the real part shown in equation 1 that is 
used to extract image features. 
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where               ,                with 
      being the pixel position in the spatial domain.   controls 
the width of the Gabor function strips,   represents the 
orientation to the normal,   is the phase offset,   is the spatial 
aspect ratio, and   is the standard deviation of the Gaussian 
envelope. To extract features with Gabor filters, five 
frequencies   and eight orientations   are adopted. These 
parameters are defined in equations 3 and 4. 
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Fig. 1. The Gabor-LBP Capsule Network Architecture. 

where          ,          , and   
 

f
. 

The Local Binary Pattern (LBP) [20] is a powerful feature 
extractor that adds no trainable parameters to a model when 
used to extract contrast and spatial patterns of an image. It 
accomplishes this by thresholding   neighbouring pixels and 
computing its equivalent binary number based on equation 4. 

L P n,r  ∑ f(in-ic) 
nn- 

n                (4) 

where   = neighboring pixels’ intensity,   = current pixels’ 
intensity,     number of selected neighboring pixels at radius 

 , and a sign function defined as f {
 ,         if x  
 ,  otherwise

. 

C. LBP-Gabor CapsNet Architecture 

The proposed model is a combination of Conv-LBP-Gabor 
layers placed in a multi-lane fashion (see Fig. 1). The input 
images are resized to 28x28x3 and fed to both lanes 
simultaneously. The first lane (upper lane) has a conv1 layer 
made up of 256, 7x7 kernels with ReLU non-linear activation 
at a stride of 1 to produce 256, 22x22 feature maps. These 
feature maps serve as input to the Gabor_1 layer made up of 
256, 7x7 kernels at a stride of 1 and valid padding to produce 
256, 22x22 feature maps for subsequent layers. The feature 
maps are processed in this manner as they pass through each 
layer in lane one until they reach the Primary Caps 1 layer 
which is a convolutional capsule layer made up of 7x7 kernels 
with a stride of 2. It is a 16-component capsule each with 4x4 
capsules in an 8-dimensional vector. 

LBP_2 extracts the features directly from the input image 
to feed lane two (bottom lane). It is made up of 256, 7x7 
kernels with stride 1 to produce 256, 22x22 feature maps. The 
features are refined as they pass through the rest of the layers to 
Primary Capsule 2 which has 3x3 kernels at a stride of 2. This 
too is a 16-component convolutional capsule each with a 1x1 
capsule in an 8-dimensional vector. 

The outputs of the two PCs are concatenated via axis 1 to 
produce a 272x8 dimensional tensor. It is the features of this 
tensor that are used for routing with the Disease recognition 
cap layer. The latter is 16-dimensional while the number of 
capsules is varied according to the number of classes in the 

dataset. We have used (?) to indicate that the number of 
capsules will vary from 8, 4, 4 for KVASIR, COVID-19, and 
ROCT datasets respectively. Reconstruction of the input image 
is carried out by the decoder. The quality of the reconstructed 
images (see Fig. A1 in Appendix A) depends on the 
performance of the classification. 

IV. EXPERIMENTS 

In this section, we present the experiments conducted on 
each dataset as well as their respective results. Three publicly 
available datasets were used to evaluate the performance of the 
model’s ability to generalize on unseen data. 

A. Dataset Description 

The Kvasir [24] is a dataset consisting of images from 
inside of the gastrointestinal (GI) tract. It consists of eight 
different classes made up of images from 720x576 to 
1920x1072 pixels. The dataset can be used for multiclass 
classification [24] as the images can be categorized under three 
important anatomical landmarks. For a detailed description of 
this dataset, readers are encouraged to look at the work in [24]. 
This dataset is not balanced. 

The COVID-19 dataset [16, 17] was collected by a team of 
doctors from 4 countries, and it is made up of chest X-ray 
images of COVID-19 positive cases plus some Normal and 
Viral Pneumonia images. Categories such as COVID, 
Lung_Opacity, Normal, and Viral_Pneumonia form the class 
in this dataset. This dataset is also imbalanced and details can 
be found in [16, 17]. 

The Retinal Optical coherence tomography (ROCT) dataset 
[15] contains high-resolution cross-sectional images of the 
retina. The dataset was collected from adult patients at the 
Shiley Eye Institute of the University of California San Diego, 
the California Retinal Research Foundation, Medical Center 
Ophthalmology Associates, the Shanghai First People’s 
Hospital, and Beijing Tongren Eye Center [25]. It has four 
classes and is originally organized such that each test set has 
250 images while the training set has 20,135 (i.e. 
approximately 95% to 5% train-test split). We, however, split 
all the three datasets into 80% training and 20% test. 
Additionally, we did not perform data augmentation to any of 
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our datasets as a means to measure the ability of the proposed 
model to decode the spatial orientation of the images. A 
summary of the datasets used in this study is provided in Table 
A1 in Appendix A. 

B. Experimental Setup 

We performed all the experiments using the following tools 
and software; Keras with TensorFlow backend, one 64-bit 
Windows machine with NVIDIA GeForce GTX 1060 Graphic 
Processing Unit (GPU), 8GB GPU memory, 16GB system 
memory, and CUDA 10.1 toolkit. Hyperparameters such as the 
number of epochs, batch size range, learning rate, learning rate 
decay, and early stopping were respectively set to 100, 50-100, 
0.001, 0.9, and 15. We varied the number of routing iterations 
from 2 to 7 (see Section 4.5) to test the ability of the model to 
scale up. To calculate the loss, we adopted the margin loss 
from [7]. This loss is given by: 

Lk Tk max  ,m  ‖vk‖ 
      Tk  max  ,‖vk‖ m

    

where Tk {
  if class k is active

  otherwise
,      ,       , and 

       

We adopted, customized, and modified the code from 
https://github.com/XifengGuo/CapsNet-Keras for this study. 

C. Experimental Results 

We present the experimental results in this Section and 
show that the model performed well when evaluated on the 
three datasets. To enhance confidence and reliability in the 
model’s results, several evaluation methods were adopted and 
carefully conducted. Metrics such as the number of parameters, 
classification loss, and accuracy, the Area Under the Curve 
(AUC) for both the Receiver Operating Characteristic Curve 
(ROC) and Precision-Recall (PR) curves were used for the 
performance evaluation. Additionally, the model’s robustness, 
ability to scale-up, fail-safe, extract only relevant features and 
the performance of the routing process were also evaluated. 
The traditional capsule network was also trained with the 
datasets and the results compared to our model based on the 
aforementioned performance metrics. 

D. Accuracy 

We used the multi-class confusion matrix to summarize the 
performance of the model on the datasets. This method 
includes powerful per-class metrics such as true positive (TP), 
true negative (TN), false positive (FP), and false-negative 
(FN). The values in the principal diagonals of the confusion 
matrices are the TP values representing the level of correct 
identification of the true classes from the respective datasets. 
Few FNs as seen from Fig. A2 in Appendix A. indicates a good 
performance considering the field of application (i.e. health). In 
other words, the high TP values indicate good performance for 
a disease recognition model since it is not fatal for a healthy 
medical image (and by extension a healthy person) to be 
categorized as sick compared to when a sick person is 
classified as healthy. 

From the confusion matrices, the accuracy of the model can 
be computed based on equation 5. 

Accuracy  
TP TN

TP FP TN FN
            (5) 

It is worth noting that accuracy, even though very popular 
[26] at evaluating classification algorithms, is not appropriate 
for medical images since they tend to be small and highly 
imbalanced [27]. Despite its drawback, it can provide a 
snapshot of the entire system performance, especially when the 
datasets are balanced.. 

The performance of the model in terms of accuracy during 
training and validation can be monitored via the training and 
validation curves. These curves for the three datasets are 
depicted in Fig. 2, with (c) and (d) depicting that the model had 
some difficulty in extracting the relevant features from the 
COVID-19 dataset. This is indicated by the zig-zag nature of 
the curves. Consistently, the proposed GLC model 
outperformed the traditional capsule network on the respective 
datasets in terms of training and validation accuracy/loss. A 
comparison of the accuracies of the proposed model, the 
traditional CapsNet, and other models in the literature on the 
same datasets are shown in Table A2 in Appendix A. The 
93.40% accuracy of [15] on the ROCT dataset was obtained on 
the original 95%-5% train-test split. However, we split the data 
into 80%-20% for training and testing respectively. 
Unavailable values in Table A2 in Appendix A are indicated 
by (?). 

To further probe the superiority of the proposed model, we 
performed additional experiments to determine the accuracy of 
the model as it is subjected to architectural damages in what is 
known as ablation studies (see Section 4.6). Additionally, we 
performed more experiments to explore the effect of increasing 
the capacity of the model on accuracy by increasing the 
number of routing iterations from 2 to 7 (see Section 4.5). 

E. Model’s Ability to Scale 

Dynamic routing has an inner loop [28] [18] which 
contributes to hindering the algorithm to scale on complex data 
and increases the threat of overfitting when the network 
capacity is increased through an increase in the number of 
routing iterations. To test the models on this score, we varied 
the number of routing iterations and the results of these 
experiments are depicted in Fig. A3 in Appendix A. It is 
observed that the proposed GLC maintains a marginal loss in 
accuracy for both KVASIR (Fig. A3 (a)) and COVID-19 (Fig. 
A3 (b)) as the number of routing iterations increases from 2 to 
7. On the contrary, the traditional model begins to overfit after 
the third routing iteration (Fig. A3 (a)), probable because the 
number of classes is comparatively higher than the other 
datasets while at the same time the number of images in the 
dataset is relatively smaller. As the traditional model scales up, 
it becomes “hungrier” for data and tends to depend on the 
number of classes, consequently increasing the number of 
interrelationships to a level likely to cause overfitting. 

We also observe from Fig. A3 (Appendix) that at 3 
iterations, the traditional CapsNet achieved optimal 
performance as established in [7], however, this varies for the 
proposed model. For instance, GLC’s accuracy for KVASIR 
and ROCT are highest at 2 and 4 routing iterations 
respectively. 
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(a)       (b) 

  
(c)       (d) 

  
(e)      (f) 

Fig. 2. Training and Validation Curves (a) Accuracy for KVASIR, (b) Loss for KVASIR (c) Accuracy for COVID-19, (d) Loss for COVID-19, (e) Accuracy for 

ROCT, and (f) Loss for ROCT Dataset. 

F. Model’s Robustness and Ability to Fail-Safe 

Setting the number of routing iterations to 3, we performed 
additional experiments to determine parts and configurations of 
the model that made significant contributions to its high 
performance. We removed layers at a time and trained the 
network to measure the effect of their presence/absence in the 
network. Also, hyperparameters such as the squash and 
normalizer were varied and several pieces of training were 
carried out. This technique is called ablation study [29], and it 
can determine the ability of a network to fail-safe or undergo 
graceful degradation. Graceful degradation is a required 
property for critical applications. It is also a means to enhance 
confidence in the model since network components with the 
ability to stand in for failed parts can be identified and to also 
test for the robustness of the model to architectural changes. 

From Table 1, Conv1 (row 1) and LBP2 (row 7) are very 
crucial in the network due to their positions as lower-layer 
(primary) feature extractors. Their removal causes a drop in 
accuracy across all the datasets. However, the removal of any 
of the rest of the conv layers causes a slight drop in accuracy, 
an indication that we could comfortably remove any one of 
them in situations where our objective is to reduce model 
parameters/size. Again, removing all the conv layers (row13) 
seems to have little effect on the performance compared to 
removing all LBP (row 11) and all LBP plus Gabor (row 12) 
layers. Rows 16 and 17 indicate the use of all layers in the 
network. We observe that the combination of the original 
squash and SoftMax underperformed relative to that of the 
Power squash and Sigmoid normalization consistent with what 
was reported in [18]. 
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TABLE I.  RESULTS OF ABLATION STUDY ON THE GLC MODEL 

No Layer(s) removed Squash Normalizer Validation Accuracy (%) 

    KVASIR COVID-19 ROCT 

1 Conv1 Power Sigmoid  79.11 90.02 90.13 

2 Conv2 Power Sigmoid 79.43 90.76 91.01 

3 Conv3 Power Sigmoid 79.51 90.62 90.35 

4 Conv4 Power Sigmoid 79.60 90.71 90.32 

5 Gabor Power Sigmoid 77.07 80.23 81.56 

6 LBP1 Power Sigmoid 72.97 81.66 82.97 

7 LBP2 Power Sigmoid 70.94 79.52 80.50 

8 LBP3 Power Sigmoid 73.43 81.05 82.03 

9 Gabor+LBP1 Power Sigmoid 76.02 79.81 81.43 

10 Conv1+Conv2 Power Sigmoid 79.55 89.05 90.17 

11 LBP1+LBP2+LBP3 Power Sigmoid 66.91 70.12 75.57 

12 Gabor L P  … L P3 Power Sigmoid 65.43 70.63 77.09 

13 Conv  … Conv4 Power Sigmoid 79.11 88.95 89.98 

14 Lane 1 (top lane) Power Sigmoid 75.29 79.85 81.00 

15 Lane 2 (bottom lane) Power Sigmoid 76.71 80.32 84.21 

16 None Original SoftMax 78.54 88.70 89.01 

17 None Power Sigmoid 80.91 91.96 91.30 

G. Performance on Smaller and Imbalanced Datasets 

Medical images are usually smaller and highly imbalanced 
[33]. Class imbalance, on the other hand, contributes to a 
problem called the “accuracy paradox” [3 ] which causes the 
larger classes to overshadow the smaller classes during 
accuracy computations. In other words, accuracy under these 
conditions is influenced or biased towards the class with the 
highest number of samples. Besides, the asymmetric 
misclassification costs and probability estimates of the 
classification are not taken into consideration during accuracy 
computations under class imbalance. The AUCs for the ROC 
and PR curves become handy when fitting a model with 
balanced and imbalanced classes respectively [36, 37]. The 
AUC is invariant to the a priori likelihoods of the classes as 
well as being independent of the decision threshold [34]. Large 
AUCs are preferred over their smaller counterparts. 

Fig. 3. shows the ROC and PR curves for the GLC model. 
We observe that the ROC curves have relatively larger areas 
separating them from the diagonal. The impression is that the 
model performed very well in all the classes, however, the PR 
curves depict that the model did not perform equally well in all 
the classes. This is so because ROC tends to be overly 
optimistic with insufficient data [35] as well as when there is a 
large skew in the dataset class distribution [32]. A medical 
practitioner ultimately needs to see the PR curves of a model 
(not only accuracy) before taking critical decisions on a 
patient’s condition. Compared to the ROC and PR curves of 
the DR model (shown in Fig. 3), the GLC model outperformed 
the traditional CapsNet model under class imbalanced 

conditions. The respective AUC values are; ROC -KVASIR 
(0.96), PR-KVASIR (0.71), ROC-COVID-19 (0.97), PR- 
COVID-19 (0.95), ROC-ROCT (0.93), and PR-ROCT (0.87). 

On smaller datasets, CapsNets are known to outperform 
convolutional neural networks due to the ability of CapsNets to 
encode pose and orientation. This reason, plus our superior 
feature extractors explain why our model performed well on 
the KVASIR dataset (see Fig. 2(a)) without any data 
augmentation. 

H. Prediction and Reconstruction 

During prediction, the capsule outputs the class with the 
longest vector as the correct class. It is compared with the 
ground truth (GT) image to measure how well the trained 
model can classify an unseen image. This aspect of the model 
is very crucial for health applications since it quantifies the 
confidence the model has in its prediction. To introduce 
variability in the testing set, 1% of each dataset was reserved 
for prediction, and as such was not used as part of the training 
set. Sample prediction results on the unseen images are shown 
in Fig. A1 in Appendix A. The KVASIR dataset (Fig. A1 (a)) 
has eight classes, each of which is assigned a likelihood of 
being the correct class. The class with the highest probability is 
the predicted class. For both KVASIR and COVID-19 
predictions, the model misclassified 0.5% of the unseen images 
(e.g. Fig. A1 (a) row 5 and Fig. A1 (b) row 4). We observe that 
the model imposed huge confidence (83%) in predicting class 2 
of the KVASIR dataset as the correct class (Fig. A1 (a) row 3) 
while at the same time predicting class 1 with the confidence of 
82% for the COVID dataset (Fig. A1 (b) row 5). 
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(a)     (b) 

 
(c)     (d) 

 
(e)     (f) 

Fig. 3. ROC and PR Curves for the GLC Model. (a) ROC -KVASIR, (b) PR-KVASIR, (c) ROC-COVID-19, (d) PR- COVID-19, (e) ROC-ROCT, and (f) PR-

ROCT. 

Reconstruction allows visual verification of the model’s 
output/performance and also works as a regularizer. The 
reconstructed images in Fig. A1 in Appendix A. are clearly 
showing that the network layers effectively used the 
instantiating parameters to reconstruct the input mages (GT). 
We also carried out predictions and reconstruction on the 
ROCT dataset as well as using the DR model to predict and 
reconstruct unseen images from the three datasets. The DR 
model misclassified 1% of the unseen images across the 3 
datasets. These results, however, are omitted for brevity. 

I. Model Complexity 

Smaller deep learning models are required for efficient 
implementation on embedded devices such as FPGAs and 

mobile phones with limited memory [36]. Such models are also 
important for reducing overhead to make distributed online 
training and inference possible. The smaller the number of a 
model’s trainable parameters, the less computationally 
complex the model is. This reduces the number of resources 
required by the model and also helps to prevent overfitting by 
ensuring that an l-layer capsule model has ln+k parameters 
required to exactly fit a d-dimensional dataset with n samples 
[37]. Our proposed model (see Fig. 1.) is deeper than the 
traditional CapsNet, but with a comparatively fewer number of 
parameters as shown in Table A3 in Appendix A. The values in 
Table A3 (Appendix) confirm that relatively smaller CapsNet 
models can represent complex real-life functions to outperform 
models with huge parameters [43, 18]. 
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(a)           (b)      (c) 

 
(d)              (e)      (f) 

 
(g)               (h)      (i) 

Fig. 4. Tsne Visualization of the Network’s Raw and Learned Features at the Class Capsule Layer, (a) KVASIR Raw Test Set, (b) GLC clusters of KVASIR, (c) 

DR Clusters of KVASIR, (d) COVID-19 Raw Test Set, (e) GLC Clusters of COVID-19, (f) DR Clusters of COVID-19, (g) ROCT Raw Test Set, (h) GLC clusters 

of ROCT, and (i) DR Clusters of ROCT. 

J. Performance of the Routing Process 

We use the t-distributed stochastic neighbor embedding 
(TSNE) to visualize the network learned features at the class 
capsule layer. This method helps us to visually determine the 
level to which the network can differentiate between the 
different classes. Since primary capsules are coupled with 
secondary capsules with which there is a high agreement aij 
during routing, the features involved can be modeled as 
clusters. The compactness and separability of these clusters in 
the feature space indicate the performance of the routing 
algorithm at effectively making a distinction between the 
various classes. From Fig. 4., we observe that the clusters 
formed by the GLC model (second column); even though 
overlapping, are separable and some compact compared to 
those formed by the DR model (third column). These 
properties are linearly related to the performance of the routing 
algorithm and may be essential for further decision-making in 
case-by-case-based health applications. 

We note that the reason for the GLC model forming 
circular clusters is that the routing algorithm is driven by K-
means whose clusters are naturally circular from its use of the 
l2 norm [39]. 

K. Feature Extraction 

To uncover the network layers with good texture, edge, and 
shape feature extraction capabilities, we performed 
experiments to visualize the activation maps of the layers. This 
method is useful as it provides the opportunity to identify 
regions in the input image responsible for the activation of 
parts of the network. It also contributes to investigating 
whether a model is robust and can avoid failure through the 
inspection of the presence of layers with redundant features. 
Aside from the threat of overfitting resulting from model 
complexity, redundant layers are major contributors to a 
model’s robustness and fault tolerance capabilities. On the 
other hand, through this method, redundant layers can be 
eliminated to improve the model’s feature extraction to 
consequently reduce excessive oscillations and prolonged 
convergence during training [18]. This is a vital step for 
medical applications since it contributes significantly to the 
explainability and understandability of the “black box” [4 ] 
required to enhance confidence in model outputs for critical 
applications. 
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Fig. 5. Comparison of the Activation Maps of the Proposed GLC and the DR Models. (a) the First and Second Rows Show the Activation Maps for GLC and DR 

respectively on KVASIR, (b) Row One Shows the Activation Maps of GLC while Row Two Shows the Activation Maps of the DR Model for COVID-19, and (c) 
First and Second Rows are respectively the Activation Maps of GLC and DR Models for ROCT Dataset. 

The feature maps in Fig. 5. show that the Gabor and LBP 
layers in the GLC have superior feature extraction capabilities 
than the convolutional layers. The Conv1 layer of the GLC 
network extracts some quality features since it is a higher-level 
layer with the ability to sample features from the lower-level 
layers (Gabor and LBP1) to represent advanced parts of the GT 
image. On the contrary, the Conv1 layer of the DR model is a 
lower-level layer, and with the difficulty of CNNs to extract 
quality features [18], it is not able to extract relevant features as 
required. 

V. CONCLUSION AND FUTURE WORK 

In this paper, we propose a capsule network architecture 
with superior feature extraction capabilities for the recognition 
of medical conditions in medical images. The adoption of 

Local Binary Pattern (LBP), Gabor layers, and K-Means 
routing in an innovative architecture has dramatically improved 
the model’s feature extraction capabilities leading to an 
appreciable performance while scaling up, preventing 
overfitting under class imbalance, and obtaining competitive 
validation and test accuracies. We further subjected the model 
through extensive visualization of layer activation maps, 
cluster of features, and ablation studies to enhance model 
interpretability and confidence for practical adoption. The 
results indicate that, it is possible to develop deep models to 
have smaller number of parameters (hence lower complexity) 
with huge potential for implementation on embedded devices 
with lower memories. 

In the future, we will perform extensive experiments on 
these medical datasets for purposes of explainable artificial 

 Gabor    LBP1        Conv1    PC1 

         

                    
(a) 

          

                    
       (b) 

         

                  
(c) 
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intelligence (XAI). The aim will be to eliminate every 
ambiguity on model outputs to pave the way for its practical 
adoption in health. 
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APPENDIX A 

TABLE A1. NUMBER OF IMAGES AND THE DIVISIONS PER 80% TRAINING, 20% TEST FOR EACH DATASET 

Dataset Total Number of Images Training Set Validation Set Test Set 

KVASIR-2 8,095 6,476 1,619 100 

COVID-19 82,570 66,056 16,514 100 

ROCT 21,135 16,908 4,227 100 

TABLE A2. COMPARISON OF MODEL ACCURACY TO THE TRADITIONAL CAPSNET. UNREPORTED VALUES ARE REPRESENTED BY (?) 

Model KVASIR COVID-19 ROCT 

CNN [17] ? 91.30% ? 

Transfer Learning [15] ? ? 93.40% 

DR [7] 78.54% 65.15% 77.35% 

GLC (ours) 80.91% 91.96% 91.30% 

TABLE A3. COMPARISON OF MODEL PARAMETERS 

Model 

KVASIR COVID-19 ROCT 

 

Trainable 
Non-Trainable 

 

Trainable 
Non-Trainable 

 

Trainable 
Non-Trainable 

Traditional capsule (DR) 9,552,944 0 9,552,441 0 9,552,441 0 

GLC (ours) 8,323,640 0 8,302,136 0 8,302,136 0 

Difference 1,229,304 0 1,250,305 0 1,250,305 0 

 
(a) 
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(b) 

Fig. A1. The Reconstructed Images of the Proposed Model on (A) KVASIR and (B) COVID-19 Datasets. 

 

Fig. A2. Confusion Matrices of the Proposed Model on the KVASIR and COVID-19 Datasets. 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 12, No. 10, 2021 

294 | P a g e  

www.ijacsa.thesai.org 

 
 (a)     (b) 

 
(c) 

Fig. A3. Comparison of the Models’ Ability to Scale on  a  KVASIR,  b  COVID-19, and (c) ROCT Datasets. 


