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Abstract—Internet of things (IOT) sensors, has received a lot 
of interest in recent years due to the rise of application demands 
in domains like ubiquitous and context-aware computing, activity 
surveillance, ambient assistive living and more specifically in 
Human activity recognition. The recent development in deep 
learning allows to extract high-level features automatically, and 
eliminates the reliance on traditional machine learning 
techniques, which depended heavily on hand crafted features. In 
this paper, we introduce a network that can identify a variety of 
everyday human actions that can be carried out in a smart home 
environment, by using raw signals generated from Internet of 
Thing’s motion sensors. We design our architecture basing on a 
combination of convolutional neural network (CNN) and Gated 
recurrent unit (GRU) layers. The CNN is first deployed to extract 
local and scale-invariance features, then the GRU layers are used 
to extract sequential temporal dependencies. We tested our 
model called (CNGRU) on three public datasets. It achieves an 
accuracy better or comparable to existing state of the art models. 

Keywords—IoT; deep learning; CNN; GRU; CNGRU; human 
activity recognition 

 INTRODUCTION I.
The Internet of Things (IoT) is a technology that has a lot 

of potential, it presents a platform where sensors and devices 
can communicate seamlessly within a smart environment. 
Each year, the number of IoT supporting devices increases; 
sectors such as transport, healthcare, security, smart cities, 
education, agriculture, and many others have already benefited 
from its development. This will result in a generation of 
applications capable of completing complex sensing and 
recognition tasks to support a new world of human-things 
interactions. The recognition of human activities is a field that 
presents an interaction between computers and humans which 
has been promoted recently by the expansion of artificial 
intelligence. This progress has reached a stage that has 
allowed it to integrate several fields, to the point that we find 
its applications in everyday life. In the field of security by 
making surveillance more intelligent [1]. In smart homes by 
improving the security and monitoring the health condition of 
the residents [2], and increasing the degree of independence 
and quality of life, especially for the elderly [3]. HAR is 
present as well in the field of healthcare, by the deploy of a 
combination of one or more techniques of recognition that 
notifies the medical staff once an intervention is necessary [4]. 

This widespread availability is owing to significant efforts 
to reduce the size of the electronic components and create 
sensors that can be included in smartphones, smart watches, 

and other wearable internet of things devices. 

Depending on the type of sensors used, we categorize 
activity recognition into vision-based or sensor-based 
recognition. The first category deploys cameras to obtain 
images and videos and use it to detect and classify activities, 
however it faces challenges as image variation, object 
deformation, mobility constraints imposed by visual sensors, 
besides other problems related to power consumption and 
privacy. On the other hand, sensor based recognition which is 
based on acceleration sensors, gyroscope sensors, 
geomagnetic sensors and others, are simple to use and 
generate relatively accurate and reliable data. The classic 
approaches require a lot of data pre-processing and domain 
knowledge for feature engineering, which will be necessary at 
every change of dataset, and limit the generalization of the 
model. 

Recently, Deep learning has achieved good performances 
and it has accumulated successes in image, speech, and natural 
language processing, and today it is introduced in human 
activity recognition, to profit from its capacity to learn 
complex movements, by abstracting features automatically 
from raw data without being handcrafted. Deep learning's 
layer-by-layer structure enables it to progressively learn 
features from simple to complex, which is effective in the 
analyse of multimodal sensory data. The various architectures 
of deep learning are capable of encoding these features from 
diverse perspectives. For example, CNNs can capture local 
multimodal sensory connections, where RNNs can extract 
each temporal dependency and learn information 
incrementally across multiple time intervals. 

We achieve sensor-based HAR through four major steps, 
the first is data collection, followed by data segmentation, then 
feature selection or extracting features, and last the 
classification of the activity. Most of the previous works in 
HAR are based in their approaches on a manual feature 
engineering, which already requires an expert knowledge, the 
method proposed in this article does not require any design or 
creation of features, it exploits directly the data generated by 
the accelerometer and gyroscope. This is the key contributions 
of our work: 

We propose CNGRU, an end to end Network for HAR 
capable of automatically extracting and learning features from 
raw data without pre-processing. 

We deploy a combination of two types of neural networks: 
convolutional and gated recurrent units. 
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The network permits to recognize various activities and 
gestures, recorded using different types and combinations of 
sensors. The experience on three most widely used open 
datasets, proves that we reach comparable, or better results 
than previous methods, which demonstrates the generalization 
capability of the model. 

We organize our paper as follows: Section II reviews 
related works of human activity recognition. In Section III, we 
propose our model for HAR. Section IV presents and 
examines the experimental results. And last in Section V, we 
draw out our conclusion. 

 REVIEW OF LITERATURE II.
Prior studies on human activity recognition have been 

conducted utilizing open-access datasets available on the 
internet. Mainly the UCI HAR dataset was exploited alone or 
with other datasets like Opportunity[5], WISDM V1.1 [6], 
PAMAP2[7]. Consequently, this availability of data facilitated 
the design and evaluation of the activity recognition 
approaches based on motion sensors. Whereas some works are 
based on the investigation of feature selection in order to 
achieve higher accuracies, others attempted to avoid this 
design and engineering task by utilizing the capacity of deep 
learning models. Convolution neural network is the most 
common model in the approaches proposed in the literature, 
researchers exploit its ability to capture local connections, as 
well as the recurrent neural network and its variants capable of 
capturing temporal dependencies between signal readings. 
And in other works those two networks are fused or cascaded 
to learn the most important features. 

The authors in [8] have proposed a hybrid architecture, 
which combines LSTM and CNN. After preprocessing data, 
they fed it to two LSTM layers for temporal feature extraction, 
while the spatial features were extracted by two other 
convolution layers. 

Deep et al [8] used the UCI HAR dataset to test their 
model composed of CNN followed by an LSTM network. 
They have achieved better recognition scores compared to 
simple LSTM architecture. On the same dataset, Hernández et 
al [9] presented the idea of using bidirectional LSTM 
networks, to recognize the six activities of this dataset. They 
attain a high recognition performance, except for static 
activities: laying and standing. Ahmad et al [10] introduced a 
new approach based on an architecture called multi-head CNN 
to recognize human activities, The fundamental idea is to 
employ three CNNs, each supplied by three streams: overall 
acceleration, body acceleration, and body gyroscope. The 
results of these parallel CNNs are then integrated and 
transmitted to another LSTM layer, resulting in a high 
recognition accuracy. Sikder et al [11] used frequency’s and 
power’s features of raw activity signals, and they feed each 
stream of them to a CNN channel, the result is concatenated 
for classification, finally an accuracy of 95.25% is obtained on 
UCI HAR. 

Other works have explored the effect of deepness on 
recognition, the authors in [12] proposed an HDL: 
Hierarchical Deep Learning Model capable of recognizing 
activities with an accuracy of 97.95 % on the UCI HAR 

dataset, their model is composed of several BLSTM layers, 
which are used to capture information from the original data, 
CNN layers came afterwards to learn features from the output 
of the last BLSTM layer, and classification is obtained in the 
end using a Softmax layer. Xu et al [13] have proposed 
InnoHAR, a network which, takes advantage of Inception-like 
modules to make feature extraction, combined with GRU for 
sequential temporal dependencies extraction, Gao et al [14] 
proposed a method called DanHAR designed for challenging 
scenarios where there are multi-modal sensors. Their model 
uses a hybrid approach that fuses information using a dual-
attention mechanism with CNN, which improved the ability to 
capture temporal and spatial patterns, resulting in a better 
performance while keeping the number of parameters small. 

Teng et al [15] proposed a network based on convolutional 
neurons with a local loss after each CNN module, they 
compared a baseline model containing three CNN layers and 
one Fully Connected layer, with the same model having the 
first time similarity matching loss, a second time cross-
entropy loss and the third time a combination between the two 
previous losses. Sena et al [16] divided the data into several 
inputs according to the type of sensor, then for each of them 
they built a deep CNN to extract temporal scales and features. 
Their method employs a DCNN, which is made up of two 
convolutional layers followed by a Maxpooling layer. In the 
end all the DCNN ensemble are merged using late fusion 
method. A different approach used by Bokhari et al [17], who 
exploited Channel State Information (CSI) to estimate and 
classify activities performed in an indoor environment using a 
deep Gated Recurrent network (DGRU). 

 MATERIALS AND METHODS III.
Even if the conventional HAR methods have reached good 

scores, their reliance on handcrafted and their need to heavy 
data preprocessing methods limits their scalability to other 
datasets. Convolutional Neural Networks, Recurrent Neural 
Networks, and their combinations enabled for the creation of 
shallow and deep models in an end-to-end technique, resulting 
in high recognition scores in complicated task solving. 

A. Convolutional Neural Network 
This architecture is based on the convolutional layer, 

which performs the convolution operation on the input by 
multiplying it by the weights of a filter and then summing it to 
find the value corresponding to that position. The output of 
this linear operation is injected into a nonlinear activation 
function g and can be expressed as: 

 ai,j = g(∑ ∑ Wm,n.k
n=1

L
m=1 xi+m,j+n + b           (1) 

Where, 𝑥𝑖+𝑚,𝑗+𝑛  is the activation of the higher neurons 
linked to the neuron (i, j), 𝑊𝑚,𝑛 is a matrix with a size of L.K 
and containing the weights of the convolution filter, and b is 
the bias [18]. 

the convolutional network is a type of neural network 
which is mainly constituted of convolutional layer, but other 
layers like Maxpooling and Fully connected layers can also be 
present and stacked one after another to add depth and build 
an hierarchical network [19]. For feature extraction the 
convolutional layer and the Maxpooling layer can be deployed 
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together as a single part, whereas the second part which has 
the role of classifying the resulting feature vectors is dedicated 
to the Fully connected layer, and it typically contains a 
number of nodes equal to the number of classes [20]. 

B. Gated Recurrent Unit 
Conventional Recurrent Neural Network suffers from the 

issue of vanishing gradient when the network cannot transmit 
convenient gradient information back to the input layers, 
making the optimization difficult and prohibiting them from 
learning long term dependencies [21]. Short-term memory 
units [22] (LSTMs) and recently gated recurrent units (GRUs) 
[23] are two modifications of RNN designed to solve this 
problem. Where LSTM have the state of the art performance, 
it needs more inference time and processing. In our work we 
studied using GRUs, which are simpler than LSTM, have 
fewer parameters, and give a good trade-off between speed 
and performance [24]. The recurrent transition of GRU are 
obtained by: 

𝑧𝑡 = 𝜎(𝑊𝑧[ℎ𝑡−1, 𝑥𝑡])             (2) 

𝑟𝑡 = 𝜎(𝑊𝑟[ℎ𝑡−1, 𝑥𝑡])              (3) 

ℎ𝑡� = 𝑡𝑎𝑛ℎ(𝑊[𝑟𝑡 ⊙ ℎ𝑡−1, 𝑥𝑡])             (4) 

ℎ𝑡 = (1 − 𝑧𝑡) ⊙ℎ𝑡−1 + 𝑧𝑡 ⊙ ℎ𝑡�              (5) 

Where {𝑊𝑧,𝑊𝑟,𝑊} designate the recurrent weights. ℎ𝒕, ℎ𝒕�  
are hidden states. 𝜎  denotes sigmoid function. And ⊙ 
component-wise or Hadamard multiplication. 𝑧𝑡 is the update 
gate and 𝑟𝑡 is the reset gate. 

The update gate 𝑧𝑡  determines the degree of similarity 
between the hidden state ℎ𝒕 and the new hidden state ℎ𝑡�  and if 
the update is performed. The reset gate 𝑟𝑡 is used to regulate 
how much of the prior state we wish to retain. if 𝑟𝑡, is equal to 
1 it means that we keep information from the previous state, 
otherwise, this latter state is neglected. 

C. Overview 
Activity recognition is considered a classification problem, 

the signals extracted from motion sensors are time series data, 
in our approach Convolutional neural networks are used on 
these raw signals to avoid the requirement for feature 
engineering and to take advantage of local dependency and 
correlation between signal measurements [25]. The extraction 
of temporal features is the next stage. Because Simple RNN 

has a vanishing gradient problem, we opted to run signals 
through three consecutive GRU layers. We chose GRU 
because of its ability to deal with extended sequences and its 
time efficiency [26]. 

D. Proposed Architecture 
Our architecture is inspired by LeNet 5 [27], it benefits 

from its simplicity and straightforwardness, the original 
network uses a pair of convolutional and average pooling 
layers, followed by a flattening layer, two fully-connected 
layers and last a Softmax classifier. It was initially designed 
for handwriting and printed characters’ recognition. We made 
the following change: we divided the layers into two groups: 
convolution layers and dense layers. We reduced the number 
of units in the last layer, replaced two-dimensional 
convolution and two-dimensional average pooling with one-
dimensional convolution and one-dimensional average 
pooling, and finally injected what we called a GRU block in 
between. 

Different GRU block configurations were tested and 
evaluated in order to select the one with the highest accuracy. 
TABLE I contains the configuration of each injected block. 

 The first GRU block contains only one layer with 100 
units, then a dropout layer of 20%, this architecture has the 
advantage of being simple, and light, its training was fast, but 
unfortunately it cannot recognize well all the activities. To 
solve this problem, we added another layer to the first one, 
and we kept the number of nodes for each of them at 100 
nodes, then we preserved the 20% dropout after each layer, the 
results showed an increase in accuracy of more than 2%. In 
the third architecture, we wanted to test the effect of deepness 
on the initial network, in fact in GRU block 3 we increased the 
number of nodes in the first two layers to 128 nodes, then we 
added a third one with 64 nodes, while using Batch 
Normalization instead of the dropout after each layer, the 
experimental results for each network (CNN + GRU bloc) is 
presented in TABLE II. We find that the third network has the 
best accuracy, it means that adding three GRU layers, gives 
the model the capability to better extract the sequential 
temporal dependencies, while batch normalization layers 
served better in reducing Overfitting than dropout. This 
improvement in accuracy is also accompanied by a reduction 
in the number of parameters from 455,566 to 427,950. Fig. 1 
illustrates the final architecture, Fig. 2 presents the diagram of 
the proposed solution in this paper. 

 
Fig. 1. The Proposed Network.
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TABLE I. DEFINITION OF GRU BLOCKS 

 GRU block Layers 

Architecture 1 1 GRU layer (100 units) + 20% dropout. 

Architecture 2 2 GRU layer (100 units) +20% dropout after each layer. 

Architecture 3 2 GRU layers (128 units) +1 GRU layer (64 units) +batch 
Normalization after each layer. 

 
Fig. 2. Steps to Recognize Activities from Raw Data. 

Several recent studies have demonstrated that a one-
dimensional convolutional neural network is well suited for 
the analysis and extraction of discriminative features from 
data time series generated by sensors such as accelerometers 
and gyroscopes, and that it has the ability to learn an internal 
representation of data sequences [28]. Average pooling is 
often used instead of Maxpooling since it can extract features 
more smoothly. As mentioned earlier the 128-128-64 
combination of GRU layers nodes, proved to outperform the 
100-100 and 100 node combinations used in the other two 
architectures. We used the Adam optimizer with a learning 
rate fixed at 0.001, tested batch sizes of 32, 64, and 128, and 
finally chose 64 since it produced the best results. We trained 
the model for 1000 epochs and we used early stopping. 
TABLE III contains a definition of each layer and the 
parameters used in this our network. 

TABLE II. TEST ACCURACY, TIME PER EPOCH, AND THE NUMBER OF 
PARAMETERS FOR UCI-HAR 

Network Accuracy Time Parameters 

cnn + architecture 1 94.87 % 1s 68,866 

cnn + architecture 2 96.20 % 7s 455,566 

cnn+ architecture 3 96.77 % 17s 427,950 

TABLE III. DEFINITION OF EACH LAYER AND THE PARAMETERS USED IN 
THIS OUR NETWORK 

Layer Parameters 

 convolution_1 Kernel=5, stride=1, filters=6, activation= tanh  

average pooling_1 - 

convolution_2 Kernel=5, stride=1, filters=16, activation= tanh  

average pooling 2 - 

gru_1 128 units + batch normalization_1 

gru_2 128 units + batch normalization_2 

gru_3 64 units + batch normalization_3 

Flatten layer - 

dense layer_1 120 units , activation= tanh 

dense layer_2 84 units, activation = tanh 

dense layer_3 6 units, activation = softmax 

 RESULTS AND DISCUSSION IV.

A. Evaluation Methodology 
We ran tests on three publicly available datasets. Here is a 

short description of each one: 

UCI HAR [29]: This dataset was gathered by 30 users 
aged 19-48 who wore smartphones around their waists while 
performing a series of activities. The information gathered is 
classified into five activity classes, three of which are static 
activities (standing, sitting, and lying) and the others are 
dynamic (walking, going upstairs, and going downstairs). The 
accelerometer and gyroscope embedded in the phone 
(Samsung Galaxy SII) enabled the measurement of three-axial 
linear acceleration as well as three-axial angular velocity. 

WISDM V1.1 [6]: is a dataset collected by using only one 
IMU (accelerometer), the chosen activities were selected 
carefully, depending on their performance regularity in daily 
life. Those activities are Walking, Jogging, Upstairs, 
Downstairs, Sitting, Standing. This dataset has approximately 
the same activities as UCI, Fig. 3 contains a description of its 
activities. 

SKODA [30]: this dataset has been recorded using only 
one type of IMU, in a manufacturing scenario and covers the 
problem of recognizing the activities of assembly-line workers 
in a car production environment. A worker carried a number 
of sensors while performing manual quality checks for the 
correct assembly of parts in newly built cars. 10 resulting hand 
movements are considered. TABLE IV contains various 
recording information about all the datasets used in this work. 

  
Fig. 3. Activity Description of UCI in the Left and WISDM v1.1 in the 

Right. 

TABLE IV. DEFINITION OF THE CHARACTERISTICS OF THE DATASETS 

dataset activities subject place sampling rate samples 

WISDM  6 36 thigh 20 hz 1.098.207 

UCI HAR 6 30 waist 50 hz 10.298 

SKODA 10 1 arms 98 hz ~701.440 

B. Performance Measure 
When we were evaluating our model, we noticed the lack 

of an evaluation standard. Various evaluation metrics are used 
to measure and compare the human activity recognition 
performance. The main ones are accuracy, recall, F-measure, 
Area under the Curve (AUC). Where some works use F-
measure, other authors prefer accuracy. This diversity tends to 
make finding the state of the art model difficult. The diversity 
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of validation protocol should also be taken into consideration 
when dividing data into training/test/validation since it 
impacts the recognition results and comparison. The 
parameters we used to compare the model’s performance are 
defined as follows: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  TP+TN
TP+TN+FP+FN

            (6) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  TP
TP+FP

             (7) 

𝑅𝑒𝑐𝑎𝑙𝑙 =  TP
TP+FN

              (8) 

𝐹 −𝑀𝑒𝑎𝑠𝑢𝑟𝑒 = 2 ×  Precision× Recall
Precision+Recall

           (9) 

(Where, T: True, P: Positives, F: False, N: Negatives). We 
use also Confusion Matrix, to have a summarized view about 
the performance of the classification, and to see the errors 
being made its type, and where the confusion occurs. 

C. Results 
We ran several tests on two other datasets to evaluate the 

performance and validate the efficiency of the proposed 
method. We used WISDM V1.1 and SKODA, the first one 
contains activities similar to UCI, while the second one 
contains a different type of gesture. We present the detailed 
results for UCI which was exploited in the design and tuning 
of our model, then we compare the results obtained with 
WISDM V1.1 at the level of each activity, and last we 
evaluate our approach on SKODA. 

UCI HAR’s signals were pre-processed by filtering noise 
then sampling in a fixed-width sliding windows of 2.56 sec 
and 50% overlap, again we chose to take 21 subjects for 
training and 9 for testing. We fed our network with data in a 
specific shape. Accuracy and loss over each epoch are used 
for evaluation. We trained the model through 1000 epochs, 
then we used early stopping technique to end training when 
the validation accuracy stops increasing. All the datasets were 
uploaded to Google drive, and we used for the experiment 
Google Colaboratory. Our model achieved an accuracy of 
96.77 %. As shown in TABLE V, this value is comparable to 
the state of the art, and other works that use handcrafted 
features, classical machine learning algorithms, unsupervised 
machine learning algorithms or models composed of a 
combination of previous methods. 

To show the correspondence between the predicted labels 
and the true ones, we used the confusion matrix illustrated in 
Fig. 4. It shows that we achieve good recognition for all 
activities. We see that the static action LAYING is easily 
identified, with an accuracy of 100% and it’s unconfused with 
any other activity. The dynamic activities WALKING_UP and 
WALKING are also well recognized, but for STANDING and 
SITTING their accuracies are relatively smaller and 
consequently the total score of the model is reduced, 
furthermore we remark that they are often confused with each 
other’s, this could be explained by the similarity of the signals 
of those two classes. 

The second experiment was on WISDM V1.1 using raw 
data again, this time we evaluated our results, using K-fold 
cross-validation, to allow for a reasonable comparison with 

preceding works. The model can predict all activities with 
great accuracy. The overall accuracy is (98.21%), this result is 
close to previous works on the same dataset done by Alsheikh 
et al [39] with a hybrid model using deep learning and hidden 
Markov models DL-HMM (98.23%). It improves accuracy 
over ensemble learning method [40], and slightly above the 
model proposed by Ravi et al [41] on the basis of shallow 
CNN architecture. 

TABLE V. COMPARISON WITH OTHER WORKS ON UCI-HAR 

Approach Accuracy (%) 

Ensemble method of HMM[31] 83.51 

Two stage continuous HMM[32] 91.76 

Hierarchical continuous HMM[33] 93.18 

Our model 96.776 

Multichannel Dilated CNN[34] 95.49 

Deep Res Bidir-LSTM [35] 93.6 

Handcrafted features +SVM [36] 89 

FFT+1D-CNN[37] 95.75 

1D CNN [37] 94.79 

Stacked auto encoder +SVM [38] 92.16 

 
Fig. 4. Confusion Matrix for UCI HAR. 

 
Fig. 5. Comparison between Accuracies of Previous Works on WISDM 

v1.1. 

94.30% 

98.20% 98.20% 98.21% 
98.60% 

Catal et
al[40]

Ravi et al[41] Alsheikh et
al[39]

Our model Ravi et al
[42]
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Fig. 6. Confusion Matrix for WISDM V1.1. 

Fig. 5 contains a comparison with works on the same 
dataset. We mention that all results reported in this table are 
evaluated using 10-fold the cross-validation technique. 

The confusion Matrix of WISDM V1.1 dataset is 
presented in Fig. 6 we can see that Walking and Sitting 
achieved a recognition close to 100%. We also note that the 
relative lack of sample for the two Sitting and Standing classes 
did not affect their recognition, which means that the change 
in orientation of the sensor on the thigh is easily detectable 
and learned, helping in result to better identify each class. 
Jogging is an activity that requires the movement of the whole 
body from point A to point B, is well identified. Where 
Walking Upstairs and Downstairs are often confused with 
each other, this indicates that the model has difficulty 
distinguishing between these types of movements. 

In this part we will compare the ability of our model to 
detect each activity belonging to UCI HAR and WISDM V1.1, 
and compare it to other models. We chose these activities 
because they are the most regularly performed in daily life, 
and they are recorded differently in both datasets. This 
comparison should help us to understand the relevance of our 
approach. 

UCI HAR and WISDM V1.1, datasets both contain 6 
activities, 5 are the same, and two are different (jogging and 
laying). Dividing activities into two categories: static and 
dynamic, can lead to understand the behavior of the model. 
We will compare and evaluate each activity according to its 
F1 score, since we have an imbalance between classes. 

We observe that the static activities sitting standing and 
laying, are differentiable by the model among the others even 
if we change the dataset, this indicates its aptitude to detect 
those movements despite using only an accelerometer instead 
of its combination with a gyroscope. We deduct also that the 
location of sensors does not affect the detection of those 
activities. the other remaining activities "walking downstairs", 
“Jogging”, “walking Upstairs”, and” Walking” are dynamic 
and they present the vast majority of the data in WISDM V1.1, 
and almost half of UCI HAR dataset. Jogging and Walking are 
well identified 99% of the time in WISDM V1.1, and 96% in 
UCI HAR (Walking). The lowest score achieved is 93% in 
WISDM V1.1, it indicates that the model does not manage to 
detect with ease the Downstairs class. 

TABLE VI. PER ACTIVITY COMPARISON 

Activity 

F1 score 

WISDM V1.1  UCI HAR 

Our 
method 

Ravi et 
al [42] 

Ronao et 
al [37] 

Lin et 
al [34] 

Zhao et 
al [35] 

Our 
method 

Downstairs 92.99 95.14 99.49 97.16 93.7 95.37 

Jogging 99 99.50 - - - - 

Sitting 98.50 98.14 87.68 91.14 89.15 94.50 

Standing 98.50 97.64 91.37 93.47 90.87 95 

Upstairs 94.50 95.30 99.50 96.65 93.96 98.50 

Walking 99 99.30 99.44 95.09 94.53 96.96 

Laying - - 90.55 99.26 99.75 1 

Considering the number of sensors, we remark that the use 
of a single accelerometer alone did not provide the necessary 
information to identify the dynamic actions which are related 
to climbing or descending, specifically moving downstairs or 
upstairs because they obtain the lowest score among classes 
and even for the other works presented in TABLE VI. On the 
other hand, we note that the recording in UCI HAR realized 
with both a gyroscope and an accelerometer allowed a good 
detection despite the small number of samples, as indicated in 
TABLE IV. 

In WISDM V1.1 dataset the most recognized classes are 
jogging and walking, followed by walking upstairs in UCI 
HAR dataset, and the lowest score is for walking downstairs 
which reaches 93%. 

Comparing our results with other approaches, we see that 
our network can classify activities in a similar way or better 
than other works using feature engineering, like the 
spectrogram domain of the time series signal, or hierarchical 
continuous hidden Markov model or using complex end to end 
deep learning networks. 

In this part we want to test our model on a dataset that 
does not contain the same characteristics of the two previous 
ones. As previously mentioned Skoda contains gestures made 
with the hand in an assembly environment. Performed by a 
single subject and one type of sensors, it contains 10 gesture 
classes, to evaluate our work and compare it with others we 
used the 10-fold cross-validation process. The accuracy of our 
network is 96%. Fig. 7 shows that it outperforms other works 
previously done on the same dataset. The classification results 
are shown in Fig. 8 as a form of a confusion matrix. In this 
matrix we visualize that the model recognizes all the activities 
with a high score, except for the activity “close both left Front 
door” which is confused with “opening left front door” and 
“closing left front door”. We see also that the NULL class 
causes the largest confusion. 

Class names: 0:'Null Class',1:'Write on Notepad',2:'Open 
Hood', 3:'Close Hood', 4:'Check Gaps on the Front Door', 
5:'Open Left Front Door',6:'Close Left Front Door',7:'Close 
Both Left Front Door',8:'Check Trunk Gaps',9:'Open and 
Close Trunk', 10:'Check Steering Wheel'. 
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Fig. 7. Comparison between Accuracies of other Works on Skoda. 

 
Fig. 8. Confusion Matrix for Skoda. 

 CONCLUSION V.
In this paper we aimed to integrate Internet of Things (IoT) 

technology and deep learning to recognize human activities. 
We presented CNGRU, a new structure that combines 
convolution layers with GRU. This architecture is able to learn 
features automatically from raw data, unlike previous works 
based on handcrafted features. The effectiveness of this 
architecture is proved by experimenting on three datasets 
containing a variety of activity classes and recorded using 
different sensors. We achieved 96.77% on UCI-HAR, 98.21% 
on WISDM V1.1, and 96.70% on SKODA. This final result is 
superior than or close to existing state-of-the-art approaches 
that use shallow or deep designs or classical methods. 

Future works will investigate a resource efficient 
implementation of this network for IoT devices, and explore 
other datasets that contains more complex activities. 
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