
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 10, 2021

586 | P a g e

www.ijacsa.thesai.org

A Pattern Language for Class Responsibility

Assignment for Business Applications

Soojin Park

Graduate School of Management of Technology

Sogang University

Seoul, Korea

Abstract—Assigning class responsibility is a design decision to

be made early in the design phase in software development,

which bridges requirements and an analysis model. In general,

assigning class responsibility relies heavily on the expertise and

experience of the developer, and it is often ad-hoc. Class

responsibility assignment rules are hard to be uniformly defined

across the various domains of systems. Thus, the existing work

describes general stepwise guidelines without concrete methods,

which imposes the limit in deriving an analysis model from

requirements specification without any loss of information and

providing sufficient quality of the analysis model. This study

tried to grasp the commonality and variations in analyzing the

business application domain. By narrowing the subject of the

solution, the presented patterns can help identify and assign class

responsibilities for a system belonging to the business application

domain. The presented pattern language consists of six

segmented patterns, including 19 variations of relationship type

among conceptual classes. Each sequence of a use case

specification could be analyzed as the result of weaving a set of

the six segmented patterns. A case study with a payroll system is

presented to prove the patterns' feasibility, explaining how the

proposed patterns can develop an analysis model. The coverage

of the proposing CRA patterns and enhancement of

implementation code quality is discussed as the benefit.

Keywords—Class responsibility assignment; analysis pattern;

business application; sequence diagram

I. INTRODUCTION

Developing an analysis model is the first phase in software
development where abstract solutions are contrived. In the
analysis model development, the task that is the most
challenging and requires high creativity is assigning class
responsibilities. Due to the nature of the task, responsibility
assignment has heavily relied on the developer's experience
and knowledge about the application domain. The class
responsibility assignment (CRA) is hard to teach and apply [1].
On the other hand, it is hard to revise the wrong assignment of
responsibilities to classes by adding other design patterns or
architectural styles in successive phases.

The GRASP pattern [2] is remarkable and traditional
among several approaches introduced to solve the CRA
problem. However, it provides several fragmentary solutions
and still requires lots of ad-hoc decision-makings to implement
the patterns in a specific system. Since introducing the GRASP
pattern, several approaches [3-5] that try to lessen the heuristic
aspect of the CRA problem have been proposed. Nevertheless,
their limitation is that they propose a way to evaluate the CRA

results rather than assign responsibility itself. The posterior
evaluation cannot reduce developers‟ efforts which are already
exerted for CRA.

This study presents a pattern-based approach for assigning
responsibility, which bridges analysis modeling and design
modeling. CRA problems for business applications can
eventually be decomposed into a set of CRUD operations on
information: creating (C), reading (R), updating (U), and
deleting (D). Thus, a data transaction is decomposed into six
fragments and designed a CRA pattern for each fragment. This
study also provides a way to compose the six fragmented CRA
patterns for realizing a sequence diagram for each scenario in
use case specifications. According to the given scenario, the
sequence diagram can be composed of 2~6 CRA patterns. The
links and messages that appeared in sequence diagrams are
reflected as relationships between classes and responsibilities
of each class. Each CRA pattern is represented by a uniformed
template similar to the Gang of Four (GoF) pattern template [6]
and composed of predefined variables and constants. The
information developers extract from use case specifications is
used to substitute variables in the CRA pattern and decide
which patterns compose a complete sequence diagram for a
scenario. In other words, developers can make an analysis
model from the requirements model by mapping the
information from use case specifications into each CRA pattern
in developing an analysis model from the requirements model.

Compared with other related studies, the differentiated
point of the proposed CRA pattern is as follows: the most
assignment result of class responsibility is not a set of the
tentative candidates but a final decision itself. The limit of the
other existing work on class responsibility problems is that
developers must select one among multiple candidate
responsibilities or revise the candidates even after applying
proposed methods. The reason is that most methods do not
have a limit on the scope of their application. A solution
proposed by the approach to solving the CRA problem of all
domains cannot embed the properties for each domain. As a
result, even if it is a solution that automatically supports class
responsibility assignment, developers must tailor it to fit the
characteristics of the domain after applying the methods. This
study limits the proposed CRA pattern's application scope to
the business application domain to substantially reduce those
kinds of developers' efforts. Instead, by embedding the inherent
features of the business application domain into the patterns,
most of the responsibilities extracted from the CRA pattern

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 10, 2021

587 | P a g e

www.ijacsa.thesai.org

application are included in the final version of an analysis
model without any revise.

A case study is conducted to adopt a payroll management
system to show the feasibility of using the proposed CRA
patterns in developing an analysis model. The coverage of the
responsibilities extracted from the CRA patterns is measured to
show the benefit of the proposed patterns.The result explains
that a considerable portion of the responsibilities can be
systematically extracted by applying the CRA patterns and
included in the final version of the analysis model. And, the
enhancement of the code quality derived from the analysis
model constructed by applying the CRA patterns is also
evaluated.

The rest of the paper is organized as follows: Section 2
presents related works on the class responsibility assignment
problem. Section 3 gives an overview of the presented CRA
pattern language, and Section 4 introduces the representation of
each CRA pattern. Section 5 demonstrates a case study using a
payroll management system, and section 6 shows the
evaluation result. Section 7 concludes the paper with future
work.

II. RELATED WORK

Most of the analysis patterns [7-12] tended to focus on
providing a way to identify classes that abstract domain
knowledge. The main objective of design patterns [7]
published up to now is to solve specific problems for
successive implementation steps or enhance specific software
quality. Contrary to this trend, [2] designated designing objects
with responsibilities step as the heart of developing an object-
oriented system and introducing the GRASP pattern. GRASP
presents nine design principles as patterns: information expert,
creator, low coupling, protected variations, indirection,
polymorphism, high cohesion, pure fabrication, and controller.
The GRASP pattern addresses fundamental, common questions
and fundamental design issues on assigning class
responsibilities. However, the questions defined by the GRASP
are too general, and some principles are more fundamental than
others. Their solutions are rather guidelines than patterns that
define constants and variables of a model.

Since the introduction of the GRASP, several studies have
been dealt with the CRA problem. Bowman et al. introduced a
solution for the CRA problem, which is based on a multi-
objective genetic algorithm (MOGA) and uses class coupling
and cohesion measurement [3][13]. The MOGA takes as input
a class diagram to be optimized and suggests possible
improvements to it. They implemented a case study that
showed that the multi-objective genetic algorithm could fix
various artificially seeded assignment problems. However, the
result of the MOGA application is limited to fixing the
information included in classes. It does not help to construct
sequence diagrams that explain dynamic behaviors based on
the fixed responsibilities.

In [4], another metaheuristic algorithm for detecting wrong
assigned responsibilities and making an optimized CRA is
introduced. The proposed four different algorithms (simply
genetic algorithm, hill-climbing, simulated annealing, and
particle swarm optimization) use the same class coupling and

cohesion metrics. They transformed the CRA problem into a
search problem by encoding the problem and defining the
fitness function. Like the MOGA, they chose a multi-objective
approach, normalizing and combining three different coupling
and cohesion measurements into a single aggregated fitness
function and implemented a case study on the ATM Simulation
domain model. Thus, their pros and cons are similar to
MOGA‟s ones. Although they provide a way to evaluate
already completed CRA results and enhance the quality of a
design model, the contribution is limited to the conceptual
model. Moreover, enhancement opportunities are given after
the end of the developers‟ CRA step. Thus, it is hard to reduce
the effort of developers on the responsibility assignment step
itself.

Unlike the formerly described two approaches using some
algorithm for detecting errors after the end of whole CRA
steps, [5] proposed a technique to detect any error in every
CRA step. For every step in CRA, the editor automatically
detects bad smells of the current CRA and suggests refactored
CRAs as alternatives. Designers can accept or reject the
suggested CRAs. By repeating the steps of the responsibility
assignment and refactoring, designers can construct the more
appropriate CRA. This study's contribution is that they suggest
formal representation for informal guidelines in GRASP and
automatic detection rules for finding bad smells, which is
violating the guidelines. However, like other approaches, the
developers should create any CRA result before detecting the
CRA errors and refactoring, and the application scope is
limited on conceptual models.

Whereas the studies mentioned above mainly want to
automatically detect errors as a follow-up to the developer's
class responsibility identification results, the studies in [14-16]
take an approach to automatically extract and present design
elements from use case specification. [14] proposes an
automated method that extracts domain classes from parsing
use case specification using the Natural Language Processing
(NLP) technique. [15], like [14], creates a parsed use case
description (PUCD), an intermediate step product, from
parsing the sentences of the use case specification, and then
proposes candidates to construct a class model. The final
decision to construct a class model remains to developers. [16]
presents an automatic generation of a conceptual model from
requirements written in a natural language, English, and proves
the quality of the generated models against human works.
However, their work has limited in that the coverage of the
proposed method over all kinds of natural language is not
comprehensive. And, the inherent ambiguity in the natural
language occurs, hesitating the decision if a specific noun is an
attribute, class, or association. Extracting a conceptual model
from requirements needs an abstraction phase and heuristic
insights for a specific domain area. Thus, it still requires
experts' decisions on the details of the automatically generated
conceptual model. Considering the effort of the experts'
confirmation on the results, the benefit from the automatic
generation of a conceptual model is skeptical. For this reason,
this study does not include a conceptual model in the scope of
automatically generated modeling artifacts. The conceptual
model extracted by experts is used as input knowledge for
automatic class responsibility assignments.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 10, 2021

588 | P a g e

www.ijacsa.thesai.org

As mentioned above, although such NLP-based approaches
have partial benefits, there is a limit to replacing the abstraction
process that indicates the properties of the application domain,
with only parsing the use case specification as a natural
language sentence and interpreting it grammatically.

As the different approaches to solving class responsibility
assignments, [17-18] attempt to determine responsibilities
automatically between classes by using a class diagram as an
input. [17] introduces a method that proposes an appropriate
number of classes using three hierarchical agglomerative
clustering algorithms and two criteria (aggregation metrics and
CRA-Index) in the class diagram. And a comparison of the
result applying their solution and the MOGA application result
is presented. On the other hand, [18] presents a strategy for
automatically generating a basic behavior schema from the
static view represented by a class diagram. Through the
analysis of the relationships between classes, the basic
operations required for each class are identified. However, [17-
18] has a limit in that the automatically generated operations
are specified in too general terms, which requires the final
decision of developers on every generated responsibility. Thus,
the generated result can be utilized as a guide or reference to
decide each responsibility of classes. Still, the automatically
generated responsibility, i.e., operation, is hard to participate in
an analysis model without a final update from developers.

Consequently, the existing studies on the CRA problem
succeeded in enhancing the quality of a design model by
providing various evaluation methods. However, most of the
current work provides class responsibility assignments as a
reference artifact or a candidate artifact for software
developers. The result requires developers' final decision or
update. It means that they still have a limit in relieving the
developers of the CRA step's painful and challenging decision-
making burden.

III. A PATTERN LANGUAGE FOR CLASS RESPONSIBILITY

ASSIGNMENT FOR BUSINESS APPLICATIONS

Most pattern-based approaches are subject to questions
regarding the completeness of the patterns used. The answer to
the question can be found in the definition of the business
applications of [19]: "a business application is an application
with structured logic and transaction-based database which
supports simultaneous access by other applications." From the
definition of a business application, an idea that a business
flow can finally be disassembled into atomic
CRUD(Create/Read/Update/Delete) operations can be
captured. Most of the complex business services provided by
the domain are readily broken down into a series of CRUD
operations.

For example, Fig. 1 shows that the four different business
flows from different systems can be decomposed to the
identical combination of a read data pattern and an update data
pattern. Besides the CRUD operations, interactions with the
environment in which the system is driven are also needed to
realize a business flow in the applications. In this study, the
atomic collaboration between classes for realizing each CRUD
operation and interaction with the environment is designed as
each CRA pattern. The objective of the proposed CAR pattern
language is to provide a way to build an analysis model by

generating a sequence diagram of the system belonging to the
business application domain combining the atomically
designed CRA patterns. In this study, the syntax to utilize the
CRA patterns is also provided. So, for this reason, the proposed
set of the CRA patterns is named a "CRA pattern language."
First, this section presents an overview of the CRA pattern
language.

Fig. 1. Examples of Different Business Services Decomposed into the Same

Atomic Collaboration Patterns.

A. Domain Model

A domain model for assigning class responsibilities for the
business application contains all classes participating in the
proposed pattern set. This study follows the Model-View-
Controller (MVC) [20] pattern in identifying the role of
participating classes in realizing a scenario of a use case
specification. The participating classes that are divided into
three analysis class stereotypes: << boundary >>, << control
>> and << entity >>. These three stereotyped classes are
arranged in separate packages that represent the basic three
layers of business applications. The BizApplication package
contains GUI form classes and <<boundary>> classes to
interface with external systems. The BizProcess package
contains <<control>> classes for managing flows in individual
use cases. The BizLogic package contains <<entity>> classes
to include actual business logic.

Fig. 2 depicts the whole class composing domain model for
assigning class responsibilities of business applications. In
Fig. 2, the question marks (?) in class names or operation
names indicate pattern variables. The „+‟ mark, shown in class,
operation, and parameter names, is an operator for
concatenating two strings. Pattern variables are substituted with
data values elicited from requirements documents to generate
instantiated class or operation names during the pattern
instantiation stage. For example, '?UCNm+ApprvalForm' is
instantiated as RgstrCrsApprvalForm if the string value of

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 10, 2021

589 | P a g e

www.ijacsa.thesai.org

'?UCNm' is „RgstrCrs.‟ Three classes in the BizApplication
package are in charge of interfacing with external actors,
including users and external systems. '?objective + ?DmType +
Form' class is defined for user interfaces, and
'?UCNm+AppvlForm' requests a specific approval from a
supervisor role. '?Interface System' class is a boundary class for
interfacing with other related systems. All of these three classes
in the BizApplication package communicated with the control
class, '?UCNm+Cntrl' in the BizProcess package, managing
sequences of a flow. All messages from UI classes
('?UCNm+AppvlForm', '?objective+?DMType+Form') are
blocked by '?UCNm+Cntrl' and all messages to the other
system(s) go through the class. Except for the role of a proxy,
the '?UCNm+Cntrl' class is responsible for calling appropriate
messages to entity classes in the BizLogic package according
to incoming requests.

The entity classes receiving messages from
„?UCNm+Cntrl‟ are '?objective', '?AssociatingClass',
'?AssociatedAttribute Class' and '?DependentClass'.
„?objective+Container‟ classes are mainly generated by
adopting one of the Read Data patterns. It plays as a container

for some entity classes when it is needed to display multi-row
data. „?objective+Transaction‟ class is for only Transfer Data
to Another System patterns. The role of the class is to specify
data transactions by adding extra data (source system,
destination system, length information, etc.) to the „?objective‟
class. The information of this class is passed when the system
should propagate the data manipulation results to other external
systems. In Fig. 2, attributes of each class are suppressed to
highlight the core of the patterns to assign each responsibility
to the proper classes.

B. Idioms of Pattern Language for CRA Problems in

Business Applications

In explaining an overview of the pattern language, this
study follows the way of [21]. The pattern language application
graph depicted in Fig. 3 shows how CRA patterns are applied
during the modeling of applications. Still, it is not intended to
show how the resulting system works, i.e., it is not a flowchart.
In the original notation of [21], the main language patterns are
split into mandatory patterns and optional patterns in the
original notation. And, one entry point and several exit points
are denoted to represent the pattern application flow.

Fig. 2. Class Diagram for Domain Model of a Pattern Language for Class Responsibility Assignment.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 10, 2021

590 | P a g e

www.ijacsa.thesai.org

Fig. 3. Pattern Language Application Graph.

The firstly applicable pattern in order is the System
Invocation pattern which gives a solution on how the system
can be invoked. After applying the System Invocation pattern,
the Read Data pattern can be successively applied as users
usually check data before changing it. If the data is located in
other systems, Fetch Data from Another System pattern can be
applied. To be composed as a design fragment for reading
some data, the possible pattern sequence is “System Invocation
 Read Data” or “System Invocation  Read Data  Fetch
Data from Another System.” If the data source to be read is the
system itself, the first pattern sequence will be applied.
Otherwise, the second option should be applied. So, a typical
pattern application sequence is “System Invocation  Read
Data  Manipulate Data” patterns. But users could manipulate
data without reading anything in some cases, which is also a
typical sequence. Thus, the Read Data pattern can be an
optional pattern like Fetch Data from Another System pattern.

After applying a pattern belongings to the data
manipulation pattern, Confirm Data Manipulation pattern could
be optionally applied if it requires any specific actions to
reflect the result of data manipulation on the system. The other
applicable pattern is Transfer Data to Another System pattern,
applied when the data manipulation result should be reflected
to another related system.

To sum up, the proposed pattern language is composed of 2
required patterns (System Invocation, Manipulate Data) and
four optional patterns (Read Data, Fetch Data from Another
System(s), Confirm Data Manipulation, Transfer data to
another system(s)). The Read Data pattern is an optional
pattern when it is applied with other data manipulation
patterns. However, it can be a mandatory pattern when it is
used to implement a scenario to show some information to
users without any change on data. The minimum number of the
patterns composing a scenario is two as the shortest sequence
is “System Invocation  Read Data” or “System Invocation 
Manipulate (Create/Update/Delete) Data.” The maximum
number of the applied patterns for realizing a scenario is six as
the most extended pattern sequence is “System Invocation 
Read Data  Fetch Data from Another System  Manipulate
(Create/Update/Delete)  Confirm Data Manipulation 
Transfer data to another system.”

C. Process of Building an Analysis Model using CRA Pattern

Language

With the CRA patterns, a sequence diagram to identify
class responsibility from a scenario in a use case specification
can be composed through three phases – use case analysis,
CRA pattern weaving, CRA pattern instantiation. Fig. 4 shows
each step of constructing an analysis model using the proposed
CRA patterns, and the detail of each step is the following.

Use Case Analysis: (a) the reference artifacts are use case
model and initially identified conceptual key classes. (b) The
process starts with analyzing input use cases to identify the
necessary information to populate CRA patterns through
questions and answers. (c) A set of predefined questions is
presented to the developer to decide patterns to be applied and
elicit pattern variables to instantiate the chosen patterns.

CRA Pattern Weaving: Use case analysis results in a set of
CRA patterns chosen to apply. Six patterns are presented in
this study. Each selected pattern defines a segmented
collaboration among participating classes, and the number of
the selected patterns for a scenario is between two and six. (d)
To realize a given scenario as an analysis model, the patterns to
compose a complete sequence diagram should be weaved into
a sequence diagram. The identically appeared lifeline between
two CRA patterns becomes the connection point of the two
patterns. From the P1 pattern to the P6 pattern, the required
patterns are weaved step by step. At the end of CRA pattern
weaving, we can get a skeleton of a complete sequence
diagram for the target scenario.

CRA Pattern Instantiation: The skeleton of a sequence
diagram resulting from the CRA pattern weaving step still has
uninstantiated pattern variables. The value for each pattern
variable is extracted in the previous use case analysis step. (e)
From the answers to the questions, the values for pattern
variables can be extracted. The instantiation of the composed
pattern results in an analysis model with responsibilities of
CRUD operations and other supporting operations for each
analysis class. All of the responsibilities that appeared in the
sequence diagram are registered as the operations of the key
classes. Besides adding the operation to the existing key classes,
new classes are also defined by applying CRA patterns.

The details of each phase will be explained with a tangible
application case of a payroll management system in Section 5.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 10, 2021

591 | P a g e

www.ijacsa.thesai.org

Fig. 4. Building an Analysis Model using CRA Pattern Language.

IV. REPRESENTATION OF A CRA PATTERN

The GoF pattern template [6] is utilized to represent each
CRA pattern. However, all of the compartments of the GoF
pattern template are not used. Also Known As, Motivation,
Known Uses, and Sample Code sections are not used as they
are out of the concern of the CRA pattern. The followings are
the sections and their brief descriptions of the CRA pattern.

1) Problem: The question to be solved with the pattern

regarding the class responsibility assignment aspect.

2) Forces: The conditions be satisfied by applying the

pattern.

3) Solution

a) Structure: The static view of the newly defined

classes or their properties (operations and relationships),

which participate in the interactions in the pattern.

b) Participants: The specification of roles of the classes

participating in the interactions in the pattern.

c) Interaction: The dynamic view showing the

collaboration among the classes specified in section 3.2

Participants. More than one interaction could be defined

according to the relationship format of the <<Target>> role

class and other classes.

4) Consequences: The guaranteed benefit from the

application of the pattern.

5) Following patterns: Another CRA pattern connected to

the next to build a complete sequence diagram.

6) Example: Simple application example is presented. The

finally generated sequence diagram and the corresponding

class diagram are provided for understanding the pattern.

Fig. 5 shows the specification of the “Create Data” pattern
documented according to the template above. The “Create Data”

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 10, 2021

592 | P a g e

www.ijacsa.thesai.org

pattern has three different interactions, and each sequence
diagram defines the collaboration among the participating
classes according to the given condition.

As specified in Fig. 5, the P4 patterns (Create/ Read/
Update/ Delete Data patterns) define several interaction

variants according to class relationships and attributes. Table I
lists up all interactions embedded in each CRA pattern. There
are a total of 19 interactions that can be used to construct a
sequence diagram, as shown in Table I.

Fig. 5. CRA Pattern Specification: Create Data Pattern.

Create Data Pattern

1. Problem

Who should be responsible for creating a new instance of some classes?

2. Forces

 Input data from a user should be created as an instance of a class.

 Responsibility assignment with high cohesion and low coupling should be

accomplished.

3. Solution

3.1 Structure: participating classes

3.2 Participants

Role Description

Viewer A UI (User Interface) form class for accepting

data required to be newly created.

Controller A control class for conducting collaboration

among classes for the realization of a given

business flow.

Target A newly created entity class as the result of the

given business flow.

Delegator An entity class including the <<Target>> class
as a data member.

Subordinate An entity class defined as a data member of

<<Target>>.

3.3 Interaction

Create Data 1: Simple Creation

Use WHEN a <<Target>> class does not exist in the current static view.

1. Input data from a viewer is passed to a controller
2. The controller creates a target object.

Create Data 2: Creation through an Associating Class

Use WHEN (a <<Target>> class exists in the current static view) AND (a

<<Target>> is an associated attribute of other class(es))

1. Input data from a viewer is passed to a controller

2. The controller delegates create() responsibility to a delegator of the

target object.

3. The delegator creates a target object.

Create Data 3: Successive creation of Associated Classes

Use WHEN (a <<Target>> class exists in the current static view) AND (a
<<Target>> has (an) object(s) other class (es) as (an) associated attribute(s))

1. Input data from a viewer is passed to a controller
2. The controller creates a target object.

3. The controller delegates creation of subordinate to the target

object.
4. The target creates subordinates object(s) as many as defined.

4. Consequences

A fragment of sequence diagram which is instantiated by the pattern

conforms to the guidelines of the GRASP pattern. Thus, the instantiated

design model can guarantee high cohesion and low coupling.

5. Following Patterns

Confirm Data Manipulation, Transfer Data to Another System

6. Example

 The flow of Event: Create a Schedule
In the given conceptual model of a course registration system, Student

class is associated with Schedule class. To compose a sequence diagram for

the “creation of a schedule” flow, Create Data 3 is selected and applied. The
values elicited from requirements are as the following:

Pattern Variable Input Value

?Objective “Schedule”

?AssociatingClass “Student”

?UCNm “RgstrfrCrss”
(abbreviation of RegisterforCourses)

?DMType “Crt”

?paramP4 “SID, Year, Semester”

The design model fragment resulting from applying to Create Data 3 is

depicted in the following. The Student that is instantiated

from ?AssociatingClass (Delegator) is the owner of createSchedule()
responsibility and creates an instance of the Schedule which is instantiated

from ?Objective(Target) class.

Instantiated Class Diagram for "Create a Schedule" Flow

Instantiated Sequence Diagram for "Create a Schedule" Flow

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 10, 2021

593 | P a g e

www.ijacsa.thesai.org

TABLE I. THE LIST OF THE CRA PATTERNS AND THEIR INTERACTIONS

Pattern Interaction Applicability

System Invocation

(P1)

Invocation by User Use when a user invokes a flow of events

Invocation by System Use when a software system periodically accomplishes a flow of events

Read Data (P2)

Read_Data_1 Use when all retrieved data items are attributes of ?objective class

Read_Data_2
Use when(Retrieved data item(s) is(are) distributed into more than two classes) AND (there exist

association relationships among the classes)

Read_Data_3
Use when retrieved data item(s) which is(are) not attributes of ?objective class belong to the class(es) that

has(have) no association relationship with ?objective class

Read_Data_4
Use when retrieved data item(s) which is(are) not attributes of ?objective class belong to ?AssociatedClass
class and the others belong to the class(es) that has(have) no association relationship with ?objective class

Read_Data_5 Use when an ?objective class is an associated attribute of other class(es)

Transfer Data from Another System (P3) Use when the reading data from another interface system is needed

Create Data
(P4)

Create_Data_1 Use when an ?objective class does not exist in the current static view

Create_Data_2
Use when (an ?objective class exists in the current static view) AND (an ?objective is an associated attribute

of other class(es))

Create_Data_3
Use when (an ?objective class exists in the current static view) AND (?objective has (an) object(s) other

class (es) as (an) associated attribute(s))

Update Data

 (P4)

Update_Data_1
Use when (an ?objective class does not exist in the current static view) OR
((an ?objective class exists in the current static view) AND (it is not the applicability of Update Data

Pattern_2 and Update Data Pattern_3))

Update_Data_2
Use when updated data item(s) that is(are) not an attribute(s) of ?objective class belong to ?AssociatedClass

class

Update_Data_3
Use when updated data item(s) which is(are) not an attribute(s) of ?objective class belong to the class(es)

that has(have) no association relationship with ?objective class

Delete Data

(P4)

Delete_Data_1

Use when (an ?objective class does not exist in the current static view) OR

((an ?objective class exists in the current static view) AND (it is not the applicability of Delete Data
Pattern_2 and Delete Data Pattern_3))

Delete_Data_2 Use when an ?objective class is an associated attribute of other class(es)

Delete_Data_3
 Use when (an ?objective class has another class as an associated attribute) AND (the relationship between

the classes is an aggregation by value)

Confirm Data Manipulation(P5) Use when an acquisition of higher leveled user for the reflection of data status changes is needed

Transfer Data to Another System(P6) Use when the transformation of a data manipulation results to other system is needed

V. CASE STUDY: BUILDING AN ANALYSIS MODEL USING

CRA PATTERN LANGUAGE FOR A PAYROLL MANAGEMENT

SYSTEM

The proposed CRA patterns impose many constants and
parameters(variables) in participating classes' attributes and
responsibilities, confusing unintimate readers. So, this paper
will explain the details of each phase of adopting CRA patterns
in building an analysis model from a scenario of a use case
with a specific system, a payroll management system, rather
than discuss with a set of general constants and variables. The
chosen scenario of the payroll management system is the basic
flow of “Select a payment method,” as shown in Fig. 6.

A. Use Case Analysis

First, a set of generic questions is presented for applying
the proposed CRA patterns, as shown in Table II. The
developer answers the questions based on use case
specifications and already defined key classes. Each question is
used for the developer to select a set of appropriate fragmented
patterns and identify parameter values in each CRA pattern.

 Q1~Q2: Questions for extracting the name of the target
use case and flow of events.

This question is for composing the name of the sequence
diagram from a flow of events in a use case specification. The
blanks in the answer strings to Q1 and Q2 are excluded when
used as values for pattern variables, '?UseCaseNm' and
'?SeqNm'. For example, if the answer to Q1 is "Select Payment
Method" and the answer to Q2 is "Basic Flow," the values for
'?UseCaseNm' and '?SeqNm' are "SelectPaymentMethod"
and"BasicFlow," respectively. Thus, the newly constructed
sequence diagram name is "SelectPaymentMethod BasicFlow."

The value of variables, '?UCNm' and '?SDNm' are decided
by excluding vowels from '?UseCaseNm' and '?SeqNm'. The
values for '?UCNm' and '?SDNm' are used to name classes and
operations.

 Q3: Question for selecting a type of the System
Invocation patterns.

The available answers to the question Q3 are “Interactive
Job” or “Batch Job.” If the answer for Q3 is “Interactive Job,”
System Invocation by a user behavior is selected as the second
segmented collaboration pattern. In that case, additional
question Q3.1 is given to designate the active actor of the target
flow of event. The answer to Q3.1 is denoted as an actor, as

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 10, 2021

594 | P a g e

www.ijacsa.thesai.org

described in Table II. If the answer to Q3 is “Batch Job,”
System Invocation by a system behavior is selected, which
describes a kind of automatic invocation of the target system
according to predefined schedules. As it does not require an
active actor, Q3.1 is skipped in this case.

The “Select payment method” flow is a kind of interactive
job. Thus, the answer to Q3 is “Interactive Job.” According to
the use case specification, the flow starts with an event from
the Employee. The answer to Q3.1 is “Employee,” and it will
be mapped to the active actor denoted as the pattern variable,
„?humanRole‟ of the sequence diagram.

 Q4~Q6: Questions to select proper Manipulate Data
pattern and extract required values for pattern variables.

To realize a flow as a sequence diagram, not all of the
CRUD operations are used. Depending on the event description
of a use case, a different set of CRUD patterns are used.
Questions Q4~Q6 are designed for developers to help
determine the CRUD operations set and extract values of
pattern variables.

Fig. 6. Use Case Specification of “Select Payment Method.”

TABLE II. QUESTIONS AND ANSWERS FOR "SELECT PAYMENT METHOD" FLOW ANALYSIS

No Generic Questions Answer
Pattern

Variable

Selected

Pattern

FLOW LEVEL

Q1 What is the Use Case Name?
“Select Payment Method” ?useCaseName

N/A
“SlctPmntMthd” ?UCNm

Q2 What is the name of the flow of events?
“BasicFlow” ?seqNm

N/A
“SlctPmntMthdBsc” ?SDNm

Q3 What is the job characteristic? “Interactive Job” invocationType
P1: Invocation

by a User

Q3.1 If it is an interactive job, what is the name of the active actor? “Employee” ?humanRole N/A

DATA MANIPULATION LEVEL

Q4
What is the data manipulation type? (select 1 among

creation/read/update/deletion)
“Update Data”(Updt) ?DMType

P4: Update Data Q5 What is the objective data of the data manipulation? “Employee” ?objective

Q6 What are the data items to be changed after this update? “paymentMethod” ?paramP4

Q7
Is there any other data for an Employee to retrieve for the update of
the paymentMethod?

“No” needData
P2, P3 is not
selected

Q8
Is the retrieved data located on another system? If it is, what is the

system?
“No” ?interfaceSystem

P3 is not

selected

Q9
To accomplish this flow of events, is it need to take any approval

from someone?
“No” NeedApproval

P5 is not

selected

Q10
After completing this data manipulation, should the changed data be

transformed to another system(s)?
“No” NeedAnotherSystem

P6 is not

selected

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 10, 2021

595 | P a g e

www.ijacsa.thesai.org

Q4 asks which data manipulation is needed to realize the
target flow among creating/updating/deleting data. The
abbreviation (Crt/Rd/Updt/Dlt) of the answer to Q4 is mapped
to the value of the variable, '?DmType,' included in CRA
patterns. After '?DmType' is designated, the next question, Q5,
asks the objective of the designated data manipulation. The
objective data of CRUD manipulation should be one of the key
classes already given as an input artifact for building an
analysis model. The next question, Q6, is applied only if the
answer to Q4 is "Update Data." However, it does not mean that
Q6 is differently designed according to the answer to Q4, in
other words, the type of data manipulation. Q6 is designed to
ask the property of the selected data manipulation. If the
selected data manipulation type is "Delete Data," Q6 asks
which property of the target class should be deleted. Therefore,
while the answer of Q5 is one of the given key classes, the
answer of Q6 should be one of the attributes in the selected
class as the answer to Q5.

For example, in the case of the "Select payment method"
flow of events, after all, the flow changes the value of the
'payment Method,' of the key class, 'Employee.' So, it is a kind
of update manipulation. Thus, "Update Data" is the answer to
Q4, and the abbreviation, 'updt,' is mapped as the value of
'?DmType'. The objective data is the class, 'Employee.' The
updated attribute is 'paymentMethod' as the answer to Q6, and
it is mapped to the value of „?paramP4.‟

 Q7: Questions to select Read Data pattern or not.

As depicted in Table II, for analyzing the "Select payment
method" scenario, Q7 asks if an additional "Read Data(P2)"
pattern is needed before the "Manipulate
(Create/Update/Delete) Data" pattern. According to the given
flow of events, the answer to Q7 is "No" as s a user selects his
preferred payment method without retrieving any additional
data from the system. Consequently, the "Read Data(P2)"
pattern is not selected to compose a sequence diagram.

However, in the case that require additional retrieving data
before creating/updating/deleting data or the case that main
flow is for retrieving data (answer to Q4 is "Read Data"),
answering the additional questions Q7.1 and Q7.2 are needed
for extracting data for the "Read Data" pattern. The additional
questions Q7.1 and Q7.2 are specified in Table III. Those
questions ask the name of retrieving data and the retrieval
conditions.

 Q8: Questions to select Fetch Data from Another
System pattern or not.

If the answer to Q7 is "Yes," the answer to Q8 is required.
In applying Read Data(P2) pattern to compose a sequence
diagram, one of the checkpoints is the location of the data to be
retrieved. Suppose the data location is not the target system,
message.

Sequences to request the data to the system that is the
source of the retrieved data. The required collaboration with
the other system is defined in Fetch Data from Another
System(P3) pattern. Thus, in this case, the P3 pattern should be
weaved with the already selected P2 pattern. For the given
example scenario, selecting the P3 pattern is not considered

because it is not required to retrieve other data to update the
payment method as the data resource is a user.

TABLE III. SUPPLEMENTAL QUESTIONS NOT APPLIED TO “SELECT

PAYMENT METHOD” FLOW ANALYSIS

No Generic Questions Pattern Variable

Q7
Is there any other data for an
„?humanRole’ to retrieve to update the

‘?objective’?

?DmType

Q7.1 What is the name of the retrieving data? ?objective

Q7.2
What is the search condition for the
retrieval of „?objective’?

?Condition

Q7.3 What are the retrieving attributes? N/A

Q8
Is the retrieved data located on another

system? If it is, what is the system?

?interface

System

Q8.1
What data should be transferred

from ?InterfaceSystem?
?objective

Q8.2
What is the search condition for the
retrieval of ?objective?

?condition

Q9

To accomplish this flow of events, is it

need to take any approval from

someone?

NeedApproval

Q9.1
Who is responsible for the data

confirmation?
?actorNm

Q10

After completing this data manipulation,

should the changed data be transformed
to another system(s)?

NeedAnotherSystem

Q10.1
What is the destination system of the

data transfer?

?interface

System

Q10.2
What is the additional data to be
transferred except ?objective data?

?addData

 Q9: Questions to select Confirm Data Manipulation
pattern or not.

If the answer Q4 is one of the "create/ update/ delete data,”
the Manipulate Data(P4) pattern is selected, question Q9
should be considered. Q9 asks if any approval is needed to
save data manipulation results or not. As the given example, if
it is required to get a confirmation from any actor after
updating the payment method of an employee, the answer to
Q9 should be "Yes," and Confirm Data Manipulation(P5)
pattern will be selected. P5 pattern defines the message
sequences to request confirmation to an actor responsible for
the approval of the data manipulation and to approve it into the
target system.

In the case of payment method update, however, it is not
required any other confirmation to select the payment method
of own Employee. So, the answer to Q9 is "No," and the P5
pattern will not be selected.

 Q10: Questions to select Transfer Data to Another
System pattern or not.

The other question to be considered when Manipulate
Data(P4) pattern has been selected is Q10. In some cases,
changes in data in the target system should be reflected in
another system. The change should be propagated to the data
source system when the changed data source is not the target
system but the other system. In that case, the data source
system should already have been identified as a passive actor
in the given use case model. The transformation of the changed
data to the passive actor is defined in Transfer Data to Another
System(P6) pattern. Q10 asks if the changed data should be

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 10, 2021

596 | P a g e

www.ijacsa.thesai.org

transformed to another system after the completion of data
manipulation. The P6 pattern will be selected and weaved with
the P4 pattern to compose a sequence diagram when the
answer to Q10 is "Yes."

In the given example case, the changed data, "payment
Method" is an attribute of the class, "Employee," saved in the
target system itself. The answer to Q10 is "No." Consequently,
the P6 pattern will not be selected.

B. CRA Pattern Weaving

A set of CRA patterns necessary to implement the given
flow is selected from among the six segmented CRA patterns
by analyzing the given flow of the use case specification and
answering each predefined generic question introduced above.
Most CRA patterns define several variations in the assignment
of responsibilities. As the result of the use case analysis step,
the needed collaboration variation in each CRA pattern is
selected.

Among CRA patterns, the Manipulate Data(P4) patterns
define several interaction variations in each pattern, as shown
in Fig. 5. Once a specific pattern is selected from the use case
analysis step, proper interaction variation should be selected in
several variations. The factor determining a specific interaction
variation is the class's relationship to the '?objective' variable in
the use case analysis stage has with other classes. The
relationship between classes can be grasped through the
conceptual class model.

Fig. 7 shows that Updata_Data_1 is selected among the
three interaction variations of the Update Data (P4) pattern
according to the predefined rule. As shown in Fig. 8, the
'?objective' class (Employee) has the updated item
'?paramP4'(paymentMethod) as its attribute. So, the

relationship between '?objective' class and '?associatedClass' or
'?AssociatingClass' is not required to be considered. Thus, the
condition highlighted by the red square is satisfied with the
given relationship between the 'objective' class and the updated
item, '?paramP4'. For this reason, Update_Data_1 is finally
selected.

In connecting two collaboration patterns, the most left one
among the same lifelines in the two patterns is the connection
point, and it is named as “weaving point.” By overlapping the
lifeline that becomes the weaving point, the two patterns are
connected. While repeatedly weaving the selected patterns, the
segmented CRA patterns are composed into a sequence
diagram to realize the given flow of events.

Fig. 8 depicts the weaving of two patterns to compose a
sequence diagram for the given example flow of events. The
patterns selected according to the answers to each question
described in Table II are Invocation by a User pattern in P1
pattern and Update Data_1 collaboration pattern among P4
patterns. As shown in Fig. 8, the most left one among the
object's lifeline commonly included in the two collaboration
patterns is '?objective+?DMType+Form', which becomes a
weaving point. The pattern variables marked with the prefix '?'
still are denoted in the object names on the top of the diagram
or the messages between lifelines as value assignment is not
done in this step.

The „invoke(param)‟message in the Invocation by a User
pattern is designed to be substituted by the first message in the
firstly connected pattern to the Invocation by a User pattern.
Therefore, the „invoke(param)‟message is substituted by
„update + ?objective (?paramP4)‟ in the weaved sequence
diagram in the lower part of Fig. 8.

Fig. 7. Rule for Selecting an Interaction Variation in Update Data Pattern.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 10, 2021

597 | P a g e

www.ijacsa.thesai.org

Fig. 8. An Example of CRA Pattern Weaving for Composing a Sequence Diagram for the “Select Payment Method” Flow.

C. CRA Pattern Instantiation

The skeleton of the sequence diagram that realizes the
given flow is completed through the CRA pattern weaving step.
This step is called CRA pattern instantiation. The upper
diagram in Fig. 9 is the weaved sequence diagram for the
"Select payment method" flow. Although the sequence of
messages is composed, uninstantiated variable patterns exist in
the names of an actor, lifelines, and messages. The values to be
substituted for the pattern variables included in the skeleton of
the sequence diagram are the answers to each question
identified in the previous use case analysis step. For example,
the name of the control class of this sequence is
'?UCNm+Cntrl' is instantiated to 'SlctPmntMthdCntrl' because
the extracted value of '?UCNm' is 'SlctPmntMth' according to
the values in the table of use case analysis. In the same way, all
the pattern variables are instantiated with the values in the table.
As a result, the lower diagram in Fig. 9 is completed, with no
uninstantiated pattern variable.

The identified responsibility denoted on each message of
the sequence diagram should be an operation of the class,
which is the message's destination. The developer should keep
the consistency between the static view represented by a class
diagram and the dynamic view specified by a sequence
diagram by adding the identified responsibilities to the proper
classes as operations. Fig. 10 shows that the newly identified
responsibilities in defining the sequence diagram for the
"Select payment method" flow are added to the classes. In
building the sequence diagrams with CRA patterns, the newly
<<Boundary>>, and the <<Contoller>> stereotyped classes are
additionally identified. Comparing the analysis model in
Fig. 10 before and after the creation of the sequence diagram, it
can be confirmed that the “<<Boundary>>EmployeeUpdtForm”
class and the “<<Controller>>SlctPmntMthdCntrl” extracted
by the "Update Data" pattern are added to the analysis model.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 10, 2021

598 | P a g e

www.ijacsa.thesai.org

Fig. 9. An Example of CRA Pattern Instantiation to Build the Sequence Diagram for the “Select Payment Method” Flow.

Fig. 10. The Changes of the Static View of the Payroll Management System.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 10, 2021

599 | P a g e

www.ijacsa.thesai.org

Fig. 11. Applying the six CRA Patterns in Building a Sequence Diagram: the Sequence Diagram for the "Register for Courses" Scenario of the Course

Registration System.

D. An Example of Sequence Diagram Built by Applying All

the Six CRA Patterns

In proving the feasibility of the proposed CRA patterns, it
is necessary to show an example of the sequence diagram to
apply all the six CRA patterns. However, unfortunately, in the
payroll management system, the target system of this case
study, there is no scenario to require all the six segmented
CRA patterns. Thus, this study picked one of the scenarios of
another system, the “Course Registration System,” referenced
as an example system in object-oriented analysis textbooks.
The selected scenario is the basic flow of the "Register for
courses" use case. By weaving the proper set of CRA patterns
and instantiating pattern variables with the values from the use
case analysis, the sequence diagram in Fig. 11 is built. Similar
to the sequence diagram for "Select payment method", Fig. 11
is the sequence diagram with the two required CRA patterns:
System Invocation pattern and Update Data pattern. However,
in Fig. 11, all of the supporting CRA patterns are also
participating. The responsibilities denoted on all messages
have been identified from the application of the selected six
CRA patterns. This example confirms that the flow composed
of considerably long interactions can be realized by applying
the proposed CRA pattern language.

VI. EVALUATION

Although the case study result shows the feasibility of the
proposed CRA pattern language, it is needed to prove how
much responsibilities could be extracted from system behaviors
in use case specifications by utilizing it. First, this study
applied the CRA pattern language to other scenarios in the use
case specification of the payroll management system, besides
the scenario presented as the case study in Section 5. Those
scenarios realized by utilizing the CRA pattern language are:
Select Payment Method / Maintain Timecard / Create
Employee Report / Maintain Purchase Order / Create
Administrative Report/ Maintain Employee Info / Run Payroll /
Login.

TABLE IV. COMPARISON OF THE NUMBER OF ELEMENTS IN AN ANALYSIS

MODEL

 Elements #

Type

Conceptual

Model

Instantiated

Model

Analysis

Model

Class 7 35 38

Operation 0 44 51

Attribute 23 27 27

Relationship 6 37 42

Total 36 143 158

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 10, 2021

600 | P a g e

www.ijacsa.thesai.org

Fig. 12. Comparison of the Bad Symptoms Detected on the Implementation

Code.

Table IV compares the number of identified operations
(responsibilities) from the CRA pattern application on the
scenarios above and the number of all operations in the
finalized analysis model to prove the proposed CRA patterns'
coverage. The number of design elements extracted purely by
the CRA patterns is the value obtained by subtracting the # of
elements of the conceptual model from the # of elements of the
instantiated model in Table IV. The instantiated model refers to
the model obtained as a result of pattern instantiation. The
conceptual model is a model that is given as an input, including
entity classes identified before applying the CRA patterns. The
number of operations included in the conceptual model is 0.
After that, the number of operations extracted through pattern
application is 44, which is only seven less than 51 operations
included in the model at the end of the analysis phase. It means
that only seven operations that the developer additionally
identified and added to the operation set. Other 86% ((44-
0)/51*100) of the class responsibilities of the entire analysis
model were identified through CRA pattern application.
Likewise, considering the number of whole elements, including
classes and relationships, it can be confirmed that 67% ((143-
36)/158*100) of the elements are defined as the instantiation of
the CRA pattern.

The fact that 67% of the elements of the entire analysis
model can be extracted by applying uniform patterns means
that, on another axis, 67% of the elements of the analysis
model pose the same level of quality. Moreover, applying the
proposed CRA patterns implies that GRASP guidelines like
high cohesion and low coupling are assured. Thus, it implies
that 67% of the analysis model built by the CRA patterns can
provide a good and uniform quality even without a separate
quality assurance task.

To confirm the effect of applying CRA patterns in the
quality of the analysis model, we conducted a controlled
experiment. The subjects who participated in the experiment
were 4th-year undergraduate students who took the Object-
Oriented Analysis and Design course. Students teamed up with
4-5 students to experience from identifying the requirements of
the payroll management system to building the application. In
constructing the analysis model, only 5 out of 10 teams (group
A) provide only use case specifications. To the remaining five
teams (group B), a questionnaire for identifying use case

specification, CRA pattern specifications, and pattern variables
(Table II and Table III) was provided together. That is, in
group A, students arbitrarily built an analysis model, and in
group B, the CRA pattern language provided in this study was
applied to build an analysis model. Both groups completed the
development of their payroll management system for ten weeks.

For comparing the quality of the codes written by group B
that applied the CRA pattern language to construct an analysis
model and group A that did not apply the CRA pattern
language, this study conducted static analysis on the
implementation code using Understand [22]. As a result, as
shown in Fig. 12, it can be confirmed that the number of
detected bad symptoms of the source code is significantly
smaller in group B than in group A. Among the bad symptom
items, the notable result is the number of unused
objects/variables and parameters, and those numbers of group
B are close to 0. Since the analysis model is constructed by
filling the pattern parameters defined in the given CRA
patterns with the values extracted from the use case
specification, there exists the effect of fundamentally
preventing the inclusion of design elements that are not based
on the requirements in the analysis model. It is the reason why
the number of bad symptoms found in group B is minimal.

The benefits of the proposed CAR pattern language
confirmed through the evaluation results can be summarized as
follows. The CAR pattern language help that (1) a significant
part of the analysis model can be completed by applying the
CAR pattern language itself, and (2) developers with little
design experience can also be expected to create an analysis
model that guarantees consistent quality.

VII. CONCLUSION AND FUTURE WORK

The assignment of responsibilities to classes is hard to
teach and acquire in practice as many considerations should be
taken. Several approaches are proposed to lessen heuristic
factors and relieve the efforts to decide which responsibilities
are required for a specific class. However, up to now, the
existing works, regardless of the used technology, give too
general assignment results or too many candidates for one
responsibility for developers, which cannot reduce much effort
in designing classes.

This study narrows the scope of the proposed CRA pattern
language into the business application domain to solve the
generality problems. It provides the responsibility assignments
results not requiring further revision. The proposed CRA
pattern language comprises the six segmented patterns,
including several interaction variants according to the
relationship format among the conceptual classes.

The six CRA patterns result from vertically decomposing
one data transaction performed by a business application into
one atomic sequence block. Manipulate Data patterns, which
can be seen as the main pattern, contain several interaction
variations that specify various collaboration aspects. While
searching for the answer to the standardized question set for
each flow described in the use case specification, the
developers assign values to the variables existing in each
pattern. The answers to the questions also determine the set of
patterns needed to realize a given flow. The selected pattern

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 10, 2021

601 | P a g e

www.ijacsa.thesai.org

creates a sequence diagram while overlapping the lifeline
corresponding to the predetermined weaving point, and this
step is called pattern weaving. As a result of pattern weaving,
the skeleton for one sequence diagram is completed, and
instantiated sequence diagram can be obtained by substituting
the values of pattern variables identified in advance.

This study shows the feasibility and the coverage of the
proposed CRA pattern language in constructing an analysis
model with a case study for constructing an analysis model of a
payroll management system. In particular, the results showing
that 67% of the operations identified in the final analysis model
can be extracted only by applying the proposed CRA pattern
proves the differentiation of this study. And, the enhancement
of code quality shown through the designed experiment is
another benefit of applying the proposed CRA patterns.

The questions for extracting information from use case
specifications and the rules for selecting an interaction among
the provided interaction variations in a CRA pattern are
designed to consider the automation tool development. As for
now, the development of the automation tool integrating with a
UML authoring tool and Microsoft Word is under construction.
With the automated tool, developers just select a proper word
to answer a question from use case specifications written in
Microsoft Word. And, then, automatically, a proper set of the
CRA pattern will be selected, and each word selected by
developers will substitute each pattern variable. Consequently,
the sequence diagram will be created in a UML authoring tool
automatically. Besides constructing the automated tool that
supports the CRA patterns, we also plan to extend the case
studies to more diverse applications.

REFERENCES

[1] D. Svetinovic, D. M. Berry, and M. Godfrey, “Concept Identification in
Object-Oriented Domain Analysis: Why Some Students Just Don‟t Get
It,” in Proceedings of the 13th IEEE International Conference on
Requirements Engineering (RE'05), pp. 189-198, 2005.

[2] C. Larman, Applying UML and Patterns: An Introduction to Object-
Oriented Analysis and Design and Iterative Development, 3rd Edition,
Pearson Education India, 2004, pp.736.

[3] M. Bowman, L. C. Briand, and Y. Labiche, “Solving the Class
Responsibility Assignment Problem in Object-oriented Analysis with
Multi-Objective Genetic Algorithms,” IEEE Transactions on Software
Engineering, vol. 36, no. 6, pp. 817-837, 2010.

[4] G. Glavas, and K. Fertalj1, “Metaheuristic approach to class
responsibility assignment problem,” in Proceedings of the ITI 2011,
33rd International Conference on Information Technology Interfaces,
pp.591-596, 2011.

[5] M. Akiyama, S. Hayashi, T. Kobayashi, and M. Saeki, “Supporting
Design Model Refactoring for Improving Class Responsibility
Assignment,” in Proceedings of the ACM/IEEE 14th International

Conference on Model Driven Engineering Languages and Systems
(MODELS 2011), pp. 455-469, 2011.

[6] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, “Design Patterns:
Elements of Reusable Object-Oriented Software,” Addison-Wesley,
1995.

[7] M. Fowler, Analysis patterns: reusable object models, Addison-Wesley,
vol. 10, pp. 357, 1997.

[8] S. Purao, V. C. Storey, and T. Han, “Improving analysis pattern reuse in
conceptual design: Augmenting automated processes with supervised
learning,” Information Systems Research, vol. 14, no. 3, pp.269-290.
2003.

[9] M. E. Fayad, J. Rajagopalan, and A. Ranganath, Stable Analysis
Patterns: A True Problem Understanding with UML, 2004.

[10] G. Shu-Hang, L. Yu-Qing, J. Mao-Zhong, G. Jing, and L. Hong-Juan,
“A requirement analysis pattern selection method for E-business project
situation,” in Proceedings of the IEEE International Conference on
eBusiness Engineering ICEBE07, pp. 347-350, 2007.

[11] X. U. Jin-song, and S. H. I. Lei, “Web application analysis pattern based
on recursive MVC structure [J],” Computer Engineering and Design, vol.
12, 2005.

[12] H. S. Hamza, and M. E. Fayad, “The Negotiation Analysis Pattern,” in
Proceedings of the EuroPLoP, 2003.

[13] M. Bowman, L. C. Briand, and Y. Labiche, “Multi-Objective Genetic
Algorithms to Support Class Responsibility,” in Proceedings of the 2007
IEEE International Conference on Software Maintenance, pp. 124-133,
2007.

[14] C. Arora, M. Sabetzadeh, L. Briand, and F. Zimmer, “Extracting domain
models from natural-language requirements: approach and industrial
evaluation,” in Proceedings of the ACM/IEEE 19th International
Conference on Model Driven Engineering Languages and Systems, pp.
250-260, 2016.

[15] M. Elbendak, P. Vickers, and N. Rossiter, “Parsed use case descriptions
as a basis for object-oriented class model generation,” Journal of
Systems and Software, vol. 84, no. 7, pp.1209-1223, 2011.

[16] V. B. R. V. Sagar, and S. Abirami, “Conceptual modeling of natural
language functional requirements,” Journal of Systems and Software,
vol. 88, pp. 25-41, 2014.

[17] H. Masoud, and S. Jalili, “A clustering-based model for class
responsibility assignment problem in object-oriented analysis,” Journal
of Systems and Software, vol. 93, pp.110-131, 2014.

[18] M. Albert, J. Cabot, C. Gómez, and V. Pelechano, “Automatic
generation of basic behavior schemas from UML class diagrams,”
Software & Systems Modeling, vol. 9, no. 1, pp. 47-67, 2010.

[19] A. Leff, and J. Rayfleld, “Programming model alternatives for
disconnected business applications,” Internet Computing, vol. 10, no. 3,
pp. 50-57, 2006.

[20] M. Veit, and S. Herrmann, “Model-view-controller and object teams: A
perfect match of paradigms,” in Proceedings of the 2nd international
conference on Aspect-oriented software development, pp. 140-149,
2003.

[21] R. T. V. Braga, R. Ré, P. C. Masiero, and C. C. Mourão, “A Process to
Create Analysis Pattern Languages for Specific Domains,” in
Proceedings of the SugarLoafPLoP, 2007.

[22] Understand. Available at: https://www.scitools.com/ (accessed
25/08/2021, 2021).

