
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 11, 2021

Developing of Middleware and Cross Platform Chat
Application

Study Case: Telegram, LINE

Danny Sebastian1, Restyandito2, Kristian Adi Nugraha3
Fakultas Teknologi Informasi, Universitas Kristen Duta Wacana, Yogyakarta, Indonesia

Abstract—The rapid development of technology has resulted
in many new innovations on social media platforms. Now-a-days,
there are many chat applications available, namely Whatsapp,
Telegram, LINE, Viber, and many others. This in turn forces
users to juggle between many chat applications as different
applications can’t communicate with each other. This research
aims to develop a chat application which serves as a middleware
to make communication between developed chat application and
two conventional chat applications possible (Telegram and
LINE). Several tests are done to ensure that the message
exchange process (in text, picture, video, and file type) works well
between the developed chat application as well as Telegram or
LINE.

Keywords—Telegram API; line API; chat application; flutter;
middleware

 INTRODUCTION I.
The rapid development of technology has invented many

new innovations on social media platforms. There are so many
social media applications available, yet this doesn’t stop the
emergence of new social media applications. In Indonesia,
there are so many social media platforms available, with Line,
Telegram, Whatsapp, and Viber being some of the most
notorious social media platforms offering its service in
Indonesia. Social media platforms generally offer messages,
pictures, voice message, file exchanges, and other things [1].
Every chatting application offers different features available
for the users to use. For instance, Telegram offers the file
upload feature, a feature that LINE has yet to offer [2] [3].

Every user has their own preferences in choosing which
social media platforms they want to use. Oftentimes, the
amount of acquaintances using a certain social media platform
being the main consideration on which social media platform
they are going to use. This happens because of the limitation
in which users can only exchange messages within the same
social media platforms. To this day, message exchanges
between different social media platforms are still impossible.

Usually, each user has their own preferences in choosing
chat apps. In fact, usually the selection of chat apps depends
on the community group, each community group has their
own favorite chat apps. This condition makes it difficult when
someone joins several community groups, and each
community group uses different chat apps. Different features
offered by each social media platform provider and limitations
on communicating using different platforms forced the users
to choose which platforms they are going to use. Oftentimes,

often users have to use a lot of social media and have an
account in each chat application.

The writer feels the need to research and develop a custom
chat application and middleware which will connect several
social media platforms. In this research, LINE and Telegram
chatting applications are used. This article is divided into five
parts, namely, introduction, literature review, research
methods, results and findings, and conclusions.

 LITERATURE REVIEW II.
Chatting in Indonesian means communication between a

person with another person or people [4]. In the computing
world, chatting means communication between 2 or more
people using computer devices [4]. Nowadays, chatting
applications are growing rapidly, with many chatting
applications being developed to fulfill the users’
communication needs. There are so many features offered by
social media platforms nowadays, namely files transfer, auto
response/bot [5] [6], business features, gaming features [7],
and many more. Chatting application providers aren’t always
big companies such as Whatsapp, Telegram, Viber, LINE, but
also small developers. Hence, several chatting applications
made it possible to communicate with other applications using
Application Programming Interface (API) [2] [3].

Middleware is a software application which can connect a
system with another system [7]. Middleware can be used to
connect several systems within the same device or even on
different devices connected to the internet [8] [9]. Middleware
can also be used to connect applications on the same type of
device or different types of devices, such as mobile device -
mobile phone, mobile phone - television, mobile phone -
computer, computer - computer, et cetera [10]. In developing a
middleware application, there are a few solutions/methods,
namely message oriented middleware [11], object-oriented
middleware [12], Remote procedure call, database
middleware, transactional middleware, portals, embedded
middleware [13], and content-centric middleware [14].

Middleware development was also done to bridge a
chatting application with other application. Several
researchers have developed middleware for chatting
applications to add features, such as Artificial Intelligence
[15]. Some researchers developed middleware from scratch
and some other used API provided by the chatting applications
provider [16]. Other than API, webhook method also used to
send messages between chat bots.

79 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 11, 2021

Several researches and development on custom chatting
applications has been done. A custom chatting application
equipped with Natural Language Processing was developed in
one research [17]. In this research the system will
automatically do sentiment analysis towards the message
being sent. If the analyzed message has negative context, then
the message will not be sent. In another research, a custom
location based chatting application was developed [18], in
which the application allows the users to find friends and
communicate with other users within a certain distance.
Another research was also done, intending to help the
communication between faculty members (lecturer, assistant
lecturer) and the students [19]. The custom chatting
application developed was able to automatically create a group
chat based on the subjects’ registration done every semester.

Several researches on chatting application development
using the API offered by big chatting application providers,
namely Telegram, LINE, et cetera was also done. Some
developed a smart home system using NodeMCU
Microcontroller combined with Telegram API [20]. By using
the application developed in this research, users are able to
monitor and command their Internet of Things devices using
Telegram. Telegram Bot API was used to send messages from
Telegram to the Internet of Things devices. Other than that,
the Telegram BOT API was also used to create an e-complaint
application for a college [21]. In this application, the Telegram
Bot API was used to receive complaints and calculate the
complaints statistics based on the divisions being complained
to.

In summary, custom chatting applications that were
developed are Android based [1] [17] [18], iOS based [1] [22],
website applications [4] [23], and desktop application [24].
Android based mobile applications can be developed using
either Java or Kotlin, while iOS based mobile applications are
developed using either objective-C or Swift. In the application
development community, there is a new trend which is a
cross-platform application, in which the developed
applications can be compiled and create both an Android and
iOS based application using a single code base. One of the
frameworks used to create this cross-platform device is the
Flutter Framework. Flutter Framework itself is an open source
cross platform development framework developed by Google
[25]. Flutter itself is based on the Dart Programming
Language. Several technology company giants were using
Flutter Framework to develop their products, namely, Alibaba
and Google Ads.

A. Chat API
Application Programming Interface (API) is used by an

application to exchange information with other applications
[26]. API success relies on the API documentation provided
by API for software development needs. Many chat
applications have provided API which allows other
application to access the chat applications’ services.

Telegram provides API for software developers to connect
their applications to Telegram’s system. This API allows
Telegram Bot creation [2]. Telegram Bot itself acts as an
interface to run code from a server. Telegram API uses text in
JSON format in passing data with other systems. This JSON

formatted text allows developers to develop application using
many different programming languages.

Line Messaging API is a service provided by LINE to
exchange data between Line Platform and other application
[3]. Just like Telegram Bot API, LINE Messaging API uses
JSON to communicate with other applications. LINE
Messaging API uses webhook method to pass data to the
server.

B. NoSQL Database
NoSQL database are databases that don’t use SQL

command in which data was saved in an unstructured format
and often time don’t have relations with other table like SQL
databases [27] [28]. NoSQL database was intended to save
data in a flexible way in modern application development. In
many cases, NoSQL databases used in real-time application
development.

In general there are four types of NoSQL Database [29]:

• Graph databases: These databases uses graph theory
concept. Example: Neo4j and Titan.

• Key-Value store databases: In these databases, data are
stored in two parts, which are key and value. Example:
Redis, DyanmoDB, Riak.

• Column Store databases: In these databases, data are
stored in column of data. Example: BigTable,
Cassandra.

• Document Databases: These databases are more
extensive database than the key-value store. The value
are saved in document type and stored in a ore complex
format, like JSON. Example: MongoDB, CouchDB.

C. Flutter
Flutter is an open source mobile application development

made by Google [30]. Flutter allows Android and iOS based
application development using only one source code base
[31]. Flutter uses Dart Programming Language. Flutter
Framework uses widget concept in interface creation. There
are many widgets provided, namely Column, Row, Icon, and
many other widgets. The widget in Flutter acts are either
visual component or as a container for other widgets [32].

 RESEARCH METHOD III.

A. System Design
The system developed consists of two main applications,

namely mobile chatting application and middleware
application. The chatting application is used as an interface for
the user to test the system. This chatting application was
developed using Dart programming Language with Flutter
Framework. While the middleware acts as a connector to
connect the chatting application developed with Telegram
API, LINE API.

Architecture of the system developed can be seen on Fig.
1. Message exchange process starts on one of the
Conventional Chat Application/CCA (Telegram/LINE/Signal)
to the CCA’s chat API (step 1). Then the CCA’s API will pass
the message to the middleware to be received by the webhook

80 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 11, 2021

prepared (step 2). The middleware will then process the
message fetched by saving the message’s metadata, saving the
file, image, video, our sound data to Firebase. The middleware
developed uses 3 Firebase service, namely Firestore, Firebase
Cloud Storage, and Firebase Cloud Messaging. Firestore is
used to save the messages’ metadata and content, such as the
message’s recipient, message’s sender, chatting application,
etc. Example of data stored in Firestore can be seen on Fig. 2
for text data and Fig. 3 for non-text data. Firebase Cloud
Storage is used to store video, image, voice, and file message
data. Example of data stored in Firebase Cloud Storage can be
seen on Fig. 4. After being processed, the middleware will
then pass the message to Flutter Chat Application/FCA
(step 3).

Fig. 1. Whole System Application Architecture.

Fig. 2. Example of Data Stored in Firestore, Type:Text Message.

Fig. 3. Example of Data Stored in Firestore, Type:Video.

Fig. 4. Example of Data Stored in Firebase Cloud Storage.

Meanwhile, messages passed from FCA to CCA starts
from (step 4), where FCA forward messages to the
middleware. Messages from FCA will then be processed on
the middleware and stored in Firebase services. After that,
messages will then be forwarded to the recipient’s CCA
through Chat Application API using Push Message (step 5/6).
Available API could be seen at Table I.

After the application has been developed, system test was
done. This system test was done to make sure that the
application has successfully work as expected. The system test
scenario can be found on Table II. System test was done on
Text, Image, Video, Sound and File type. For each message
type, testing was done from CCA to FCA, and vice versa.

B. System Test
Performance testing was done to measure the time needed

by the middleware to forward and receive messages. The
performance testing scenario can be seen on Table III. In
general, the testing was done using four types of data, namely,
Text, Image, Video and File. For text data type, size of the
data forwarded was classified based on the number of
characters. As for the Image, Video and File data type, data
was classified based on the file size (in megabyte). Testing for
the Text, Image, and Video data was done on Telegram, and
LINE. However, File data wasn’t tested on LINE as the
chatting application doesn’t have file sharing feature.

TABLE I. APPLICATION PROGRAMMING INTERFACE (API) MIDDLEWARE

Method URI Description

POST /telegram/webhook Receive messages from telegram bot
and forward it to the FCA

POST /telegram/push Receive messages from the FCA
and forward them to Telegram API

POST /line/webhook Receive message from LINE bot
and forward them to the FCA

POST /line/push Receive messages from the FCA
and forward it to LINE API

TABLE II. SYSTEM TEST SCENARIO

Method URI Description
CCA-FCA, FCA-CCA Text Telegram, LINE
CCA-FCA, FCA-CCA Image Telegram, LINE
CCA-FCA, FCA-CCA Video Telegram, LINE
CCA-FCA, FCA-CCA Sound Telegram, LINE
CCA-FCA, FCA-CCA File Telegram

Middleware

Telegram

LINE

Flutter Chat App

w
eb

ho
ok

pu

sh
 m

sg

Firebase Service

1/6

2

3

4

81 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 11, 2021

TABLE III. PERFORMANCE TEST SCENARIO

Type Chat
Application Measurement Size

Text Telegram,
LINE Characters

400, 800, 1200, 1600,
2000, 2400, 2800,
3200, 3600, 4000

Image Telegram,
LINE MB 1, 2, 3, 4, 5

Video Telegram,
LINE MB 1, 2, 3, 4, 5

File Telegram MB 1, 2, 3, 4, 5

The system developed has start and end timer. In the FCA
to CCA testing, the start timer was invoked when the “Send”
button on the FCA is clicked, while the stop timer was
invoked when the middleware sends out push message to the
Chat API. As for the CCA to FCA testing, the start tier was
invoked when the middleware webhook receive request, while
the stop timer was invoked when the message has been
forwarded by the middleware to FCA.

𝑝𝑟𝑜𝑐𝑒𝑠𝑠_𝑡𝑖𝑚𝑒 = (𝑡1+𝑡2+𝑡3+𝑡4+𝑡5)
5

 (1)

In this testing, the possibility of unstable internet
connection may be a problem. To tackle this problem, every
test scenario was done 5 times and average processing time
will be calculated to then be used as a final result. Average
process tie formula can be seen on equation (1). For example,
Telegram Text data type testing for 400 characters processing
time was measured on 0.5 second, 0.7 second, and 0.63
second. Thus, the processing time for this test case is 0.61
second. Each test case will be carried out for testing from
CCA to FCA and vice versa. Performance time result will be
compared for CCA to FCA and FCA to CCA data.

 RESULT AND FINDINGS IV.

A. System Test
System testing has been done and the result can be seen on

Table IV. All system testing scenario can be done by the chat
application’s middleware and Flutter Chat Application (FCA).
Captures of the Flutter Chat Application can be seen on Fig. 5.
Based on the testing result, the middleware application
developed has successfully able to forward messages from the
Flutter Chat Application (FCA) to the Conventional Chat
Application (CCA) and vice versa. This success also applies
for all message types tested.

Currently the architecture and communication process
starts by creating a chat group on Telegram/LINE, then an
OTP request is made to be able to start communication
between the custom chat app and the Telegram/LINE chat
app. Currently, the architecture and communication processes
in the middleware that are built are still unable to
communicate between LINE and Telegram. This is because
there is an OTP request that must be made so that
communication can be carried out. Due to this limitation, it is
necessary to adjust the add contact process. On the other hand,
when chatting, the middleware needs to add fields recording
where the message was sent from and where the message was
sent.

TABLE IV. SYSTEM TEST RESULT

From-To Message Type CCA Result

CCA-FCA

Text

Telegram Pass

LINE Pass

FCA-CCA
Telegram Pass

LINE Pass

CCA-FCA

Image

Telegram Pass

LINE Pass

FCA-CCA
Telegram Pass

LINE Pass

CCA-FCA

Video

Telegram Pass

LINE Pass

FCA-CCA
Telegram Pass

LINE Pass

CCA-FCA
File

Telegram Pass

FCA-CCA Telegram Pass

Fig. 5. Screenshot user Interface Application Flutter Chat Application.

B. System Performance Evaluation
System Performance Test was performed on each of the

message type sent. The message types tested were text,
picture, video, and file messages. Testing result for text data
can be seen on Table V and Fig. 6. The results show that the
messages sent from the CCA to the FCA took longer than the
messages sent from the FCA to the CCA. As seen in Fig. 6
there was a significant increase in time needed to forward a
message containing 2800 characters from FCA to Telegram
(represented by the orange line).

This increase in time may be caused by the mobile
network used for testing. However, in general there were no
significant increases in time when the character-count is
increased.

82 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 11, 2021

TABLE V. SYSTEM PERFORMANCE TEST (TEXT)

Char Telegram LINE

length Tele-FCA FCA-Tele LINE-FCA FCA-LINE

400 144 1070.6 121.4 706

800 163.8 728.8 118 822

1200 164.4 721.8 156 667.2

1600 166.4 817 139.2 711.4

2000 281.4 972 122.6 669.4

2400 126.8 809 126.6 731.2

2800 150.8 1476.2 147 754

3200 289.8 762.4 216.2 1120.6

3600 194.8 766 232.2 783.6

4000 185.8 830.4 106.2 925.8

Fig. 6. System Performance Test (Text).

The second testing was done on image messages. The test
result can be seen on Table VI and Fig. 7. It can be seen that
there is a significant time increase on messages sent from the
FCA to Telegram (displayed in orange line) and from FCA to
LINE (displayed in yellow line) for image with 5MB in size.
Based on the testing, there is no significant time difference
between messages sent from the FCA to the CCA and from
the CCA to the FCA.

The third testing was done on video messages. The test
result can be found on Table VII and Fig. 8. Based on the
testing done, it can be seen that there is a significant increase
in time aligned with the increase of file size for all scenarios.
However, a significant increase in time was most noticeable
on messages sent from the CCA to the FCA (displayed in blue
and grey line). In general, it can be seen that messages sent
from the CCA to the FCA (displayed in blue and grey line)
require more time than messages sent from the FCA to the
CCA (displayed in orange and yellow line).

TABLE VI. SYSTEM PERFORMANCE TEST (IMAGE)

Size Telegram LINE
(MB) Tele-FCA FCA-Tele LINE-FCA FCA-LINE

1 5939.6 8217 10526.2 5164.4

2 4592.8 10162 8015.4 5383.6

3 5426.2 6477.2 8793.2 5379.2

4 5979.6 5059.2 8945.4 4903.2

5 5629.4 21017.6 8009.2 21473.2

Fig. 7. System Performance Test (Image).

TABLE VII. SYSTEM PERFORMANCE TEST (VIDEO)

Size Telegram LINE
(MB) Tele-FCA FCA-Tele LINE-FCA FCA-LINE

1 10294.75 6816.2 24761 8083.8

2 20547.6 9381.4 32932.6 10983.8

3 23186.6 8190.6 47755.4 12659.2

4 34914.2 10264.4 51798.8 17165.6

5 48456 10883.6 58812.6 20204

Fig. 8. System Performance Test (Video).

0

200

400

600

800

1000

1200

1400

1600

400 800 1200 1600 2000 2400 2800 3200 3600 4000

Ti
m

e
(m

ili
se

co
nd

)

Character Length

Performance Test
(Text)

Tele-FCA FCA-Tele

LINE-FCA FCA-LINE

0

5000

10000

15000

20000

25000

1 2 3 4 5

Ti
m

e
(m

ili
se

co
nd

)

Image Size (MB)

Performance Test
(Gambar)

Tele-FCA FCA-Tele

LINE-FCA FCA-LINE

0
10000
20000
30000
40000
50000
60000
70000

1 2 3 4 5

Ti
m

e
(m

ili
se

co
nd

)

VIDEO Size (MB)

Performance Test
(Video)

Tele-FCA FCA-Tele

LINE-FCA FCA-LINE

83 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 11, 2021

The fourth testing was done on file type messages. This
testing was created specifically for Telegram as LINE does
not yet offer this message type. The testing result can be seen
on Table VIII and Fig. 9. Based on the testing done, it can be
seen that there is a significant increase in processing time as
the file size increases.

TABLE VIII. SYSTEM PERFORMANCE TEST (FILE)

Size Telegram
(MB) Tele-FCA FCA-Tele

1 15183.6 9957

2 21697 12236

3 25806.4 15778.6

4 35879.4 17901.8

5 40866.8 22704.6

Fig. 9. System Performance Test (File).

 CONCLUSION V.
Based on this research, it is concluded that:

• Middleware application was able to exchange messages
between the developed chatting application based on
Flutter and Conventional Chatting Application
(Telegram and LINE), with text, pictures, videos, voice,
and file being the type of messages exchanged.

• For video and file messages, there is a correlation
between file size and the time needed to forward the
message. The bigger the file, the longer it takes to send
the file.

Suggestion for future research,

• Adding other conventional chatting application which
can be served by the middleware.

ACKNOWLEDGMENT
The writers would like to thank Duta Wacana Christian

University and Indonesian Ministry of Research and
Technology. This research was funded by Indonesian Ministry
of Research and Technology with contract number:
311/E4.1/AK.04.PT/2021 dated 12 July 2021,
3281.5/LL5/PG/2021/22 July 2021 and
264/D.01/LPPM/2021/23Juli 2021.

REFERENCES
[1] N. Sabah, J. M. Kadhim and B. N. Dhannoon, "Developing an End-to-

End Secure Chat Application," IJCSNS, vol. 17, no. 11, p. 108, 2017.
[2] Telegram, "Telegram APIs," Telegram, [Online]. Available:

https://core.telegram.org/. [Accessed 12 08 2020].
[3] LINE Corp, "LINE Messaging API," LINE Corp, 2021. [Online].

[Accessed 20 06 2021].
[4] D. Henriyan, D. P. Subiyanti, R. Fauzian, D. Anggraini, M. V. G. Aziz

and A. S. Prihatmanto, "Design and implementation of web based real
time chat interfacing server," in 2016 6th International Conference on
System Engineering and Technology (ICSET), Bandung, Indonesia,
2016.

[5] R. Parlika, S. I. Pradika, A. M. Hakim and K. R. NM, "BOT Whatsapp
Sebagai Pemberi Data Statistik Covid-19 Menggunakan PHP, Flask, dan
MySQL," Jurnal Informatika dan Sistem Informasi (JIFoSI), vol. 1, no.
2, pp. 282-293, 2020.

[6] M. Vorontsov and S. I. Radmir, "Automation of Message Sending
Processes Using Specialized Software," in 2021 IEEE Conference of
Russian Young Researchers in Electrical and Electronic Engineering
(ElConRus), St. Petersburg, Moscow, Russia, 2021.

[7] A. N. Wulanjani, "Discord Application: Turning a Voice Chat
Application for Gamers into a Virtual Listening Class," in Education
4.0: Trends and Future Perspectives in English Education, Linguistics,
Literature, and Translation, Semarang, Indonesia, 2018.

[8] K. Geihs, "Middleware challenges ahead," Computer, vol. 34, no. 6, pp.
24-31, 2001.

[9] M. Saranya and A. A. Priya, "A Study on Middleware Technologies in
Cloud Computing," International Journal for Innovative Research in
Science & Technology (IJIRST), vol. 4, no. 3, pp. 31-36, 2017.

[10] L. F. Meloni, G. C. Costa, G. Kobayashi and C. S. Kurashima,
"Implementation of chat application for ginga middleware technology
using second screen," in 2016 IEEE international symposium on
consumer electronics (ISCE), Sao Paulo, Brazil, 2016.

[11] J. Yongguo, L. Qiang, Q. Changshuai, S. Jian and L. Qianqian,
"Message-oriented Middleware: A Review," in 2019 5th International
Conference on Big Data Computing and Communications (BIGCOM),
QingDao, China, 2019.

[12] M. Henning, "A new approach to object-oriented middleware," IEEE
Internet Computing, vol. 8, no. 1, pp. 66-75, 2004.

[13] J. Zhang, M. Ma, P. Wang and X.-d. Sun, "Middleware for the Internet
of Things: A survey on requirements, enabling technologies, and
solutions," Journal of Systems Architecture, vol. 117, 2021.

[14] G. S. Wedpathak, "An Approach of Software Engineering through
Middleware," International Journal of Engineering and Management
Research (IJEMR), vol. 5, no. 1, pp. 127-138, 2015.

[15] P. Thosani, M. Sinkar, J. Vaghasiya and R. Shankarmani, "A Self
Learning Chat-Bot From User Interactions and Preferences," in 2020 4th
International Conference on Intelligent Computing and Control Systems
(ICICCS), Madurai, India, 2020.

[16] C. E. Swandi, K. A. Nugraha, D. Sebastian and Restyandito,
"Middleware Development to Connect Telegram Messenger and Instant
Messenger for the Elderly," in The 5th International Conference on
Information Technology and Digital Applications (ICITDA 2020),
Yogyakarta, Indonesia, 2021.

[17] S. Karthick, R. J. Victor, S. Manikandan and B. Goswami, "Professional
chat application based on natural language processing," in 2018 IEEE
International Conference on Current Trends in Advanced Computing
(ICCTAC), Bangalore, India, 2018.

[18] M. Kamruzzaman, "Localized Chat Application," Daffodil International
University, 2018.

[19] V. Efendy, K. A. Nugraha and D. Sebastian, "Implementasi Chat Room
dan Push Notification pada e-Class Berbasis Mobile," Jurnal Teknik
Informatika dan Sistem Informasi, vol. 5, no. 2, pp. 267-282, 2019.

[20] Y. Findawati, A. Idris, Y. Rachmawati and E. A. Suprayitno, "IoT-
Based Smart Home Controller Using NodeMCU Lua V3
Microcontroller and Telegram Chat Application," in International
Conference on Engineering, Technologies, and Applied Sciences
(ICETsAS), Bengkulu, Indonesia, 2020.

0
10000
20000
30000
40000
50000

1 2 3 4 5

Ti
m

e
(m

ili
se

co
nd

)

FILE Size (MB)

Performance Test
(Video)

Tele-FCA FCA-Tele

84 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 11, 2021

[21] N. Rosid, A. Rachmadany, M. Multazam, A. Nandiyanto, A. Abdullah
and I. Widiaty, "Integration telegram bot on e-complaint applications in
college," in The 2nd Annual Applied Science and Engineering
Conference (AASEC 2017), Bandung, Indonesia, 2018.

[22] H. Engoren and E. Zorn, "Bridgr: An iOS Application for Organizing
and Discussing Long-Distance Carpooling," 2019.

[23] E. Kho, V. C. Mawardi and N. J. Perdana, "Web-based Live Chat
Application uses Advanced Encryption Standard Methods and Rivest
Shamir Adleman," in 3rd Tarumanagara International Conference of the
Applications of Technology and Engineering (TICATE), Jakarta,
Indonesia, 2020.

[24] N. V. Vukadinovic, "WhatsApp Forensics: Locating Artifacts in Web
and Desktop Clients," Purdue University Graduate School, West
Lafayette, 2019.

[25] M. Szczepanik and M. Kedziora, "State Management and Software
Architecture Approaches in Cross-platform Flutter Applications," in
15th International Conference on Evaluation of Novel Approaches to
Software Engineering (ENASE 2020), 2020.

[26] M. Meng, S. Steinhardt and A. Schubert, "Application programming
interface documentation: what do software developers want?," Journal

of Technical Writing and Communication, vol. 48, no. 3, pp. 295-330,
2018.

[27] A. Davoudian, L. Chen and M. Liu, "A survey on NoSQL stores," ACM
Computing Surveys (CSUR), vol. 51, no. 2, pp. 1-43, 2018.

[28] A. Moniruzzaman and S. A. Hossain, "Nosql database: New era of
databases for big data analytics-classification, characteristics and
comparison," International Journal of Database Theory and Application,
vol. 6, no. 4, 2013.

[29] A. Gupta, S. Tyagi, N. Panwar, S. Sachdeva and U. Saxena, "NoSQL
Databases: Critical Analysis and Comparison," in 2017 International
Conference on Computing and Communication Technologies for Smart
Nation (IC3TSN), Gurgaon, India, 2017.

[30] Flutter Dev, "Flutter Documentation," Google, 2017. [Online].
Available: https://flutter.dev/docs. [Accessed 26 06 2021].

[31] K. Wasilewski and W. Zabierowski, "A Comparison of Java, Flutter and
Kotlin/Native Technologies for Sensor Data-Driven Applications,"
Sensors, vol. 21, no. 10, 2021.

[32] S. Santoso, D. J. Surjawan and E. D. Handoyo, "Pengembangan Sistem
Informasi Tukar Barang Untuk Pemanfaatan Barang tidak Terpakai
dengan Flutter Framework," Jurnal Teknik Informatika dan Sistem
Informasi (JuTISI), vol. 6, no. 3, pp. 589-598, 2020.

85 | P a g e
www.ijacsa.thesai.org

	I. Introduction
	II. Literature Review
	A. Chat API
	B. NoSQL Database
	C. Flutter

	III. Research Method
	A. System Design
	B. System Test

	IV. Result and Findings
	A. System Test
	B. System Performance Evaluation

	V. Conclusion
	Acknowledgment

