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Abstract—Recycling plays a vital role in saving the planet for 

future generations as it allows keeping a clean environment, 

reducing energy consumption, and saving materials. Of special 

interest is the plastic material which may take centuries to 

decompose. In particular, the Polyethylene Terephthalate (PET) 

is a widely used plastic for packaging various products that can 

be recycled. Sorting PET can be performed, either manually or 

automatically, at recycling facilities where the post-consumed 

objects are moving on the conveyor belt. In particular, 

automated sorting can process a large amount of PET objects 

without human intervention. In this paper, we propose a 

computer vision system for recognizing PET objects placed on a 

conveyor belt. Specifically, DeepLabv3+ is deployed to segment 

PET objects semantically. Such system can be exploited using an 

autonomous robot to compensate for human intervention and 

supervision. The conducted experiments showed that the 

proposed system outperforms the state of the art semantic 

segmentation approaches with weighted IoU equals to 97% and 

Mean BFscore equals to 89%. 
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I. INTRODUCTION 

Over the last decade, people around the world have a 
rising concern about efficient waste management due to the 
yearly waste increase. In fact, according to the World Bank 
Group 2020 statistics, 2.01 billion tons of solid municipal 
waste are engendered every year worldwide [1]. Furthermore, 
according to the same source, it is predicted that this amount 
would increase to 3.4 billion tons by 2050. One way of 
processing this huge amount of waste is by incineration. 
However, it can be harmful to the environment because of 
greenhouse gas emissions. Another commonly used way to 
process waste is landfill. Nevertheless, it is not appropriate for 
certain materials that need a very long time to biodegrade. In 
particular, plastic material, which constitutes 14% of the total 
waste amount [2], takes over 100 years to biodegrade. 
Therefore, recycling, which consists of processing and reusing 
the waste, emerged as an alternative method suitable for waste 
processing. Since the way of processing the waste depends on 
its type, the waste needs to be sorted. To make the sorting 
process easier, there are sometimes specific waste bins for the 
most common waste types such as plastic, glass, and paper. 
Even though different types of plastic require specific methods 
of treatment. Therefore, plastic materials must be sorted 
according to their type since the quality of waste separation 
highly affects the quality of the recycled plastic. One of the 
most valuable types of plastic for recycling is Polyethylene 
Terephthalate (PET). It is widely used for plastic bottles. It is 

recognized by the symbol “PET” or “PETE” imprinted in the 
container. 

The wide use of PET is due to the fact that it is 
environmentally friendly and inexpensive. For that reason, 
recycling centers sort plastic waste into PET and non-PET 
plastics. It is even further sorted into transparent, blue and 
green, and mixed color PET since they do not have the same 
sale price.  In fact, transparent PET is the most valuable one 
and the mixed color is the least valuable [3]. Manual waste 
sorting is exhaustive and time consuming. Moreover, it may 
be affected by the worker’s condition. On the other hand, the 
PET chemical sorting process is very delicate, dangerous, and 
generates chemical residue [4]. Electrostatic systems that 
disperse plastics according to their types are alternative 
solutions for plastic sorting [5]. Nevertheless, they are not cost 
effective. Thus, mechanical approaches have been used 
instead, as they are safe and less costly [6]. They mainly use 
visual sensors to localize the PET materials that would be 
moved to the appropriate waste bin. Typically, mechanical 
sorting systems use a conveyor belt to carry the waste. When 
the waste reaches the camera position, an image of the waste 
scene is captured. Then, a computer vision system localizes 
the PET object in the captured image and categorizes it using 
image processing and machine learning techniques. More 
specifically, the image is segmented into objects. Then, these 
objects are conveyed as input to a recognition system in order 
to categorize it as PET or non-PET. Nevertheless, suitable 
visual descriptors need to be extracted from the image in order 
to discriminate PET objects effectively. In this respect, 
considering the diversity of PET waste and the background 
clutter, the determination of such features is arduous and 
constitutes a hindrance for computer vision systems [7]. One 
way of alleviating the problem of choosing the appropriate 
visual features is through the use of deep learning techniques 
ability to semantically segment the waste image. 

In this paper, we propose to localize and categorize PET 
plastics on the conveyor belt. The proposed approach will 
semantically segment the PET material. To achieve this, 
DeepLabv3+ deep neural network architecture [8] will be 
trained to learn PET containers’ visual characteristics. 

II. SEMANTIC SEGMENTATION 

In the field of computer vision, image segmentation is the 
task of dividing the image into sets of pixels called segments. 
It is considered as a one of the most difficult and challenging 
problems in the computer vision field [9]. Image segmentation 
aims to represent the image at a higher level in a way that 
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facilitates its analysis by localizing objects and edges. Over 
the last decades, image segmentation has been used in several 
applications such as medical image analysis, scene 
understanding, robotic vision, and self-driving cars [10]. The 
image segmentation process can be supervised or 
unsupervised. Unsupervised image segmentation does not 
require a training phase, and thus previous knowledge of the 
object is not needed [11]. Alternatively, supervised 
segmentation requires a training phase that uses a set of 
labeled pixels. It can be perceived as a classification of the 
pixels that constitute the image [12].  While instance 
segmentation treats multiple instances of the same object as 
distinct objects [13], semantic segmentation treats multiple 
instances of the same object as a single one. It does not 
differentiate between two or more instances referring to the 
same object in the same image. In the last decade, semantic 
segmentation approaches were mainly based on the extraction 
of suitable engineered features fed to a classifier. However, 
the efficiency of these approaches depends heavily on the 
extracted features. This is considered a critical factor for the 
progress of semantic segmentation [14]. Recently, the boost of 
Deep Learning in the context of computer vision has also 
affected semantic segmentation [14]. 

The development of Deep Convolutional Neural Net 
(DCNN) led to a significant improvement in semantic 
segmentation [15]. One of the main characteristics that led to 
the success of DCNN is its ability to learn abstract data 
representation [16]. However, while the special abstraction is 
recommended for classification tasks, it impedes semantic 
segmentation. In fact, semantic segmentation approaches 
based on DCNN face three main problems. The first one is 
related to the repeated combination of the max-pooling layer 
and striding that yields a feature map with decreased feature 
resolution [17]. The second obstacle concerns the multi-scale 
challenge, where the objects may have different scales [18]. 
This induces increasing the number of computations since it 
requires training the network with different scale versions of 
the image. The third hindrance is due to the discard of the 
location information [19]. DCNN, designed for image 
classification and object detection, is invariant to special 
transformation. This results in inconsistent segmentation 
outcomes. Furthermore, as semantic segmentation implicates 
segmentation and classification processes, the key point is 
then how to adjoin the two processes. We distinguish three 
types of deep learning approaches for semantic segmentation. 
The first type starts by learning the object regions [20] [21]. 
These regions, integrating the shape information, are then 
conveyed to a DCNN classifier [22] [23]. This type of 
approach depends on the results of the segmentation phase 
which in its turn depends on the engineered features. 
Alternatively, the second type of approach uses the 
convolution layers of DCNN to extract the features to use 
them for the segmentation phase [19]  [24] [25]. However, 
segmentation and classification tasks are still performed in 
cascade. Therefore, classification still depends on the 
segmentation phase and consequently, any segmentation error 
cannot be recovered by the classification task. The third type 
employs DCNN directly on the images to learn the pixels’ 
categories [17] [26]. This eliminates the segmentation phase. 
In order to enhance the segmentation performance along the 

edges, the Conditional Random Fields (CRFs) approach [23] 
has been integrated into the DCNN based approaches [24] 
[27]. In fact, by taking into consideration the neighboring 
pixels, the object boundaries are better localized. CRF has 
been used as a post-processing step [8]. It has also been 
integrated to the DCNN architecture in [23], [24], [25], [26] 
and [27]. 

III. RELATED WORK 

In the literature, several PET sorting approaches have been 
reported. Among the reported works, some works designed a 
handcrafted feature suitable for PET categorization [28] [29] 
[30]. Other works used available generic handcrafted features 
[31] [32]. 

A. PET Sorting Approaches based on Application Dedicated 

Handcrafted Features 

The approach in [28] extracts the foreground object (the 
waste object) by employing background subtraction. After 
connecting the obtained objects and enhancing the border 
using morphological operations, small blobs are discarded 
according to a pre-defined size threshold. For the remaining 
blobs called “white strips”, a contour box is determined along 
its eight surrounding boxes of the same size called “grey 
strips”. After the detection of the plastic blobs, a visual 
descriptor is extracted. The authors in [28] designed a new 
handcrafted feature. It is based on modeling the color 
distribution of the “grey strips”. Alternatively, the authors in 
[29] propose the “white pixel” approach. They first start by 
preprocessing the image by performing noise removal, 
background subtraction, and grey level transformation. Then, 
they employ the MATLAB function “regionprops” [33] to 
split the image into a set of disconnected objects. This results 
in reducing the problem to a classification problem where only 
one object is present in the image. From the obtained grey 
level image, the authors designed two handcrafted features. 
The first one is extracted from the whole image by computing 
the average of the last 106 entries of the 256-bin normalized 
color histogram. Assuming that the bottom of the container is 
not covered by a label and is transparent showing the black 
color of the conveyer belt, the second proposed feature divides 
the image into five parts and extracts the center of the fifth 
one. From the extracted Region of Interest, ROI, the mean and 
standard deviation of the first 100 entries of the normalized 
256-bin color histogram are computed. The resulting two 
features are then fed to the Linear Discriminant Analysis 
(LDA) classifier [34]. On the other hand, the reported 
approach in [30] assumes that only one object is present in the 
scene. It starts by converting the RGB image to a greyscale 
one. Then, the Canny edge detector [35] is employed to detect 
the object in the image. The 256-bin histogram is computed 
from the detected object based on which the authors in [30] 
designed a new handcrafted feature. The proposed feature 
consists of two values. The first one is the sum of the first one 
hundred entries of the 256-bin histogram,   , and the second 
one is the sum of the last one hundred entries,   . Similar to 
the proposed approach in [29], the authors in [30] assume that 
PET objects are transparent. Thus, they will be perceived as 
black, like the color of the conveyer belt. Considering this 
assumption, they design a rule to classify PET and non-PET 
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objects. More specifically, an object is considered PET if    is 
greater than   . 

B. PET Sorting Approaches based on Generic Handcrafted 

Features 

The authors in [31] proposed a PET sorting system. They 
assume that there is only one object in the captured image and 
propose to classify plastic bottles carried on a conveyor belt as 
PET or non-PET. Moreover, they propose to further classify 
non-PET plastic bottles as High Density Polyethylene (HPDE) 
or Polypropylene (PP). The preprocessing step starts by 
segmenting the image using Otsu’s thresholding method [36] 
in order to locate the object. It is followed by background 
subtraction and segmentation enhancement using 
morphological operators. The authors suggest working 
directly on the pixels of the considered object. However, due 
to the image’s size, the obtained feature has a high dimension 
and the system would then be prone to the curse of 
dimensionality. That is why they propose to reduce the 
dimensionality using five techniques. Namely, they used 
Principal Component Analysis (PCA) [[37] [38], Kernel PCA 
[39], Fisher’s Linear Discriminant Analysis (FLDA) [40], 
Singular Value Decomposition (SVD) [41], and Laplacian 
Eigenmaps (LEMAP) [42]. The resulting feature vectors are 
fed separately to the Support Vector Machine (SVM) classifier 
[43]. Then, the classification results obtained using each 
feature are combined using the majority vote approach. 
Alternatively, the system proposed in [32] treats each object 
present in the image separately. First, edges are detected. 
Then, standard shape features are extracted. These are the 
length, the width, the area, the aspect ratio, and the filling 
fraction. The Cartesian and polar coordinates of the 90 equally 
spaced points of the perimeter are also considered. The 
authors in [32] considered three classifiers. Namely, the K-
Nearest Neighbor (KNN) [34] with K=1, Kohonen map [44], 
and Artificial Neural Net (ANN) [45]. For the KNN classifier 
they used the geometric feature, the Cartesian coordinates of 
the perimeter, and its polar coordinates separately. On the 
other hand, the geometric feature is used with Kohonen map, 
and the polar coordinate of the perimeter is used with ANN. 
Moreover, the authors designed a “factor-of-merit” measure to 
decide on the final category of the object. In fact, the “factor-
of-merit” is computed for the different considered system 
results in order to combine them. The system is assessed in a 
50-instance dataset. 

C. Convolutional Neural Net based Approaches 

In [46], the authors developed a system that sorts four 
kinds of waste: glass, paper, plastic, and metal, based on a pre-
trained ResNet-50 architecture [47]. ResNet was pre-trained 
using ImageNet dataset [48]. It is used to extract the feature 
automatically from the whole image. In fact, a single object is 
considered per image. A multi-class soft kernel SVM [43] is 
used instead of softmax for the classification task.  In [49], the 
authors proposed a waste management system using ResNet-
34 deep learning architecture.  The system assumes the 
presence of a single object in the captured image. The work in 
[49] classifies the waste into six categories which are 
cardboard, glass, metal, plastic, paper, and trash. Nevertheless, 
the proposed system aims to classify the waste as digestible 
and indigestible. In fact, cardboard, glass, metal, plastic, and 

paper categories are considered indigestible while the 
remaining waste is considered digestible. A computer vision 
waste sorting approach is proposed in [50]. It considers a 
single object per image. The authors adopted AlexNet [51] 
deep learning architecture to categorize various types of waste 
material. However, this system performed poorly compared to 
the system based on extracting Scale Invariant Feature (SIFT) 
[52] and feeding it to the SVM classifier [43]. The authors in 
[53] proposed a waste sorting system for all types of materials. 
It is based on DenseNet-121 [54] deep learning architecture. 
The choice of DenseNet was motivated by the small size of 
the dataset [53]. In an attempt to improve the performance, 
data augmentation is employed by considering vertical, 
horizontal, and random 25° rotations. To further improve the 
system's performance, a genetic algorithm is utilized to 
optimize the hyper-parameters of the fully connected layers. 

As stated above, various vision-based recognition 
approaches have been proposed in the literature. The extracted 
features differ between these approaches. Some papers focus 
on designing handcrafted features suitable for the PET sorting 
application [28] [29] [30]. However, these approaches 
assumed that PET materials are transparent. The designed 
features are based on the fact that PET containers appear black 
like the conveyer belt color. Nevertheless, this is not the case. 
PET containers can be transparent, blue and green, and mixed 
colors. This infers that these approaches addressed only the 
problem of sorting transparent PET materials. Other 
approaches used existing generic features [31] [32]. One of 
them used dimensionality reduction on the image pixels as a 
feature. The other one employed the shape feature. However, 
in addition to using only 50 instances as a dataset, the shape 
feature would not be able to recognize crashed containers. 
These feature-based approaches face the challenge of feature 
choice or feature design. Moreover, the images need to be 
preprocessed and segmented in order to separate the object 
from the background. This makes the system performance 
sensitive to the performance of these preprocessing and 
segmentation techniques. Convolutional Neural Nets, CNN, 
would alleviate these problems by learning the appropriate 
feature without the need of preprocessing and segmentation 
techniques. However, the only approach that used deep 
learning to classify PET bottles did not classify plastic as PET 
or non-PET [55]. Rather, only PET bottles are fed to their 
system, which identifies the state of the PET bottles. Namely, 
it checks if the PET bottle has a cap, a seal, or content. Thus, 
to the best of our knowledge, no reported work addressed the 
problem of PET sorting using CNN. Alternatively, sorting all 
kinds of waste approaches based on various Deep CNN have 
been reported [46] [49] [50] [53]. Among these approaches, 
two are based on ResNet architecture [46] [49]. Another is 
based on AlexNet [50] and performed poorly. While the other 
is based on DenseNet [53] and would be practical only for 
small datasets. 

IV. PROPOSED APPROACH 

We propose to segment the images captured from the 
conveyer belt semantically. Three categories need to be 
localized and identified. These are transparent PET, blue and 
green PET, and mixed color PET. For this purpose, we 
employ DeepLabv3+ [8]. Fig. 1 displays the architecture of 
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the proposed system. DeepLabv3+ [8] is designed to 
overcome the limitations of existing semantic segmentation 
approaches based on DCNN. More specifically, DeepLabv3+ 
[8] adopts an encoder-decoder architecture and uses Resnet as 
a backbone for the encoder. Nevertheless, as shown in Fig. 2, 
it introduces modifications to the Resnet through the use of 
atrous convolution. Moreover, Atrous Spatial Pyramid Pooling 
(ASPP) and fully connected Conditional Random Fields 
(CRF) are incorporated. 

Fig. 2 shows a simplified structure of DeepLabv3+ model. 
As shown, the Resnet model reduces the size of the input 
image by a factor of 16. Nevertheless, DeepLabv3+ discards 
the striding of the last convolutional layer and replaces it by 
atrous convolution with rate equal to 2, and appends it by the 
Atrous Spatial Pyramid Pooling (ASPP) module. The output 
of ASPP is then up-sampled by 4 in the decoder module. The 
obtained feature map is concatenated with a feature map from 
the encoder module that has the same size, specifically the one 
down-sampling the input by a factor of 4. Next, it is 
convoluted using a set of 3X3 filters, and then up-sampled by 
4 to engender an output of the same size of the input. 
Recurrent pooling and convolution layers decrease the 
resolution of the obtained feature. To remedy that, atrous 
convolution is introduced. Its idea comes from the wavelet 
decomposition. It up-samples the filter by inserting holes that 
are filled with zeroes to enlarge the receptive field. This is 
called Atrous convolution, or dilated convolution. Moreover, 
DCNNs are able to handle objects with different scales by 
using the Atrous Spatial Pyramid Pooling (ASPP) method. 

 

Fig. 1. Proposed System Architecture. 

 

Fig. 2. Simplified Structure of DeepLabv3+ [56]. 

The latter performs four parallel operations. These are one 
convolution with kernel 1X1 and three atrous convolutions 
with kernel 3X3 and rates equal to 6, 12 and 18, respectively. 
This results in extracting 4 features at different scales. The 
feature map learned at the end of the encoder is a stack of the 
obtained 4 features. To alleviate the localization problem, 
fully connected Conditional Random Field (CRF) [23] is 
employed. It is a statistical approach that models the relation 
between pixels by estimating the cost of assigning a pair of 
labels to a pair of pixels (pairwise cost). Its main function is to 
clear out invalid predictions by coupling neighbor pixels and 
privileging same label assignment for nearby pixels. 

This leads to refining the segmentation result. 
Furthermore, DeepLabv3+ adopts the encoder-decoder 
architecture. It aims to refine the edges obtained by the 
segmentation. More specifically, the encoder is responsible for 
extracting the features and the decoder allows retrieving the 
spatial resolution. The encoder consists of two modules which 
are ResNet with atrous convolution component and the ASPP. 
The decoder merges and up-samples the learned features and 
the result of the encoder after up-sampling. We train 
DeepLabv3+ using labeled captured images. Images captured 
from the conveyer belt are fed to DeepLabv3+ [8]. The 
corresponding mask images are provided at the output. Mask 
images indicate the label of each pixel of the input image. The 
label could be transparent, blue and green, mixed color, or 
others. 

V. EXPERIMENTS 

In order to evaluate the performance of the proposed 
approach, a dataset is collected. It includes images of size 
720X960X3 pixels captured from 420X594 mm scene using a 
camera. The scene contains PET and non-PET materials on a 
black background representing the conveyer belt. The waste 
materials can be overlapped or not. Three types of PET are 
considered. These are transparent, blue and green, and mixed 
color PET. The dataset is labeled manually accordingly. The 
performance of the proposed approach is assessed using five 
performance measures. These are the standard performance 
measures used for semantic segmentation that take into 
consideration both the categorization and localization 
performances [57]. Namely, we will use the Global Accuracy 
[58], Mean Accuracy [58], Mean Intersection over Union 
(Mean IoU) [10], Weighted Intersection over Union 
(Weighted IoU) [58], and Mean BFscore [59]. In order to 
assess the performance of the proposed system, we intend to 
conduct three experiments. 

A. Experiment 1 

In this experiment, we try to empirically figure out the best 
hyperparameter configuration for both  Resnet-50 and Resnet-
18 [47] when they are used  as backbone models for the 
DeepLabv3+ in the context  of  PET sorting. In this regard, we 
train two DeepLabv3+ models. Precisely, Resnet-50 and 
ResNet-18 are trained using 60% of the data, validated on 
20%, and tested on the remaining 20%. For each considered 
model, various configurations were tested. In particular, the 
optimizer, the learning rate, and the L2 regularization 
parameter were tuned.  This results in 6 configurations for 
each model. Table I and Table III report the details of each 
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considered configuration with respect to Resnet-50 and 
Resnet-18 [47], respectively. Moreover, for this experiment 
the size of batch is set to 2 and the number of epochs is set to 
30. In order to determine the best model, the testing 
performance results of each configuration are reported. These 
are Global Accuracy, Mean Accuracy, Mean IoU, Weighted 
IoU, and Mean BFscore. 

TABLE I. THE CONSIDERED CONFIGURATIONS FOR RESNET-50 

 Optimizer Learning rate 
L2 

regularization 

Configuration 1 SGDM 1e-3 0.005 

Configuration 2 ADAM 1e-3 0.05 

Configuration 3 SGDM 

Initially:1e-3 

Learn Rate Drop Period: 
5 

Learn Rate Drop Factor: 

0.2 

0.001 

Configuration 4 SGDM 

Initially:1e-3 

Learn Rate Drop Period: 

6 
Learn Rate Drop Factor: 

0.5 

0.001 

Configuration 5 SGDM 

Initially:1e-3 

Learn Rate Drop Period: 
4 

Learn Rate Drop Factor: 

0.05 

0.001 

Configuration 6 SGDM 

Initially:5e-2 

Learn Rate Drop Period: 

5 
Learn Rate Drop Factor: 

0.2 

0.001 

TABLE II. WEIGHTED IOU AND MEAN BFSCORE WHEN USING RESNET-50 

 Weighted IoU Mean BFscore 

Configuration 1 0.9476 0.8744 

Configuration 2 0.7539 0.7084 

Configuration 3 0.9687 0.8933 

Configuration 4 0.9233 0.8420 

Configuration 5 0.9268 0.8146 

Configuration 6 0.6333 0.6591 

TABLE III. THE CONSIDERED CONFIGURATIONS FOR RESNET-18 

 Optimizer Learning rate L2 regularization 

Configuration 1 SGDM 1e-3 0.005 

Configuration 2 SGDM 1e-4 0.001 

Configuration 3 SGDM 

Initially:5e-3 
Learn Rate Drop 

Period: 5 

Learn Rate Drop 

Factor: 0.2 

0.001 

Configuration 4 SGDM 

Initially:1e-2 

Learn Rate Drop 

Period: 6 
Learn Rate Drop 

Factor: 0.03 

0.001 

Configuration 5 SGDM 5e-3 0.01 

Configuration 6 SGDM 

Initially:2e-2 
Learn Rate Drop 

Period: 1 

Learn Rate Drop 
Factor: 0.3 

0.1 

TABLE IV. WEIGHTED IOU AND MEAN BFSCORE WHEN USING RESNET-18 

 Weighted IoU Mean BFscore 

Configuration 1 0.9252 0.8337 

Configuration 2 0.9165 0.7698 

Configuration 3 0.7863 0.6905 

Configuration 4 0.8002 0.7077 

Configuration 5 0.8122 0.7328 

Configuration 6 0.7978 0.7012 

 

Fig. 3. Proposed System Performance when using Resnet-50 as Backbone. 

 

Fig. 4. Proposed System Performance when using ResNet-18 as Backbone. 

Fig. 3 displays the performance measures of the system 
when using Resnet-50 as backbone for the DeepLabv3+ 
semantic segmentation approach. Similarly, Fig. 4 shows these 
performances when using Resnet-18. Table II and Table IV 
report Weighted IoU and Mean BFscore for Resnet-50 and 
Resnet-18, respectively. 
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Fig. 5. Resnet-50 and Resnet-18 Models. 

As shown in Fig. 3 and Fig. 4, configuration 3 allowed 
obtaining the best performance for Resnet-50. Actually, since 
the data is unbalanced Weighted IoU and Mean BFscore 
reflect better the performance of the system. Thus, 
configuration 3 outperformed the other configurations with a 
Weighted IoU of 0.9687, and Mean BFscore of 0.8933. This is 
confirmed by the results reported in Table II. More 
specifically, configuration 3 uses stochastic gradient descent 
(SGDM) as optimizer, a learning rate initially set to 0.001, and 
increasing by a factor of 0.2 every 5 epochs, and an L2 
regularization of 0.001. According to [60], SGDM is expected 
to give better results. Moreover, the considered learning rate 
gave better result by avoiding missing the optimal weights 
while training the network. Furthermore, the L2 regularization 
of 0.001 avoided both over-fitting and under- fitting situations. 
In fact, in case of a large value, the model doesn’t fit well, 
while in case of a small value, the training time is too long. 
Concerning Resnet-18, the best performances in terms of 
Weighted IoU and Mean BFscore were obtained when 
adopting configuration 1 which consists of a constant learning 
rate of 0.001, and a L2 regularization of 0.005. In fact, by 
avoiding missing optimal values for the model, and not over-
fitting it, these two hyperparameters yielded a Weighted IoU 
equal to 0.9252, and a Mean BFscore equal to 0.8337. This 
result is confirmed by Table IV where configuration 1 yielded 
better results. 

B. Experiment 2 

In this experiment, we try to empirically determine which 
Deep Learning model, Resnet-50 or Resnet-18 [47] is more 
effective as backbone model for the DeepLabv3+ when used 
for PET sorting. In this regard, we take into consideration the 
best obtained results for both models according to experiment 
1. Namely, we consider the results lead by configuration 3 for 
Resnet-50 and the one lead by configuration 1 for Resnet-18. 
Fig. 5 displays the performance measures of Resnet-50 and 

Resnet-18 on the testing sets, respectively. As mentioned 
previously, since the data is unbalanced, Weighted IoU and 
Mean BFscore are more suitable to assess the performance of 
the system. Thus, in Table V, we report Resnet-50 and Resnet-
18 performances in terms of Weighted IoU and Mean 
BFscore. To further investigate the obtained results, Fig. 6 
shows the comparison between Resnet-50 and Resnet-18 in 
terms of Weighted IoU with respect to each considered class. 
Similarly, Fig. 7 displays the comparison between Resnet-50 
and Resnet-18 in terms of Mean BFscore with respect to each 
considered class. Finally, Fig. 8 displays sample semantic 
segmentation results obtained using Resnet-18 and Resnet-50. 
Taking into account, the best obtained results for both Resnet-
50 (configuration 3), and Resnet-18 (configuration 1), we 
compare the two models when used as backbone for 
deepLabv3+ semantic segmentation approach. 

 

Fig. 6. Comparison between Resnet-50 and Resnet-18 in Terms of Weighted 

IoU with respect to each Considered Class. 

 

Fig. 7. Comparison between Resnet-50 and Resnet-18 in Terms of Mean 

BFscore with respect to each Considered Class. 

TABLE V. TESTING WEIGHTED IOU AND MEAN BFSCORE COMPARISON 

BETWEEN RESNET-50 AND RESNET-18 

 Resnet-50 Resnet-18 

Weighted IoU 0.9687 0.9252 

Mean BFscore 0.8933 0.8337 

As shown, in Table V, Resnet-50 outperforms Resnet-18 
with Weighted IoU equal to 0.97 and Mean BFscore equal to 
0.89 for the testing results. The reason that Resnet-50 
performs better than Resnet-18 can be explained by the fact 
that a deeper network learns more abstract features which 
yields better segmentation results. 
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(a)                               (b)                              (c)  

 
                  (d)                                  (e)                                     (f) 

 
                  (g)                                   (h)                                     (i) 
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Fig. 8. Sample Semantic Segmentation Results Obtained using Resnet-18 

and Resnet- 50. (a), (d), and (g) are the Original Images, (b),(e),and (h) The 

Segmentation Results Obtained when using Resnet-18, and (c), (f) and (i) The 

Segmentation Results Obtained when using Resnet-50. 

As shown from Fig. 6 and Fig. 7, the performance is not 
the same for all considered categories. In fact, the background 
and Transparent PET classes have the higher performances. 
This is explained by the fact that background consists of black 
homogeneous color corresponding to the conveyer belt. 
Obviously, this is an easy segmentation problem. Concerning 
Transparent PET category, the obtained result can be 
attributed to the fact that this category is represented by a 
larger number of pixels in the dataset. In fact, if the model is 
trained with larger training set, the classification results are 
expected to be better. Alternatively, Blue or Green PET, and 
Colored PET are less represented in the training data. 
Furthermore, these two categories have large intra-class 
variance. In fact, in addition to the container shape variance, 
they are characterized by the color variance, whereas the 
background and the transparent PET categories have the same 
color per category. To better illustrate the obtained results, we 
can see from Fig. 8 (e) and Fig. 8 (f) that some blue or Green 
PET pixels are segmented as Mixed color PET or transparent 
PET. Similarly, from Fig. 8 (h) and Fig. 8 (i), we observe that 
some parts of the background are segmented as mixed color 
PET. 

C. Experiment 3 

In this experiment, we intend to compare DeepLabv3+ 
semantic segmentation model to the state-of-the-art 
approaches on the waste sorting dataset. Namely, Fully 
Connected Network (FCN) [61], Unet [62], and Segnet [63] 
semantic segmentation approaches are considered. In this 
experiment, we consider Resnet-50 as backbone for 
DeepLabv3+ since it achieved better performance than 
Resnet-18. For the-state-of-the-art approaches, several 
hyperparameter configurations are considered. Moreover, in 
this experiment, the batch size is set to 2 for Unet 
[62], and Segnet [63]. It is the largest possible value due to the 

memory size constraint. Alternatively, since FCN [61] uses a 
smaller size of the images  (lower resolution),  it is possible to 
increase the batch size 3.  After considering the above 
mentioned configuration, the best obtained performance with 
respect to each approach is considered for the purpose of 
comparison with DeeepLabv3+. Fig. 9 displays the 
performance comparison between DeepLabv3+ [47], FCN 
[61],  Unet [62], and Segnet [63]. As depicted in Fig. 9, 
DeepLabv3+ outperforms the other deep learning 
segmentation approaches with weighted IoU equal to 0.9687 
and a Mean BFscore of 0.8933. The second best is FCN, 
whereas Unet and Segnet perform poorly in terms of Mean 
BFscore. 

 

Fig. 9. Performance Comparison of DeepLabv3+ [47], FCN [61],  Unet 

[62], and Segnet [63]. 

In order to better analyze the obtained results, a 
comparison of the four considered semantic segmentation 
approaches with respect to each category in terms of IoU and 
Mean BFscore is displayed in Fig. 10 and Fig. 11, 
respectively. As it can be seen from Fig. 10, DeepLabv3+ 
gives the best IoU performance with respect to all categories. 
This means that it is able to localize the PET container with 
respect to all categories better than the other approaches. 
Moreover, we can observe from Fig. 11 that DeepLabv3+ has 
the highest Mean BFscore with respect to most categories. 
However, the semantic segmentation performance is not the 
same with respect to all categories. This is the case for all 
considered segmentation approaches. For a better illustration 
of the results, we show sample segmentation results of 
DeepLabv3+ [47], FCN [61],  Unet [62], and Segnet [63]. As 
shown in Fig. 12, Deeplabv3+ outperforms the other semantic 
segmentation approaches for the sample image representing 
the transparent PET. In fact, it localizes and identifies better 
the boundaries of the containers. This can be accredited to 
fully connected Conditional Random Field (CRF) module. 
Similar result can be observed from Fig. 13. In fact, although 
DeepLabv3+ miss - segmented some Blue and Green PET 
pixels as Mixed Color PET (Fig. 13(b)), it performs better 
than the other segmentation approaches. FCN is the second 
best (Fig. 13(c)). However, Unet (Fig. 13(d)) and Segnet (Fig. 
13(e)) are not able to segment the Blue and Green PET image 
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shown in Fig. 13 (a). Actually, these two approaches classified 
the corresponding pixels as transparent PET. It means they 
were not able to capture the visual characteristics of the Blue 
or Green category. 

 

Fig. 10. Performance Comparison of the Four Considered Semantic 

Segmentation Approaches with respect to each Category in Terms of IoU. 

 

Fig. 11. Performance Comparison of the Four Considered Semantic 

Segmentation Approaches with respect to each Category in Terms of Mean 

BFscore. 
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Fig. 12. Transparent PET Sample Image (a) Segmentation Results of (b) 

DeepLabv3+, (c)  FCN (d) Unet, and (e) Segnet. 

As showcased in Fig. 14, DeepLabv3+ yields better 
segmentation results than the other approaches. For this case 
too, FCN is the second best, and Unet and Segnet perform 
poorly. Similar analysis can be conducted on Fig. 15. 
Although the background (the black conveyer belt and other 
non-PET materials) is correctly segmented by DeepLabv3+, 

FCN miss-segmented some pixels as transparent PET, and 
Unet and Segnet miss-segmented a large number of pixels as 
transparent PET. Actually, the confusion between the 
conveyer belt and the transparent PET can be explained by the 
fact that the transparency of this material makes them appear 
as black. Nevertheless, DeepLabv3+ is able to learn the 
appropriate visual feature that in engendered good 
segmentation result. 
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Fig. 13. Blue or Green PET Sample Image (a) Segmentation Results of (b) 

DeepLabv3+, (c)FCN (d) Unet, and (e) Segnet. 
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Fig. 14. Colored PET Sample Image (a) Segmentation Results of (b) 

DeepLab v3+, (c)  FCN (d) Unet, and (e) Segnet. 
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(d)                                              (e) 

 
Transparent 

PET 
 

Blue and 

Green PET 
 

Mixed 

Color PET 
 Background 

Fig. 15. Non-PET Sample Image (a) Segmentation Results of (b) DeepLab 

v3+, (c) FCN (d) Unet, and (e) Segnet. 
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VI. CONCLUSION AND FUTURE WORK 

Plastic containers are one of the most common types of 
waste. In order to be recycled, they need to be sorted 
according to their type since the quality of recycled plastic 
depends on the quality of waste separation. Of particular 
interest is Polyethylene Terephthalate (PET). In fact, recycling 
centers sort plastic waste into PET and non-PET, and further 
sort PET into transparent PET, blue and green PET, and mixed 
color PET.  For this purpose, mechanical systems have been 
used.  They need to recognize and localize PET materials in 
order to move them to the appropriate waste bin. In this 
context, we proposed to design a computer vision system to 
locate and recognize PET waste materials in a captured waste 
image using a deep learning network architecture called 
DeepLabv3+. The conducted experiments showed that 
increasing the number of layers of Resent from 18 to 50 yields 
better semantic segmentation results. Furthermore, 
DeepLabv3+ outperformed the other considered approaches 
on the PET sorting dataset. As future works, we suggest to use 
Resnet with even larger number of layers, and to investigate 
ways to decrease the frame processing time. 
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