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Abstract—Plants need nutrients to develop normally. The 

essential nutrients like carbon, oxygen, and hydrogen are 

obtained from sunlight, air, and water to prepare food and plant 

growth. For healthy growth, plants also need macronutrients 

such as Potassium, Calcium, Nitrogen, Sulphur, Magnesium, and 

Phosphorus in relatively great quantities. When a plant doesn’t 

find necessary nutrients for its growth inadequate amount, 

deficiency of plant nutrients occur. Plants exhibit various 

symptoms to indicate the deficiency. Automatic identification and 

differentiation of these deficiencies are very important in the 

greenhouse environment. Deep Neural Networks are extremely 

efficient in image categorization problems. In this work, we used 

the part of the pre-trained deep learning model i.e. Transfer 

Learning model to detect the nutrient stress in the plant. We 

compared three different architectures including Inception-V3, 

ResNet50, and VGG16 with two classifiers: RF and SVM to 

improve, classification accuracy. A total of 880 images of 

Calcium and Magnesium deficiencies in the Tomato plant from 

the greenhouse were collected to form a dataset. For training, 

704(80%) images are used and for testing, 176(20%) images are 

used to examine the model performance. Experimental results 

demonstrated that the largest accuracy of 99.14% has resulted 

for the VGG16 model with SVM classifier and 98.71% for 

Inception-V3 with Random Forest Classifier. For a batch size of 

8 and epochs equal to 10, the Inception -V3 architecture attained 

the highest validation accuracy of 99.99% and the least 

validation loss of 0.0000384 on an average. 

Keywords—Nutrient deficiency; plant nutrients; deep neural 

networks; transfer learning; random forest (RF); support vector 
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I. INTRODUCTION 

A proper combination of nutrients is required for plants to 
live, develop and reproduce. So, plant analysis is a necessary 
tool that assists farmers by providing significant information 
about the nutritional description of the growing plant to obtain 
a better yield. Generally, plant analysis indicates the analysis of 
magnesium (Mg), sulphur (S), phosphorous (P), calcium (Ca), 
nitrogen (N), potassium (K), etc. Normally, plants show signs 
of being unhealthy when they suffer from undernutrition. For 
example, yellow around the edges of its leaves are a sign of 
magnesium deficiency. Yellow spots between the leaf veins 
and Blossom End Root denote the absence of calcium. Brown 
edges along the plant leaves indicate a deficiency of potassium. 
Yellow or pale green leaves imply the need for nitrogen [1].  
These nutrient deficiency symptoms will help growers to 
identify the nutrient status of plants for a better crop yield. 
Manually diagnosing these deficiencies is a difficult task. So, 

the key objective of this work is to automate the identification 
of nutrient deficiencies in plants using Convolutional Neural 
Networks (CNN). 

Artificial Intelligence has numerous applications in 
multiple industries, healthcare, environment, finance, 
education, agriculture, etc. to solve complex problems and 
make our daily life more secure and fast. 

G. Madhulatha et al. [2] proposed an automatic plant 
disease detection on the plant leaves to decrease crop loss and 
increase productivity. Plant diseases are predicted and 
classified with 96.50% accuracy based on visual symptoms 
using deep CNN. The authors used a dataset from the “Plant-
Village” dataset for plant leaf diseases. The model was pre-
trained using AlexNet. Muhammad Hammad Saleem et al. [3] 
developed three Deep Learning meta-architectures namely; 
Faster Region-based Convolutional Neural Network (RCNN), 
Single Shot MultiBoX Detector (SSD), and Region-based 
Fully Convolutional Networks (RFCN) to recognize plant 
disease and healthy leaves. All three models include a feature 
extractor and a base network. This research used Gradient 
Descent with its Momentum version, Adaptive Moment 
Estimation (Adam), and Root Mean Square Propagation 
(RMSProp) optimization algorithms to increase the 
performance of the Deep Learning meta-architectures. The 
authors examined that all the Deep Learning meta-architectures 
needed 126 epochs (200,000 iterations) for training 
convergence. When the SSD model was trained using Adam 
optimizer, the maximum means Average Precision (mAP) of 
73.07% was obtained. Guan Wang et al. [4] suggested a deep 
learning model for control plant disease application.  The 
authors used the apple leaf black rot images produced by the 
fungus Botryospaeria obtuse from the PlantVillage dataset for 
disease severity classification. The highest overall accuracy of 
90.4% was obtained for the VGG16 model. Sharada P. 
Mohanty et al. [5] established a smartphone-assisted 
application to detect the disease using a deep convolutional 
neural network. In this research, GoogLeNet architecture 
performs better and provides 99.35% accuracy as compared to 
AlexNet architecture. The presently available deep learning 
methods to identify the plant disease were reviewed by M. 
Nagaraju and Priyanka Chawla [6]. 

Many previous works have considered Image Recognition 
and Machine Learning models to classify the images into 
healthy and unhealthy images. However, most of these 
algorithms require image segmentation and feature extraction. 
But, from the many extracted features, it is difficult to judge 
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the important and dominant features for plant disease detection. 
Moreover, under difficult background circumstances, many 
techniques fail to successfully segment the leaf and will lead to 
unreliable deficiency recognition. So, image segmentation and 
feature extraction are still challenging tasks. Therefore, 
automatic plant disease detection and nutrient deficiency 
recognition are still challenging tasks. Recently, Convolutional 
Neural Network (CNN) is becoming the preferred scheme to 
overcome few challenges. 

The main objective of this research is to diagnose nutrient 
deficiency in plants and take several measures like adjusting 
the pH value of water to achieve a quality yield, providing the 
right amount of fertilizer, etc. using deep learning models. For 
nutrient deficiency classification, we employed the Transfer 
Learning method, where pre-trained models are used as the 
entry point to develop the neural network models. In this 
research, we have used these models to predict Calcium (Ca) 
and Magnesium (Mg) deficiency in tomato crops grown under 
a greenhouse environment. 

The key advantage of transfer learning is that instead of 
beginning the learning process from the scratch, the model 
commences from the characteristics that have been educated 
when resolving other problems which are analogous to the one 
being resolved. We have used three pre-trained models- 
InceptionV3, VGG16, and ResNet50 as a base model and 
SVM or Random Forest classifier on top of it to attain better 
results. 

The rest of this paper is structured in the following fashion. 
Section II introduces the images collected to form the dataset 
of Ca and Mg deficiencies followed by related concepts. This 
section also presents Inception V3, ResNet50, and VGG16 
architectures, and the proposed model to identify and classify 
the deficiencies. Section III dedicated to the evaluation, and the 
comparative analysis of results obtained in this experiment. In 
Section IV, the paper is summarized and future work is 
mentioned. 

II. MATERIALS AND METHODS 

A. Data Acquisition 

Tomato plants were grown in a greenhouse of a size 10x4 
sq.ft. to study and gather the dataset for lack of nutrients in 
tomato leaves and fruits. The calcium and magnesium 
deficiencies were induced for the plants in different stages and 
their images were captured from the camera for training and 
testing the performance of the model. The dataset was 
developed with two classes for classification and prediction: 
Calcium and Magnesium. Altogether, there are 880 images in 
the dataset. Out of 880 images, 704 (80%) images are for 
training the model, and 176 (20%) images are for testing the 
model. There are 374 calcium deficiency and 330 magnesium 
deficiency images in the training dataset. Further, out of 176 
testing images, 94 images are of calcium, and the remaining 82 
images are of magnesium deficiency images. To enhance the 
dataset, the data augmentation methods including image 
resizing, flipping, random rotation, shearing, etc., are applied. 
The details of calcium and magnesium nutrient deficiency 
symptoms in tomatoes are presented in Table I. 256 x 256 

pixels is the size of all the resized images. These sample 
images are input to the convolutional neural network for 
training the model. The trained model is applied for the class 
prediction of unseen images. These phases are explained in 
detail in the following sections. Machine learning algorithms 
including SVM, Decision-Tree and, RF are excellent in 
resolving classification problems [10]. However, they go 
wrong in extracting the proper features from the image. 
Alternatively, Convolutional Neural Networks receives the raw 
pixel of the images directly as inputs instead of extracting 
certain features manually [12-14]. CNN learns how to take out 
these features from the actual image. 

B. Convolutional Neural Networks 

CNN's are a class of Deep Neural Networks that can 
identify and categorize specific features in images and are 
generally used for examining visual images. Significantly, 
CNN can yield good results than the traditional feature 
extraction algorithms in plant disease diagnosis [15-18]. In 
CNN, the filters are learnable. A classic CNN consists of two 
components: The Convolution Block and the Fully Connected 
block, which are detailed as follows. 

TABLE I. CALCIUM AND MAGNESIUM NUTRIENT DEFICIENCY 

SYMPTOMS IN TOMATO 

Nutrients Description 
Deficiency Symptoms 

on Leaf/ Fruit 

Calcium (Ca) 

Young leaves curl inwards and 

cause dry decaying areas at 
Blossom End of the fruit (BER) 

in Tomatoes. 
 

 

Magnesium 

(Mg) 

Interveinal chlorosis (Veins of 

Leaf remains green whereas the 
areas between the leaves go 

yellow). Elder leaves drip their 

color excluding in the veins. It 
does not affect the fruit. 

 

C. Convolutional Neural Networks 

CNN's are a class of Deep Neural Networks that can 
identify and categorize specific features in images and are 
generally used for examining visual images. Significantly, 
CNN can yield good results than the traditional feature 
extraction algorithms in plant disease diagnosis [9, 11]. In 
CNN, the filters are learnable. A classic CNN consists of two 
components: The Convolution Block and the Fully Connected 
block, which are detailed as follows. 

1) Convolution block: The convolution block contains the 

Convolution Layer and the Pooling Layer. In this block, the 

task of feature extraction is accomplished. The convolutional 

layer produces the feature maps or activation maps by 

applying filters to input images using the ReLU activation 

function. The ReLU function returns x for all the values of x > 

0, and returns 0 for all values of x ≤ 0 and is given in 

equation 1. 

F(x) = max(0,x)               (1) 
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Fig. 1. VGG16 Architecture. 

The convolutional layer uses filters kernels to recognize 
various features like edges, horizontal lines, vertical lines, etc., 
in an image. To extract more composite and thoughtful 
features, the same size convolution kernel is used again and 
again multiple times. The pooling layer is enforced next to a 
convolution layer in which a down sampling operation is 
performed on a convolved feature to scale down the number of 
dimensions of the feature map. Commonly, the average and 
maximum values are selected by the pooling layer for this task. 

2) Fully connected block: The Fully Connected block 

comprises of fully connected simple neural network design 

which does classification depending on convolutional block 

inputs. Convolutional Neural Network has one or more fully 

connected layers at the end of it. At the end of the fully 

connected layer, there is a softmax activation function whose 

output is a probability (from 0 to 1) for every classification 

label. 

D. VGG16 Model Architecture 

VGG is a pre-trained model and has 138 Million 
parameters. VGG is trained over 14 million images belonging 
to 1000 classes and learned to detect generic features from 
images. There are 16 and 19 weight layers in the network for 
VGG-16 and VGG-19 respectively. 

This research work uses VGG-16 as the base model and 
altered it to create a different network. As VGG16 attains 
92.7% test accuracy in ImageNet, and because of its high 
performance, the pre-trained weights are retained and only the 
top three Fully Connected Layers or Dense Layers are 
modified to fine-tune the neural network. In this work, the 
features extracted from VGG16 are given as input to RF or 
SVM Classifiers to reduce the training time and increase the 
classification accuracy. Fig. 1 describes the VGG16 scheme. 
All the resized images in this model are of fixed size 244x244. 

The VGG16 model used NVIDIA Titan Black GPUs and 
was trained for weeks. The VGG16 model can categorise the 
images into 1000 classes. The VGG model handles the input 
image and yields the vector of 2 values. y^ denotes the 
probability of classification for the corresponding class and is 
given by equation 2. 

   [
   
   

]                       (2) 

Where, y0
^
 represents the probability with which class 0 

(Ca) is predicted and y1
^
 represents the probability with which 

class 1(Mg) is predicted. The RGB image of constant size 
224x224 is the input to the conv1 layer. The image is moved 
through several convolutional layers. Each layer uses a small 
3x3 or 1x1 filter. Five max-pooling layers perform spatial 
pooling. A 2x2 pixel window with a stride of 2 is used to 
implement max-pooling. There are three Fully-Connected (FC) 
layers where there are 4096 channels in each of the first two 
layers and the third layer comprises 1000 channels. The 
softmax layer is the terminating layer. All networks have a 
similar configuration of the fully connected layers. A non-
linear ReLu activation function is used by all hidden layers. 

E. Inception-V3 Model Architecture 

Inception-V3 is the most generally used CNN architecture 
and achieved more than 78.1% accuracy for image prediction 
on the ImageNet dataset. The model comprises Convolution 
Layers, Max pooling Layers, Average pooling Layers, Concate 
Layers, Dropout Layers, and Fully Connected Layers. In 
Inception V3, the resized images are of size 299x299x3 pixels. 
The structure of Inception-V3 is analogous to Inception-V2 
with few modifications including Label Smoothing 
Regularization, Batch normalization, Auxiliary Classifier. Use 
of Factorized 7x7 convolutions. Inception-V3 is a CNN with 
48 layers in depth. The inception model is a concatenation of 
parallel convolution layers with 1x1, 3x3, 5x5, etc. sized filters 
and a max pooling layers of 3x3 matrix. The error rate 
improved to 0.2 % by adding label smoothing in Inception-
V3 architecture. Fig. 2 describes the Inception-V3 scheme. 

Inception-V3 model used RMSProp optimizer that offered 
significant results in connection with accuracy and time to 
achieve it. RMSProp is fixed as a default optimizer. The update 
dynamics in the Inception-V3 model are given by equation 2 
and equation 3. 

      
       

   (    )   
              (3) 

            
 

√       
   

    (  )           (4) 
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Fig. 2. Inception V3 Architecture. 

Where, gk is gradient descent at time k, gk+1 is gradient 
descent at time k+1, wk is the weight at time k, wk+1 is the 
updated weight at the time k+1, „α‟ is the step size, „β‟ is 
known as momentum and „ϵ‟ is small positive constant to avoid 
division by zero in implementation, „   is the gradient, which 
is taken of f, ‘η’ is learning rate. 

In RMSProp, the parameters „α‟, „β‟, and „ϵ‟ are set as 
decay α = 0.9, momentum β = 0.9, and ϵ = 1.0 

F. ResNet50 Model Architecture 

ResNet (Residual Network) is presented by Kaiming He, 
Xiangyu Zhang, Shaoqing Ren, and Jian Sum in 2015 in their 
paper “Deep Residual Learning for Image Recognition”. The 
development of ResNet improved the problem of training deep 
neural networks. The simple element in ResNet is as depicted 
in Fig. 3. In the Residual network, there is a straight 
connection called „skip connection‟ which skips some in 
between layers. 

The „skip connection‟ is used to resolve the vanishing 
gradient problem and to learn the identity functions.  The 
output H(X) with the introduction 4of skip connection is given 
by the equation H(X) = F(X) + X. Table III shows the elements 
of the ResNet50 model. The ResNet model was tested on the 
ImageNet set and attained a 20.47% top-1 error rate also 5.25% 
top-5 error rate. 

The proposed model used these transfer learning techniques 
for feature extraction and altered their basic structures by 
adding Random Forest or SVM classifiers to improve the 
classification ability of the models as illustrated in Fig. 4. 

 

Fig. 3. A Basic Residual Network. 

 

Fig. 4. Proposed Model. 

III. EXPERIMENTAL RESULTS AND ANALYSIS 

In this work, image pre-processing techniques, data 
augmentation, and implementation of Convolutional Neural 
Network algorithms were conducted using Jupyter 
notebook(Python 3.9), Keras API, OpenCV library, Matplotlib 
visualization library, OS module, glob module, and so on. The 
hardware specifications in this experiment to train and test our 
model includes Intel(R) Core (TM) i7-4210U CPU, 4.00 GB 
RAM. In this experiment, the CNN is developed using 
InceptionV3, ResNet50, and VGG16 Transfer Learning 
Models. 

All three models used pre-trained weights from the 
ImageNet dataset by eliminating the upper layer and redefining 
a fresh fully connected Softmax layer with 2 classes for 
classification [7, 8]. In this experiment, the batch size was 
fixed to 8 and the number of epochs was set to 10 with Adam 
optimizer. The features extracted from the Transfer Learning 
technique were used by SVM and Random-Forest classifiers. 
80% of the total images were used to form a training dataset to 
train the model and 20% were used to form a testing dataset. 
For the Inception-V3 model, all the images were resized to 
299x299x3, the input image size for ResNet-50 and VGG16 
was 224x224. Inception V3 attained the validation accuracy of 
99.99 % and the validation loss of 0.0000384 as depicted in 
Table II out of the three models. 

The accuracy and loss obtained from three different 
Transfer Learning models are presented in Fig. 5 to 7. 

TABLE II. ACCURACY AND LOSS OF DIFFERENT TRANSFER LEARNING MODELS AFTER 5 AND 10 EPOCHS 

Transfer Learning 

Model 
Training Accuracy (%) Validation Accuracy (%) Training Loss Validation Loss 

 5 Epochs 10 Epochs 5 Epochs 10 Epochs 5 Epochs 10 Epochs 5 Epochs 10 Epochs 

Inception V3 99.23 100 98 99.99 0.1364 0.000264 0.3685 0.0000384 

ResNet-50 89.40 82.28 87.00 82.10 0.2632 0.5541 0.2568 0.4783 

VGG16 100 100 98.86 98.86 0.000001 0 0.3572 0.2220 
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Fig. 5. Inception V3: Accuracy and Loss Model. 

 

Fig. 6. ResNet50: Accuracy and Loss Model. 

 

Fig. 7. VGG16: Accuracy and Loss Model. 

Fig. 8 to 10 represents the confusion matrix of plant 
nutrient deficiencies identification using three Transfer 
Learning models with RF and SVM classifiers. The 
classification accuracy chart of plant nutrient deficiency 
identification in tomato plants using Transfer Learning models 
with Random Forest and SVM classifiers is presented in 
Fig. 11. It is noticed from the chart that the largest accuracy of 
99.14% has resulted using the VGG16 model with SVM 
classifier and 98.71% for Inception-V3 with Random Forest 
Classifier. 

 

 

Fig. 8. Confusion Matrix using Inception V3. 

 

 

Fig. 9. Confusion Matrix using ResNet50. 

 

 

Fig. 10. Confusion Matrix using VGG16. 

The results of lack of nutrients predicted from three 
different models with RF and SVM classifiers on few samples 
are displayed in Fig. 12. From Table II, it can be observed that 
almost calcium and magnesium deficiencies were detected 
properly by all three Transfer Learning models with RF and 
SVM classifiers. The average classification accuracy is high 
for InceptionV3 and VGG16 models in various experiments. 
These models could be extended for the identification of other 
nutrient deficiencies. 
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Fig. 11. Comparison Efficiency for Transfer Learning Models with RF and 

SVM Classifiers. 

 

Fig. 12. The Predicted Samples of Plant Nutrient Deficiency Images. 

IV. CONCLUSION 

Quick identification of plant nutrient deficiency is 
necessary for a greenhouse environment. Manual inspection of 
these deficiency symptoms in a large greenhouse requires more 
effort. Consequently, automated plant nutrient deficiency 
diagnosis is required in greenhouse technology. With 
technology growth, a CNN using Transfer Learning models 
such as Inception V3, ResNet50, and VGG16 were proposed 
along with Random Forest (RF) and SVM classifiers to 
improve the efficiency. These models are pre-trained on 
ImageNet dataset and are modified for our tomato dataset with 
images of calcium and magnesium deficiencies in this research. 
On average, out of all the three Transfer Learning techniques, 
Inception V3 attained the highest validation accuracy of 99.99 
% and the least validation loss of 0.0000384 for 10 epochs. 
Further, when the experiment was conducted for Random 
Forest (RF) and SVM classifiers, results show that the largest 
accuracy of 99.14% has resulted using the VGG16 model with 

SVM classifier and 98.71% for InceptionV3 with Random 
Forest Classifier. 

To control these plant nutrient deficiencies, the tomato 
greenhouse environmental factors such as humidity, 
temperature, pH, and soil moisture need to be monitored to 
find out the right quantity of fertilizer to be applied. Hence, in 
the future, this work can be improved by monitoring the 
greenhouse parameters by Wireless Sensor Network (WSN) to 
apply fertilizer precisely in a greenhouse. 

ACKNOWLEDGMENT 

We extend our heartfelt gratitude to the management of the 
BNM Institute of Technology, Bengaluru for providing us with 
all the necessary sources to accomplish this work and all the 
support to do the subsequent publications. We are also grateful 
to Visvesvaraya Technological University for giving us an 
appropriate platform to complete this research. 

REFERENCES 

[1] Gaganjot Kaur,”Automated Nutrient Deficiency Detection In Plants: A 
Review”, Palarch‟s Journal of Archaeology Of Egypt/Egyptology, vol. 
17, no. 6, pp. 5894-5901. 

[2] G. Madhulatha, O. Ramadevi, “Recognition of Plant Diseases using 
Convolutional Neural Network”, International Conference on IoT in 
Social, Mobile, Analytics and Cloud (I-SMAC), 2020, ISBN: 978-1- 
7281-5464-0, DOI: 10.1109/I-SMAC49090.2020.9243422. 

[3] Muhammad Hammad Saleem, Sapna Khanchi, Johan Potgieter and 
Khalid Mahmood Arif, “Image-Based Plant Disease Identification by 
Deep Learning Meta-Architectures, Plants 2020,9,1451, MDPI 
Publication, DOI: 10.3390/plants9111451. 

[4] Guan Wang, Yu Sun, and Jianxin Wang, “ Automatic Image-Based 
Plant Disease Severity Estimation Using Deep Learning”, 
Computational Intelligence and Neuroscience, Volume 2017, Article ID 
2917536, https://doi.org/10.1155/2017/2917536. 

[5] Sharada P. Mohanty, David P. Hughes, and Marcel Salathe, “Using 
Deep Learning for Image Based Plant Disease Detection”, Frontiers in 
Plant Science, 7, 1419, 2016. 

[6] M, Nagaraju, Priyanka Chawla, “ Systematic review of deep learning 
techniques in plant disease detection”, Int J Syst Assur Engg Manag. 
11(3), 547-560, 2020. 

[7] Nafees Akhter Farooqui and Ritika, “An Identification and Detection 
Process for Leaves Disease of Wheat Using Advance Machine Learning 
Techniques”, Bioscience Biotech Research Communication, vol. 12, 
no.4, pp. 1081-1091, 2019, DOI: 10.21786/bbrc/12.4/31. 

[8] Zhe Xu, Xi Guo, Anfan Zhu, Xiaolin He, Xiaomin Zhao, Yi Han, and 
Roshan Subedi, “Using Deep Convolutional Neural Networks for 
Image- Based Diagnosis of Nutrient Deficiencies in Rice, 
Computational Intelligence and Neuroscience, Hindawi Publications, 
vol. 2020, 12 pages, DOI: 10.1155/2020/7307252. 

[9] Shima Ramesh, Mr. Ramachandra Hebbar, Niveditha M, Pooja R, 
Prasad N, Shashank N, Mr. P V Vinod, “Plant Disease Detection Using 
Machine Learning”, International Conference on Design Innnovations 
for 3Cs Compute, 2018, ISBN: 978-1-5386-7523-6, DOI: 
10.1109/ICD13C 2018.00017. 

[10] Jayme Garcia Anal Barbedo, “Detection of nutrition deficiencies in 
plants using proximal images and machine learning: A review”, 
Computers and Electronics in Agriculture, Elsevier Publications, vol. 
162, pp. 482-492,2019, DOI: 
https://doi.org/10.1016/j.compag.2019.04.035. 

[11] Aravind Krishnaswamy Rangarajan, Raja Purushothaman, Anirudh 
Ramesh, “Tomato crop disease classification using pre-trained deep 
learning algorithms”, International Conference on Robotics and Smart 
Manufacturing (RoSMa2018),2018, pp. 1040-1047, DOI: 
10.1016/j.procs.2018.07.070. 

[12] Yan Guo, Jin Zhang, Chengxin Yin, Xiaonan Hu, Yo Zou, Zhipeng Xue, 
Wei Wang, “Plant Disease Identification Based on Deep Learning 

97.85% 98.71% 

84.12% 

88.84% 

95.71% 

99.14% 

75.00%

80.00%

85.00%

90.00%

95.00%

100.00%

105.00%

Accuracy 

InceptionV3 with RF InceptionV3 with SVM

ResNet-50 with RF ResNet-50 with SVM

VGG16 with RF VGG16 with SVM

https://doi.org/10.1155/2017/2917536
https://doi.org/10.1155/2020/7307252


(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 12, No. 10, 2021 

790 | P a g e  

www.ijacsa.thesai.org 

Algorithm in Smart Farming”, Discrete Dynamics in Nature and 
Society, vol.2020, no.7, pp.1-11, 2020. DOI: 10.1155/2020/2479172. 

[13] Lili Ayu Wulandhari, Alexander Agung Santoso Gunawan, Aie Qurania, 
Prihastuti Harsani, Triastinurmiatingsih, Ferdy Tarawan, and Riska 
Fauzia Hermawan, “Plant Nutrient Deficiency Detection Using Deep 
Convolutional Neural Network”, ICIC International Conference, ICIC 
Express Letters, pp. 971-977, vol. 13, no. 10, 2019. 

[14] G.Chu, “How to use transfer learning and fine-tuning in keras and 
tensorflow to build an image recognition system and classify (almost) 
any object”, Deep Learning Sandbox, 2017. 

[15] A. M. G. J. Hanson, A. Joy, and J. Francis, “Plant leaf disease detection 
using deep learning and convolutional neural network”, International 
Journal of Engineering Science, vol. 7, no.3, pp.5324-5328, 2017. 

[16] G.L. Grinblat, L.C. Uzal, M.G. Larese and P. M. Granitto “Deep 
learning for plant identification using vein morphological patterns”, 
Computers and Electronics in Agriculture, vol.127, pp. 418-424, 2016. 

[17] K. P. Ferentinos, “Deep learning models for plant disease detection and 
diagnosis”, Computers and Electronics in Agriculture, vol. 145, pp.311- 
318, 2018. 

[18] D. Story, M. Kacira, C. Kubota, A. Akoglu and L. An, Lettuce calcium 
deficiency detection with machine vision computed plant features in 
controlled environments, Computers and Electronics in Agriculture, vol. 
74, no.2, pp. 238-243, 2010. 


