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Abstract—The Simple Network Management Protocol 
(SNMP) is one of the dominant protocols for network monitoring 
and configuration. The first two versions of SNMP (v1 and v2c) 
use the Community-based Security Model (CSM), where the 
community is transferred in clear text, resulting in a low level of 
security. With the release of SNMPv3, the User-based Security 
Model (USM) and Transport Security Model (TSM) were 
proposed, with strong authentication and privacy at different 
levels. The Raspberry Pi family of Single-Board Computers 
(SBCs) is widely used for many applications. To help their 
integration into network management systems, it is essential to 
study the impact of the different versions and security models of 
SNMP on these SBCs. In this work, we carried out a 
performance analysis of SNMP agents running in three different 
Raspberry Pis (Pi Zero W, Pi 3 Model B, and Pi 3 Model B+). 
Our comparisons are based on the response time, defined as the 
time required to complete a request/response exchange between a 
manager and an agent. Since we did not find an adequate tool for 
our assessments, we developed our own benchmarking tool. We 
did numerous experiments, varying different parameters such as 
the type of requests, the number of objects involved per request, 
the security levels of SNMPv3/USM, the authentication and 
privacy protocols of SNMPv3/USM, the transport protocols, and 
the versions and security models of SNMP. Our experiments 
were executed with Net-SNMP, an open-source and 
comprehensive distribution of SNMP. Our tests indicate that 
SNMPv1 and SNMPv2c have similar performance. SNMPv3 has 
a longer response time, due to the overhead caused by the 
security services (authentication and privacy). The Pi 3 Model B 
and Pi 3 Model B+ have comparable performance, and 
significantly outperform the Pi Zero W. 
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I. INTRODUCTION 
The Simple Network Management Protocol (SNMP) is 

widely utilized for network monitoring and management. 
SNMPv1 and SNMPv2c use the Community-based Security 
Model (CSM), where the community (that can be seen as a 
password) is exchanged in cleartext between SNMP entities. 
This basic model of security opens many simple attacks against 
the protocol. Hence, a new version of SNMP was released and 
uses the User-based Security Model (SNMPv3/USM). The 
USM model brings strong authentication and privacy to 
SNMP. It was designed to work independently of other 
existing security infrastructures, and utilizes a separate user 
and key management infrastructure. Unfortunately, the 

operational cost for deploying another user and key 
management infrastructure is significant, and network 
operators have been reluctant in its adoption [1]. To address 
this issue, the Transport Security Model (TSM) was later added 
to SNMPv3, and relies on well-accepted secure transport layers 
such as Secure Shell [2] (SSH), Transport Layer Security [3] 
(TLS), and Datagram Transport Layer Security [4] (DTLS). 

The Raspberry Pi Foundation, a non-profit organization, 
has released a series of Single Board Computers (SBCs) that 
have been well-accepted by the community [5][6]. Due to its 
low cost (for approximately US$10), the Raspberry Pi Zero W 
(RPi Zero W) is one of the best-selling SBCs of the foundation, 
and has a 32-bit single-core processor and a WiFi adapter. 
When more CPU power is required, users might consider the 
Raspberry Pi 3 Model B (RPi 3B) or the Raspberry Pi 3 Model 
B+ (RPi 3B+), both with a 64-bit quad-core processor, 
Ethernet, and WiFi, for approximately US$35. 

To facilitate the integration of Raspberry Pi SBCs into 
network management systems, we carried out an analytical 
performance analysis of different SNMP versions and security 
models for three different boards of the Raspberry Pi 
Foundation: (1) RPi Zero W, (2) RPi 3B, and RPi 3B+. To do 
so, we installed the agent of Net-SNMP [7], a well-known and 
comprehensive implementation of the SNMP protocol, on the 
three SBCs and ran some tests using a benchmarking tool that 
we developed. For better flexibility, the tool has numerous 
parameters and reports the “Response Time” defined as the 
required time to complete an SNMP request/response exchange 
between a manager and an agent. We performed intensive tests 
where we varied parameters such as the type of requests, the 
number of objects involved per request, the security levels of 
SNMPv3/USM, the authentication and privacy protocols of 
SNMPv3/USM, the transport protocols, and the versions and 
security models of SNMP. We think this study might be 
helpful for network administrators when integrating Raspberry 
Pis into SNMP-based network management systems. 

The rest of the paper is structured as follows. Section II 
discusses the related work. An introduction to the SNMP 
protocol and its different versions and security models is made 
in Section III. We present the benchmark developed and used 
for the experiments in Section IV. The description of the test 
environment is done in Section V. Section VI reports and 
discusses the results of our evaluation of the SNMP protocol in 
many different scenarios. Finally, Section VII concludes the 
paper and gives directions for future work. 
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II. RELATED WORK 
Some work has been done to evaluate the performance of 

SNMP. Andrey, Festor, Lahmadi, Pras, and Schönwälder [8] 
studied papers related to the evaluation of SNMP, in major 
research databases such as the IEEE Xplore and the ACM 
Digital Library. Their goal was to retrieve and classify 
techniques, approaches, and metrics employed by these studies, 
to propose a common framework for SNMP performance 
analysis. Hidalgo and Gamess [9] developed one of the first 
SNMP agents for Android smartphones with support for 
SNMPv1 and SNMPv2c. To validate the possibility of 
integrating them into network management systems, the 
authors did some performance evaluations of the maximum 
SNMP traffic that Android smartphones can support in a 
determined period of time. In their work, Corrente and Tura 
[10] analyzed the impact of security on SNMP, by considering 
SNMPv1, SNMPv2c, and SNMPv3/USM. They did 
experiments in a testbed and reported metrics such as the 
processing time, number of transactions per minute, CPU 
usage, and protocol overhead. To more efficiently use SNMP 
in mobile environments, the study in [11] proposed to add a 
superimposition model to its architecture. With simulations, the 
authors supported how the proposed superimposition 
architecture can improve the performance of SNMPv3/USM. 
Several studies are focused on comparing the performance of 
different network management solutions [12-16]. For example, 
the authors of [12] assessed the performance of SNMP-based 
and web services-based network monitoring systems. Their 
analysis was centered around SNMPv1 and SNMPv2c, and 
they reported results such as bandwidth usage, memory 
consumption, and roundtrip delay. Another work in this 
direction was done in [13], where Santos, Esteves, and 
Granville evaluated the performance of SNMP, NETCONF 
[17], and RESTful web services for router virtualization 
management. At the level of SNMP, the authors assessed 
SNMPv2c and SNMPv3/USM. 

The previously mentioned efforts did not consider the new 
TSM model of SNMPv3. In the specialized literature, just a 
few projects have included this emerging standard. One of the 
first evaluations was done by Du, Shayman, and Rozenblit 
[18], before the publication of the RFCs that introduced the 
TSM model [19–21]. The authors modified the source code of 
Net-SNMP [7] and integrated the support of TLS [3] over TCP, 
for both SNMPv1 and SNMPv3. To demonstrate the viability 
of such a new development at the level of performance, the 
research team did some experiments in a testbed environment, 
and analyzed the performance of SNMPv1, SNMPv3/USM, 
and their non-standard SNMPv1 and SNMPv3 over TCP with 
TLS. A few years later, the work in [22] used a similar 
approach for SNMP over SSH. The authors did a non-standard 
modification of Net-SNMP [7] to carry SNMPv2c over SSH 
[2]. In a controlled environment, they assessed the performance 
of SNMPv2c and SNMPv3/USM, against their non-standard 
modified version of SNMPv2c over SSH. More recently, 
Schönwälder and Marinov [1] evaluated SNMPv3/USM and 
SNMPv3/TSM (with SSH, TLS, and DTLS) in a test 
environment. The testbed was made of computers connected 
through Ethernet. They reported metrics such as the response 
time to execute snmpget and snmpwalk (retrieving the 

ifTable table [23]) commands, and the bandwidth utilization 
for snmpwalk (retrieving the ifTable table [23]). It is worth 
clarifying that snmpget and snmpwalk are basic applications 
shipped with Net-SNMP [7]. 

According to our search, the unique assessment work that 
covers SNMPv3/TSM and standard implementations of the 
protocols is described in [1]. Our paper not only includes 
SNMPv3/TSM, but we also believe that it will be of interest in 
the growing community of the Raspberry Pi [5][6]. 

III. INTRODUCTION TO SNMP AND ITS DIFFERENT 
VERSIONS AND SECURITY MODELS 

The Simple Network Management Protocol (SNMP) was 
initially defined in August 1988 by RFC 1067 [24] as a 
protocol to monitor and control network devices, and it has 
been used extensively for over three decades now. SNMP 
allows configuring network devices remotely, collecting 
management data, and supporting the dissemination of event 
notifications [1]. Approved in 1990, SNMP became one of the 
main network protocols widely used as a de-facto standard by 
the industry to carry out the monitoring of assets for IP-based 
networks [25]. Nevertheless, the first version of SNMP, known 
as SNMPv1, is limited to meet all network management 
requirements that arise as a consequence of the interconnection 
complexity among systems, and is exposed to several security 
threats. 

The architectural model of SNMP is straightforward and 
consists of network management stations, agents, and managed 
devices. Network management stations execute the 
applications which monitor and control network elements or 
managed devices. Agents are responsible for performing the 
network management functions requested by the network 
management stations, whereas managed devices may be hosts, 
gateways, terminal servers, switches, routers, among others. 

The second version of SNMP, known as SNMPv2c, is an 
improvement of SNMPv1 without implementing security 
features. Neither SNMPv1 nor SNMPv2c can provide 
authentication, confidentiality, and integrity; therefore, they are 
exposed to multiple security threats, particularly those 
associated with authentication and privacy [26]. 

The third version of SNMP, known as SNMPv3, provides 
security features to the previous versions by introducing the 
User-based Security Model (USM), which is used to 
authenticate entities and provides encryption to secure the 
communication channel [10]. The authentication is performed 
using Hashed Message Authentication Code (HMAC) based on 
techniques such as Message Digest 5 (MD5) as well as Secure 
Hash Algorithm (SHA), while encryption for privacy is 
performed using Data Encryption Standard (DES) and 
Advanced Encryption Standard (AES), which are symmetric 
algorithms [27]. Also, SNMPv3 introduced a substantial 
complexity to SNMP architecture, since it implements its own 
user and key management infrastructure. 

A. SNMPv1 and SNMPv2c 
Both versions, SNMPv1 and SNMPv2c, rely on the 

Community-based Security Model (CSM) by which the 
community’s name acts as a password and is transmitted over 
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the network in cleartext with the message. If the community’s 
name is recognized, then the message should be processed. The 
use of the community’s name without any encryption to verify 
that the message was sent by a trusted source is inherently 
insecure since it allows unauthorized individuals to capture it 
by using a packet analyzer or sniffer, and execute privileged 
actions. Hence, the security of the SNMP messages is 
dependent on the security of the channels over which the 
messages are sent. 

SNMPv1 introduced five main Protocol Data Units: (1) 
GetRequest, (2) GetNextRequest, (3) SetRequest, (4) 
GetResponse, and (5) Trap. GetRequest is used by the 
manager to collect the value of one or more objects managed 
by the agent. The manager uses GetNextRequest message to 
request a series of consecutive variables managed by the agent. 
SetRequest is used by the manager to modify the value of 
one or more objects in a managed device. GetResponse is 
sent by agents to respond with data to get (GetRequest and 
GetNextRequest) and set (SetRequest) requests. Trap is 
used by the agent to notify that an event has occurred or that a 
condition is present. SNMPv1 does not allow manager-to-
manager interactions [28]. 

Three new PDUs were added in SNMPv2c: (1) 
GetBulkRequest, (2) InformRequest, and (3) Report. 
The purpose of GetBulkRequest is the optimization of 
GetNextRequest, allowing to request the transfer of a large 
amount of data and reducing the number of requests and 
responses. InformRequest is used by a manager to send 
management information to other remote managers. Usage and 
precise semantics of Report are not specified; therefore, any 
SNMP administrative framework making use of this PDU must 
define it. SNMPv2c improved error-handling by including 
expanded error codes to differentiate types of error conditions 
reported through a single error code in SNMPv1 [29]. 

B. SNMPv3/USM 
The User-based Security Model (USM) provides 

authentication and privacy capabilities at the SNMP message 
level. It defines three security levels that can be summarized as 
follows: 

• Communication without authentication and privacy 
(noAuthNoPriv): From a security point of view, it is 
comparable to the CSM used by previous versions of 
SNMP. Neither authentication, nor encryption for 
privacy capabilities, are provided. 

• Communication with authentication but without privacy 
(authNoPriv): It provides authentication. However, 
encryption for privacy is not provided by this level. 

• Communication with authentication and privacy 
(authPriv): It provides both authentication and 
encryption for privacy capabilities. 

The USM model implements its own user and key 
management infrastructure, making it unpractical to be 
implemented [1]. It relies on the existence of pre-shared keys 
between two communicating SNMP engines. 

C. SNMPv3/TSM 
The Transport Security Model (TSM) was designed to fit 

into the SNMP architecture as a Security Model that utilizes 
the services of a secure Transport Model. The TSM model does 
not provide security mechanisms such as authentication and 
encryption itself [19]. Instead, it was implemented to work 
with a variety of secure transport protocols, including Secure 
Shell [2] (SSH), Transport Layer Security [3] (TLS), and 
Datagram Transport Layer Security [4] (DTLS). 

1) SNMPv3/SSH: The Secure Shell (SSH) protocol [2] is 
used for secure remote login and other secure network 
services over an insecure network. It comprises of three 
components: 

• Transport Layer Protocol: it provides server authentica-
tion, confidentiality, integrity, and compression. It 
operates over a TCP connection, however, other reliable 
data streams can be used. Public-key cryptography is 
used to authenticate the server to the client and to 
establish a secure connection, which then uses a session 
key and a symmetric encryption algorithm to protect the 
connection. 

• User Authentication Protocol: it authenticates the client-
side user to the server and runs over the transport layer 
protocol. SSH can support multiple user authentication 
mechanisms including, but not limited to, password 
authentication, public-key authentication, and 
keyboard-interactive authentication (which supports 
challenge-response authentication mechanisms). 
Through the Generic Security Service Application 
Program Interface (GSS-API), SSH can also interact 
with the Kerberos protocol to authenticate users. 

• Connection Protocol: it multiplexes the encrypted 
tunnel into several logical channels. It runs over the 
transport layer protocol and starts once the user 
authentication protocol has finished. 

2) SNMPv3/TLS: The Transport Layer Security (TLS) 
protocol [3] provides authentication, integrity, and privacy at 
the transport layer. The TLS Transport Model (TLSTM) for 
SNMP consists of a model instantiation in the transport 
subsystem and details the elements of procedure for sending 
and receiving SNMP messages over TLS. TLSTM makes use 
of the X.509 public key infrastructure to provide 
authentication. 

3) SNMPv3/DTLS: The Datagram Transport Layer 
Security (DTLS) protocol [4] is based on the TLS protocol 
and provides similar security capabilities. The main difference 
in comparison with TLS is that DTLS provides secure 
communication over unreliable datagram transports (e.g., 
UDP). 

IV. METRICS AND BENCHMARKS 
Let us define the “response time” as the time required for 

an SNMP manager to send a request and receive the associated 
response from the agent. We could not find a software tool on 
the Internet that fulfilled our need in computing the response 
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time with precision. Hence, we wrote our own benchmarking 
tool in the C programming language, using the Net-SNMP 
library [7]. Basically, a request/response exchange is done 
several times between our benchmarking tool and the agent. 
The benchmarking tool takes a timestamp before and after the 
interchange. The difference in timestamps is divided by the 
number of exchanges to get the average response time. 
Repeating the request/response exchange several times 
minimizes the error on the response time, due to low-precision 
clocks and any other processes that could be started by the 
operating systems and load the devices during the benchmark 
execution. 

The benchmark has several parameters, including the 
version of SNMP, the community (only for SNMPv1 and 
SNMPv2c), the security name, security level (noAuthNoPriv, 
authNoPriv, and authPriv), the authentication protocol and 
passphrase, the privacy protocol and passphrase (only for 
SNMPv3/USM), the digital certificates for the benchmarking 
tool and the agent (only for SNMPv3/DTLS and 
SNMPv3/TLS), the number of sessions (numSessions), the 
number of requests/responses per session (sessionSize), the 
transport protocol (UDP, TCP, DTLS, and TLS), the IP address 
of the agent, and a list of parameters related to Object 
Identifiers (OIDs). The latter list will depend on the petitions. 
For example, for GetRequest and GetNextRequest 
petitions, it should be the list of OIDs to be resolved into 
values. For SetRequest petitions, it should be a list of triplets 
(OID to be altered, its type, and its new value). Fig. 1 gives the 
skeleton of the benchmark for computing the response time for 
a GetRequest petition. The line numbers have been added 
just for reference. Line 01 gets the starting timestamp. The 
external for-loop controls the number of sessions 
(numSessions). For each session, the internal for-loop 
controls the number of requests/responses per session 
(sessionSize). Each session consists of opening the session 
with the agent (Line 05), repeating the creation of the request 
(Line 07), exchanging the request and response with the agent 
(Line 09), and destroying the response once processed (Line 
11), before closing the session (Line 13). Finally, Line 16 gets 
the ending timestamp, and the results are displayed. 
01: gettimeofday(&timerStart, (struct timezone *) 0); 
02: // Get the starting timestamp 
03: 
04: for(int i=0; i<numSessions; i++) { 
05: ss = snmp_open(&session); // Open an SNMP session 
06: for(int j=0; j<sessionSize; j++) { 
07: pdu = snmp_pdu_create(SNMP_MSG_GET); // Create request 
08: // Add pairs of (OIDs, null) to the request 
09: status = snmp_synch_response(ss, pdu, &response); 
10: // Process the response 
11: snmp_free_pdu(response); 
12: } 
13: snmp_close(ss); Close the SNMP session 
14: } 
15: 
16: gettimeofday(&timerEnd, (struct timezone *) 0); 
17: // Get the ending timestamp before showing the results 

Fig. 1. Skeleton of the Code of the Benchmark to Compute the Response 
Time for a GetRequest. 

V. DESCRIPTION OF THE TEST ENVIRONMENT 
The testbed of Fig. 2 was used for the experiments. It 

consisted of a laptop, a wireless router, and SBCs from the 
Raspberry Pi Foundation. The laptop and SBCs were placed 4 
meters from the wireless router, with no obstacles between 
them. Section V.A gives more details about the different 
models of SBCs (RPi Zero W, RPi 3B, and RPi 3B+) that were 
used. The laptop had the following specifications: Microsoft 
Surface Book with an Intel Core i7-6600U CPU at 2.81 GHz, 
16 GB of RAM, a 512 GB SSD, an NVIDIA GeForce GPU, 
and a Marvell AVASTAR Wireless-AC Network Adapter 
(dual-band wireless adapter with support to IEEE 802.11 
a/b/n/g/ac). Debian amd64 10.11.0 was installed as the 
operating system. For the wireless network interconnection, a 
NETGEAR AC1200 Smart WiFi Router R6220 was employed. 
It had the following characteristics: an 880 MHz MediaTek 
processor width two radio bands (IEEE 802.11b/g/n in the 2.4 
GHz band and IEEE 802.11a/n/ac in the 5 GHz band), 128 MB 
of flash, 128 MB of RAM, and five 10/100/1000 Mbps 
Ethernet ports (1 WAN and 4 LAN). In the 2.4 GHz band, the 
bandwidth can be set up to a maximum of 54, 145, or 300 
Mbps. At the level of the 5 GHz band, a maximum of 173, 400, 
and 867 Mbps can be configured. 

 
Fig. 2. Testbed for the Experiments. 

A. Models of Raspberry Pi used in the Experiments 
The Raspberry Pi Zero W (RPi Zero W) is based on a 32-

bit Broadcom BCM2835 single-core ARM1176JZF-S SoC @ 
1.0 GHz, 512 MB of RAM, one 2.4 GHz IEEE 802.11b/g/n 
WiFi interface, one micro USB On-The-Go port, one mini 
HDMI connector, and one microSD card slot. The Raspberry 
Pi 3 Model B (RPi 3B) is based on a 64-bit Broadcom 
BCM2837 quad-core Cortex-A53 SoC @ 1.2 GHz, 1 GB of 
RAM, one 10/100 Mbps Ethernet interface, one 2.4 GHz IEEE 
802.11b/g/n WiFi interface, four USB 2.0 ports, one full-size 
HDMI connector, and one microSD card slot. The Raspberry 
Pi 3 Model B+ (RPi 3B+) is based on a 64-bit Broadcom 
BCM2837B0 quad-core Cortex-A53 SoC @ 1.4 GHz, 1 GB of 
RAM, one Gigabit Ethernet interface over USB 2.0 (maximum 
throughput 300 Mbps), one dual-band 2.4 GHz and 5 GHz 
IEEE 802.11a/b/g/n/ac WiFi interface, four USB 2.0 ports, one 
full-size HDMI connector, and one microSD card slot. 

B. Operating Systems for Raspberry Pi 
Many operating systems are available for Raspberry Pi 

(e.g., Raspberry Pi OS, Debian, Ubuntu, RaspBSD, Kali Linux, 
OpenSUSE, RetroPie, LibreELEC, RISC OS). We opted for 
Raspberry Pi OS (32-bit), released in May 2021, which is the 
continuity of Raspbian (one of the most accepted OS for 
Raspberry Pi, worldwide). The Raspberry Pi Foundation offers 
three versions of this operating system that are compatible with 
all Raspberry Pi models: (1) Raspberry Pi OS Lite, (2) 
Raspberry Pi OS with Desktop, and (3) Raspberry Pi OS with 
Desktop and Recommended Software. The “Lite” version does 

NETGEAR R6220

Laptop that
runs the benchmark 

Raspberry Pi
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not have a GUI, and therefore it is faster since it does not have 
the full overload of a desktop environment. It is totally based 
on the command-line interface (terminal) and consists of 483 
packages. The “Desktop” version has all the features of the 
“Lite” version, but also includes software such as Openbox as 
the window manager and LXDE (Lightweight X11 Desktop 
Environment) as the desktop environment. It consists of 1384 
packages. The “Desktop and Recommended Software” version 
has all the “Desktop” version features, but also includes 
additional software such as LibreOffice, Firebird, Apache Ant, 
BlueJ, Greenfoot, OpenJDK Java Runtime Environment, 
OpenJDK Java Development Kit, Node.js, and Ruby. It 
consists of 2021 packages. We chose the “Lite” version since 
an SBC that is running an SNMP agent will most likely be 
headless, without the need of a GUI. 

The Raspberry Pi Foundation also has a 64-bit version of 
its operating system that can be run only in 64-bit based 
hardware like the RPi 3B, RPi 3B+, RPi 4B, and RPi 400. That 
is, it is not suitable for the RPi Zero W. It is worth mentioning 
that it is still in the beta stage, and not directly advertised on 
the website of the Raspberry Pi Foundation, since they are still 
working on fixing issues that does not have the 32-bit version. 

The performance of a Raspberry Pi will be noticeably 
affected by its microSD card. In the three SBCs, the original 
microSD card was replaced by a 64 GB SanDisk Extreme 
microSDXC UHS-I Memory Card (SDSQXA2-064G-
GN6MA). It is considered as one of the fastest microSD cards 
of the market, with up to 160 MB/s and 60 MB/s for the 
reading and writing speeds, respectively. 

C. Compiling Net-SNMP 
Net-SNMP [7] is a widely used open-source, 

comprehensive implementation of the SNMP protocol. It has 
support for all the versions of SNMP and consists of an agent 
(snmpd) and several client applications (snmpget, 
snmpgetnext, snmpset, snmpbulkget, snmpwalk, etc). 
Precompiled packets for Net-SNMP v5.7.3 are available in the 
repositories of Raspberry Pi OS. However, at the level of 
SNMPv3, they were compiled to support the USM model, but 
not the TSM model. Hence, a newer version of Net-SNMP 
(v5.8) was compiled and installed in all the Raspberry Pis. To 
this end, the commands of Fig. 3 were executed. The required 
libraries were first installed from the repositories. At the 
configuration level, the security models (both USM and TSM) 
and the transport protocols (UDP, TCP, UDPIPv6, TCPIPv6, 
DTLSUDP, TLSTCP, and SSH) were specified. 

Table I shows the necessary time for each phase of the 
compilation and installation process (configuration, 
compilation, and installation) for the different Raspberry Pis 
that were used in this work. These results can be beneficial, 
since they shed light on the power of each SBC. 
apt-get install libssl-dev libperl-dev libssh2-1-dev 
tar zxvf net-snmp-5.8.tar.gz 
cd net-snmp-5.8 
./configure --with-security-modules=usm,tsm \ 
 --with-transports=UDP,TCP,UDPIPv6,TCPIPv6,DTLSUDP,TLSTCP,SSH 
make 
make install 

Fig. 3. Commands to Compile and Install Net-SNMP. 

TABLE I. COMPILATION TIMES OF NET-SNMP 

Command RPi Zero W RPi 3B RPi 3B+ 

./configure 15m42s 4m31s 4m3s 

make 62m26s 14m14s 12m28s 

make install 4m8s 1m18s 1m7s 

It is worth clarifying that the recent versions of Net-SNMP 
[7] have experimental support for SNMPv3/SSH. Despite 
many efforts, this research team could not successfully install 
and use it. There is little documentation on setting the 
environment of SNMPv3/SSH. Hence, we did not report 
results related to this specific security model in this paper. 

VI. PERFORMANCE RESULTS AND ANALYSIS 
Here, we describe the common parameters selected for all 

our experiments: 

• We configured the radios of the equipment in the 2.4 
GHz band. The wireless router was set up to a 
maximum of 54 Mbps. 

• Recent versions of SNMP can use UDP or TCP as the 
transport protocol. SNMP was initially designed for 
UDP, and will most likely be used with UDP since most 
SNMP agents are developed to use this protocol (it 
requires less computing power than TCP). Hence, 
otherwise stated, our experiments were done using UDP 
as the transport protocol. 

• SNMPv3/USM has two authentication protocols (MD5 
and SHA-1) and two privacy protocols (DES and AES). 
Unless otherwise specified, in our experiments with 
SNMPv3/USM, we selected SHA-1 as the 
authentication protocol and AES as the privacy 
protocol, when used. SHA-1 was preferred due to the 
attack on MD5 [30]. AES was selected since DES has a 
relatively short 56-bit key that is easily breakable with 
modern computers [31][32]. In January 1999, 
distributed.net and the Electronic Frontier Foundation 
were the first to collaborate and publicly broke a DES 
key in less than 23 hours. 

• The OIDs retrieved and modified in our experiments 
were strings of 32 characters. 

• For the experiments with SNMPv3/DTLS, self-signed 
certificates were generated, using the RSA algorithm 
with 2048-bit keys. 

They are many parameters that can be varied to analyze 
their effects on the performance of SNMP. In this study, we 
considered parameters such as the type of requests, the number 
of objects involved per request, the security levels of 
SNMPv3/USM, the authentication and privacy protocols of 
SNMPv3/USM, the transport protocols, and the versions and 
security models of SNMP. Also, to get consistent results, it is 
worth mentioning that we repeated each experiment at least 
fiftheen times, and the results presented in the study is an 
avarege of them. 
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A. Type of Requests Variation 
This experiment aims to study how varying the type of 

requests can affect the performance of SNMP on a Raspberry 
Pi. The PDUs available in SNMP are version-specific. 
However, GetRequest, GetNextRequest, and 
SetRequest are present in all the versions, and therefore are 
the most commonly used requests. In this first experiment, we 
compared the response time of these three requests for 
SNMPv1, SNMPv2c, SNMPv3/USM, and SNMPv3/DTLS. 
The experiment is focused on sessions with a single 
request/response exchange. Table II shows the results for the 
RPi Zero W, RPi 3B, and RPi 3B+ as an agent. The differences 
between GetRequest and GetNextRequest petitions are not 
noticeable. However, the response time for a SetRequest is 
much longer, due to the reading and writing speed in the 
microSD card (maximum 160 MB/s and 60 MB/s for reading 
and writing speed, respectively). 

At the level of the SNMP versions, SNMPv1 and 
SNMPv2c have very similar performances. SNMPv3/USM and 
SNMPv3/DTLS have much longer response times due to the 
overhead of the authentication and privacy mechanisms. It is 
also worth mentioning that in this experiment, SNMPv3/USM 
outperforms SNMPv3/DTLS, with minor differences. 

In all the subsequent experiments, we focused on 
GetRequest petitions, since they are the most common 
petitions, and the majority of deployments of SNMP are 
focused on monitoring (not configuring), which requires 
massive GetRequest and GetNextRequest petitions, rather than 
SetRequest. 

B. Number of OIDs Variation 
In this experiment, the impact of the number of OIDs in the 

response time of a GetRequest petition is studied, and it was 
varied from 1 to 32. The experiment is focused on sessions 
with a single request/response exchange. 

Fig. 4 and Fig. 5 depict the results obtained for SNMPv1 
and SNMPv2c, respectively. Our study seems to indicate that 
both have a very similar performance. 

TABLE II. RESPONSE TIME OF DIFFERENT REQUESTS (MILLISECONDS) 

Type of Request Version RPi Zero W RPi 3B RPi 3B+ 

GetRequest 

v1 2.97 2.02 1.71 

v2c 2.99 2.01 1.73 

v3/USM 3.51 2.24 2.15 

v3/DTLS 3.95 2.44 2.36 

GetNextRequest 

v1 2.98 2.08 1.74 

v2c 2.96 2.05 1.72 

v3/USM 3.53 2.31 2.20 

v3/DTLS 4.02 2.47 2.33 

SetRequest 

v1 151.27 127.44 122.35 

v2c 151.35 127.50 122.37 

v3/USM 155.32 131.74 126.92 

v3/DTLS 157.21 135.87 131.56 

 
Fig. 4. Response Time for a GetRequest when Varying the Number of OIDs 

for SNMPv1. 

 
Fig. 5. Response Time for a GetRequest when Varying the Number of OIDs 

for SNMPv2c. 

Fig. 6 and Fig. 7 show the results obtained for SNMPv3/ 
USM with authPriv (SHA-1 and AES) and SNMPv3/DTLS, 
respectively. The response time for SNMPv3/USM is slightly 
longer than for SNMPv1 and SNMPv2c. SNMPv3/DTLS has 
the longest response time. 

 
Fig. 6. Response Time for a GetRequest when Varying the Number of OIDs 

for SNMPv3/USM. 

 
Fig. 7. Response Time for a GetRequest when Varying the Number of OIDs 

for SNMPv3/DTLS. 
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The tendency of this experiment indicates that the response 
time for a GetRequest will be linearly proportional to the 
number of OIDs. It is also noticeable that both the RPi 3B and 
the RPi 3B+ have similar results, which are much better than 
the RPi Zero W. 

C. Security Level Variation for SNMPv3/USM using UDP 
and TCP as Transport Protocols for the RPi Zero W 
The objective of this experiment is to analyze the impact of 

the security levels (noAuthNoPriv, authNoPriv, and authPriv) 
when using SNMPv3/USM on an RPi Zero W. The experiment 
is also aimed at understanding how the transport protocol 
(UDP or TCP) can affect the performance. To simplify the 
notation, let us abbreviate noAuthNoPriv as “nn”, authNoPriv 
as “an”, and authPriv as “ap”. 

Fig. 8 depicts the total response time for our experiments 
for different numbers of requests/responses in a session (from 
50 to 400 requests/responses). For each size of the session, six 
total response times are reported: (1) noAuthNoPriv with UDP, 
(2) noAuthNoPriv with TCP, (3) authNoPriv with UDP, (4) 
authNoPriv with TCP, (5) authPriv with UDP, and (6) authPriv 
with TCP. We selected SHA-1 and AES as the authentication 
and privacy protocols, respectively. 

As indicated by our experiments, TCP has a slightly longer 
response time, but the differences with UDP are not significant. 
The variations due to the different privacy levels are more 
noticeable. As expected, noAuthNoPriv is the shortest response 
time, while authPriv is the longest. 

D. Authentication and Privacy Protocols Variation for 
SNMPv3/USM using UDP as the Transport Protocol for 
the RPi Zero W 
This experiment aims to assess the impact of the 

authentication protocols (MD5 and SHA-1) and the privacy 
protocols (DES and AES) when using SNMPv3/USM on an 
RPi Zero W. 

Fig. 9 depicts the total response time of our experiments for 
different numbers of requests/responses in a session (from 50 
to 400 requests/responses). For each size of the session, seven 
total response times are reported: (1) noAuthNoPriv, (2) 
authNoPriv with MD5, (3) authNoPriv with SHA-1, (4) 
authPriv with MD5 and DES, (5) authPriv with MD5 and AES, 
(6) authPriv with SHA-1 and DES, and (7) authPriv with SHA-
1 and AES. 

 
Fig. 8. Total Response Time for a Session of GetRequest for SNMPv3/USM 

when Varying the Security Level and the Transport Protocol. 

 
Fig. 9. Total Response Time for a Session of GetRequest for SNMPv3/USM 

when Varying the Authentication and Privacy Protocols. 

Our results seem to indicate that MD5 is faster than SHA-1 
as an authentication protocol. However, it is worth reminding 
that MD5 is now considered insecure [30]. Also, at the level of 
the privacy protocol, DES appears to be faster. 

E. SNMPv3/USM vs SNMPv3/DTLS 
In this experiment, we investigate the performance of 

SNMPv3/USM (SHA-1 and AES) vs. SNMPv3/DTLS on the 
RPi Zero W, RPi 3B, and RPi 3B+. 

Fig. 10 depicts the total response time of our experiments 
for different numbers of requests/responses in a session (from 
50 to 400 requests/responses). For each size of the session, six 
total response times are reported: (1) SNMPv3/USM (SHA-1 
and AES) for RPi Zero W, (2) SNMPv3/DTLS for RPi Zero 
W, (3) SNMPv3/USM (SHA-1 and AES) for RPi 3B, (4) 
SNMPv3/DTLS for RPi 3B, (5) SNMPv3/USM (SHA-1 and 
AES) for RPi 3B+, and (6) SNMPv3/DTLS for RPi 3B+. 

The best results are obtained by the RPi 3B+, while the 
worst correspond to the RPi Zero W. Also, this experiment 
confirmed that SNMPv3/USM has a better performance than 
SNMPv3/DTLS, as already mentioned in Section VI.A. 

Notice that we also did experiments with SNMPv3/TLS. 
However, the obtained results were not stable at all, and we 
had significant variations of the response time from one test to 
another. Hence, we decided not to report them in this paper. 

 
Fig. 10. Total Response Time for a Session of GetRequest for SNMPv3/USM 

and SNMPv3/DTLS. 
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F. Retrieving the Interface Table with snmpwalk when 
Varying the Number of Interfaces 
As mentioned previously, Net-SNMP [7] has several client 

applications (snmpget, snmpgetnext, snmpset, snmpbulkget, 
snmpwalk, etc). In this experiment, we investigated the 
performance of snmpwalk by retrieving the interface table 
(ifTable [23]), when varying the numbers of interfaces, for 
SNMPv1, SNMPv3/USM (SHA-1 and AES), and 
SNMPv3/DTLS, on the RPi Zero W, RPi 3B, and RPi 3B+. 
snmpwalk uses GetNextRequest requests to query an agent for 
a portion of the object identifier space (e.g., a table). All 
objects in the subtree below a given OID are queried and their 
values are presented to the user. We varied the number of 
interfaces from 2 to 64, by creating additional dummy 
interfaces on the SBCs as specified in Fig. 11. The output of 
the application was discarded by redirecting it to /dev/null. 
modprobe dummy 
for i in $(seq $startValue $endValue) 
do 
 echo "Creating interface eth${i} with address 10.0.0.${i}/32" 
 ip link add eth${i} type dummy 
 ip address add 10.0.0.${i}/32 dev eth${i} 
 ip link set up dev eth${i} 
done 

Fig. 11. Creation of Dummy Interfaces in the Agents. 

 
Fig. 12. Time to Retrieve the ifTable using Snmpwalk when Varying the 

Number of Interfaces for the RPi Zero W. 

 
Fig. 13. Time to Retrieve the ifTable using Snmpwalk when Varying the 

Number of Interfaces for the RPi 3B. 

 
Fig. 14. Time to Retrieve the ifTable using Snmpwalk when Varying the 

Number of Interfaces for the RPi 3B+. 

Fig. 12, 13, and 14 depict the time to retrieve the interface 
table (ifTable) through the snmpwalk application for the 
RPi Zero W, RPi 3B, and RPi 3B+, respectively. For small 
numbers of interfaces, SNMPv1 has results that are similar to 
the ones of SNMPv3/USM (SHA-1 and AES) and 
SNMPv3/DTLS. However, as the number of interfaces 
increases, the processing time becomes predominant over the 
transmission time, resulting in bigger differences between 
SNMPv1 and the other two versions of SNMP. 

VII. CONCLUSION AND FUTURE WORK 
Our experiments seem to indicate that SNMPv1 and 

SNMPv2c have similar performances. The assessment results 
of SNMPv3/USM and SNMPv3/DTLS are close to each other, 
with a slight advantage for the former. At the level of the 
SBCs, the RPi 3B and RPi 3B+ performed mostly equally, with 
the latter slightly outperforming the former. We found 
significant differences in the response time of GetRequest 
and SetRequest. We believe that these differences are due to 
the reading and writing access to the microSD cards (up to 160 
MB/s and 60 MB/s for the reading and writing speeds, 
respectively). 

Unfortunately, and despite all our efforts, we could not 
succeed in using SNMPv3/SSH with Net-SNMP. Also, 
SNMPv3/TLS gave inconsistent results from test to test, so we 
decided not to report them in this study. 

As future work, we plan to evaluate SNMP, RESTCONF 
[17], and NETCONF [17] as management solutions in different 
scenarios. Also, with the growing adoption of IPv6, we are 
interested in analyzing the influence of the network protocol 
(i.e., IPv4 and IPv6) over the SNMP performance. 
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