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Abstract—BigData requires processing a huge data volume, 

which is an undeniable challenge for academia-industries. The 

classical sampling techniques are limited when addressing data-

imbalance, large data-heterogeneity, multi-dimensionality etc. To 

alleviate it, in this paper a novel machine learning driven feature 

sensitive progressive sampling (ML-FSPS) that in conjunction 

with an improved feature selection and classification 

environment achieves more than 95.7% of accuracy, even with 

10-14% of the original data size. The proposed ML-FSPS model 

was applied for IoT-device classification problem that possesses 

exceedingly high data-imbalance, multi-dimensionality and 

heterogeneity issues. Functionally, the FSPS-driven analytics 

model at first performed active period segmentation followed by 

multi-dimensional (descriptive) statistical feature extraction and 

Wilcoxon Rank Sum Test based feature selection. Subsequently, 

it executed K-Means clustering over a gigantically huge feature 

instances (               network traces) Here, K-means 

algorithm clustered each feature samples into five distinct 

clusters. With initial sample size of 10%, FSPS model selected 

same amount of data elements (0.5-5% iteratively) from each 

cluster for each feature to perform multi-class classification using 

homogenous ensemble learning (HEL) model. Here HEL 

encompassed AdaBoost, Random Forest and Extended Tree 

ensemble algorithms as base classifiers. The simulation results 

affirmed that the proposed model achieves accuracy of almost 

99% even with 10-16% of sample size. 

Keywords—Feature sensitive progressive sampling; BigData 

analytics; machine learning; ensemble learning; rank sum test; 
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I. INTRODUCTION 

The demand for low cost infrastructure in all the business 
domains has opened up a new horizon for industries to provide 
decentralized computing solution. Majority of this 
applications require processing significantly large volume of 
data to identify patterns and trends to make decisions.[1-3]. 

To cope up with the demands of the decentralized, data-
driven decision support systems, BigData analytics has 
emerged as one of the most sought technologies [4]. However, 
BigData which is often characterized in terms of ―Volume‖, 
Variety‖, ―Velocity‖, and ―Veracity‖ (say, 4V’s) requires 
computing the gigantically large data to yield decision centric 
data support [5]. Contrarily the inherent and undeniably 
unavoidable issues of ―Data Heterogeneity‖, ―Unstructured 
Data‖ ―Multi-dimensionality‖, and ―Unbalanced Data‖ make 
most of the existing Big Data analytics methods 
confined.Majority of the BigData analytics models apply the 
different machine learning methods [3] to learn over the 

gigantically large data to perform tasks such as clustering, 
regression, or classification. However, the efficacy of these 
methods primarily depends on how effectively they can learn 
over the large voluminous data in minimum possible time [1-
4]. 

To achieve it, in the last few years different efforts have 
been made, where the focus is made on improving the process 
of pre-processing, feature extraction, feature selection, and 
then classification. However, data being central of these 
efforts requires a (BigData) computing model to retain 
―sufficiently small‖ amount of data to perform analytics 
without undergoing exhaustive computation and time-
exhaustion [2][4][5]. To minimize data load and related 
computing exhaustion in BigData analytics, authors have 
found sampling [6] as one of the viable approach. Sampling 
can not only reduce computing exhaustion but can also retain 
the minimal data with uncompromising performance [7]Also 
in the last few years industries have started using or mining a 
fraction of sample rather than the entire data-warehouse [8]. It 
improves the scalability as well as timely decision support 
towards real-time applications [8]. However, the predominant 
challenge in developing sampling-based approaches originates 
from the undeniable fact that the occurrence or the frequency 
of a data element (say, itemset) in a sample might have the 
different frequency or severity across the complete data set, 
signifying data imbalance [9]. Under such condition, the 
classical random sampling approaches might undergo 
inaccurate performance. 

Therefore, alleviating such issue requires identifying 
optimal size of sample which could provide higher accuracy 
with minimum possible sample or data load [10]. To cope up 
with aforesaid demands, recently an approach called 
progressive sampling has attracted global academia-industries 
because of its ability to employ minimum data while 
achieving expected performance [11][12]. The progressive 
sampling method at first employs minimum data size to 
perform classification and continues increasing the data 
volume till it reaches expected level of performance. 

However, most of the existing progressive sampling 
approaches consider random sample selection approach. 
Random feature selection over exceedingly high data 
heterogeneity and unbalanced data condition might often 
results inaccurate performance. It can be because of 
insufficient or insignificant feature learning. Therefore, a 
robust computing environment with better pre-processing, 
feature sensitive feature selection and classification can be a 
potential analytics solution. 
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In this paper a futuristic and robust feature-sensitive 
progressive sampling (FSPS) driven BigData analytics model 
is proposed. Realizing at-hand analytics problems such as data 
heterogeneity and unbalanced nature the proposed model 
inculcates highly efficient pre-processing, feature extraction 
and selection mechanism, followed by FSPS and 
heterogeneous ensemble learning model for classification. 

II. RELATED WORK 

This section highlights some of the important literatures 
central to progressive sampling in BigData analytics. 

Mahafzah et al. [17] proposed a parameterized sampling 
algorithm for data mining.Authors applied three conditions 
including the transaction frequency, transaction length and 
transaction frequency-length to perform sample selection in 
association rule-based data mining. However, being a multi-
phased sampling approach its efficacy over the real-time 
application remained limited. To alleviate time-complexity in 
multi-phased sampling, Jia et al. [18] developed an adaptive 
sampling method that exploited association rule amongst the 
data elements to select sample size. To improve the 
performance, authors applied multi-resolution analysis with 
Shannon sampling theory. Chuang et al. [19] proposed 
sampling error estimation (SEE) based progressive sampling 
concept. Here, the key purpose of applying SSE was to 
estimate the suitable sample size for association rule-based 
mining. Though, SSE helped achieving sample size without 
performing association amongst the data elements; however, 
its efficacy remains suspicious over the realistic large-scale 
data with higher features and dimensionality. Li et al. [20] 
applied central limit theorem to estimate the sample size over 
the large datasets. Unlike other approaches depending on 
Chernoff bounds, they found their proposed model pragmatic 
in sync with the association rules mining tasks. Lin [21] 
examined the associations’ lattices on V with a sample V’ (a 
Small chunk or subset). It revealed that merely a very specific 
kinds of samples possess the ―same‖ association rules with the 
complete original data and conveys the same meaning. 
Though, authors intended to exploit homogenous features to 
retain sample; however, its efficacy due to iterative 
homogeneity estimation over real-time data traffic becomes 
suspicious [22]. To resolve this problem, authors in [22] 
performed association rule mining along with frequent itemset 
mining to estimate the sample size. Interestingly, this 
approach selected the sample whose size was independent of 
both the item-frequency as well as transaction counts. Zhao et 
al. [23] on the other hand applied hybrid theoretical bound 
model for frequent itemset estimation, which was later used 
for sample selection. Moreover, authors applied additive error 
bound along with the multiplicative error bound to perform 
sample selection. Exelixis et al. [24] proposed a two-phase 
sampling-based algorithm, FAST (Finding Associations from 
Sampled Transactions) for large-scale data mining. In this 
process, at first an initial sample was selected, which was then 
processed for support estimation for each selected item in the 
data to estimate the suitable set of samples. Once selecting the 
sample authors performed outlier detection by selecting the 
representative set of items. However, its computational 
exhaustion can’t be denied. 

Parthasarathy [25] applied the concept of equivalence with 
association rule mining to perform progressive sampling [25]. 
A similar work was done by Thakur et al. [26], who applied 
association rule approach to estimate the reduced sample size 
for data mining purpose. Though, unlike [25], authors [26] 
applied Apriori algorithm to estimate the frequent itemset, and 
thus exploiting the mid-point itemset it identified the support 
level across the other data elements. In case the support level 
of the midpoint itemset is higher in comparison to the user-
specific support, that it was selected as a part of sample and its 
size was increased progressively. Santos et al. [27] applied 
retrospective sampling over different phases to perform 
progressive sampling. Similarly, Bosch et al. [28] developed a 
wrapped progressive sampling concept for large data analysis. 
Their proposed progressive sampling method employed 
complete data as input and presented elements in the form of 
feature vector and labelled each element in one of the known 
output labels. Thus, it intended to optimise data set by 
estimating the possible combination of parameter setting by 
exploiting all possible combinations during training. Realizing 
data sensitivity in real-time applications Portet et al. [29] 
developed a multi-phased or multi-period sample selection 
concept, where authors found that their proposed approach 
could attain the same performance even with one-third of the 
original data size. Similar to the work in [26], authors [30] 
performed itemset partitioning, rather than midpoint itemset 
estimation. Xeng et al. [31] proposed Bayesian optimization 
based automatic sample selection method using machine 
learning. Authors [31] applied machine learning to estimate 
the hyper-parameters values to estimate the sample size. In 
fact, it served as a machine learning driven Bayesian 
optimization for feature selection to estimate sample size. 
Recently, ElRafey et al. [32] applied machine learning-based 
progressive sampling approach in which the batch model 
uncertainty sampling was performed (using semi-supervised 
machine learning algorithm). Here, the semi-supervised 
machine learning helped selecting the most significant data 
points to the sample to perform further learning or 
classification. However, it failed addressing the key problem 
of data imbalance and heterogeneity, which is common in 
BigData analytics. 

III. RESEARCH OBJECTIVE 

A large number of BigData analytics environment has the 
major problem of class imbalance which can lead to incorrect 
predictions and analysis. On the other hand, input data or real-
time stream from multiple channels often undergoes 
heterogeneity with diverse data elements with different or 
non-uniform significance (towards prediction or decision 
making). In such cases, merely applying random sampling 
can’t yield optimal performance. This is because a data in 
sample is not guaranteed to have uniform distribution or 
frequency across the complete dataset. Similarly, a data 
element with higher frequency outside the sample is not 
mandatory to have the same frequency inside the sample. 
Therefore, in device classification problem, merely applying 
the random sample would create data imbalance. Also 
sampling methods employing random sample selection might 
fail in delivering optimal feature learning and classification 
(because of data imbalance probability). 
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Selecting significant feature set from a huge datsaset and 
progressively sampling the dataset can achieve desired 
accuracy level and can also reduce the response time factor 
considering above facts as motivation for the research 
objective a futuristic, new and robust feature sensitive 
progressive sampling driven BigData analytics model is 
developed for IoT-device classification. This proposed model 
aims to reduce the time required for the analytics and also 
maintaining the desired level of accuracy. 

IV. PROPOSED SYSTEM MODEL  

A. System Model  

The overall proposed BigData analytics model as shown 
above in Fig. 1 encompasses the following processes: 

1. Network Traffic Sensitive Active Period Segmentation 

1) Multi-dimensional Descriptive Statistical Feature 

Extraction  

2) Wilcoxon Rank Sum Test based Feature Selection  

3) K-Means Driven Feature Sensitive Progressive 

Sampling  

4) HEL-assisted Multi-class Classification. 

 The detailed discussion of these key functions is given 
in the subsequent sections.  

B. Network Traffic behaviour Assessment and Data 

Acquisition 

 In this research, considering the typical cases of data 
imbalance, multi-dimensionality, data heterogeneity and large-
scale data instances, the overall proposed BigData analytics 
model was designed for IoT-device classification.  

 Typically, in IoT-ecosystems there can be a large 
number of independently operating devices connected through 
a wireless network. Once connected to the wireless-network, 
the IoT-devices starts generating network traffic called 
network traces which can of both incoming as well as out 
coming nature, depending on the type, role, configuration and 
target-services within the network. IoT-devices within the 
network perform routine communication with peers and the 
network gateway or servers. Thus, the communication 
between the device results network traces or traffic. Though, 
the different IoT-devices employ varied protocols; however, a 
majority of such device still use TCP/IP protocols. The overall 

communication is based on network traffic in which data is 
generated successively over a time interval comprising the 
devices, their behavior, operating patterns, etc. Such non-
linear network traffic patterns can be analyzed by means of the 
sophisticated tools such as Wireshark or TCP Dump that at 
first obtains the traffic packets and analyses the key details 
(say, traffic behavior or features). Moreover, the tools like 
packet analyzer operating onto the router can help seeing the 
incoming and outgoing network traffic, and can generate the 
traffic records. Here, each record comprises the information 
within the packet (from the MAC to the application layer of 
the open system interconnection). Though, in sync with 
realistic condition, where because of the security protocols 
such as Secure Sockets Layer (SSL), Transport Layer Security 
(TLS) and the privacy protection policies of governments, 
merely the packet header can be employed to perform device 
classification. However, the key accessible information such 
as Source ID, Destination ID, Protocol Used, MAC address, 
Packet size, Transmission Period etc. can be applied to 
perform more accurate and reliable device classification. 
These features characterizing device behavior over a definite 
period have been targeted in this research for device 
classification [14-16]. In reference to above depicted IoT-
network condition, for a large device driven network the 
corresponding traffic flow can be characterized as per (1).  

  *                   +            (1) 

In (1),    represents the traffic or the information recorder 

for the      packet. Here, every packet   comprises the 
traffic information and updates as (2).  

   *                                        +       (2) 

In (2), the parameter    states the approximate period when 
the packet is transmitted or received. The other parameter 

         states the transmission length, while         and 

          represent the source and the destination MAC ID 

of the devices. The parameter         states the other traffic 
feature recoded in the   th packet. Noticeably, the above 
discussed network traffic packets are recoded in the form 

time-series order, such as,             . Let a 
network comprising   devices representing 
               (     ) , the corresponding traffic 
can be presented as per (3).  

  {   
     

     
     

     
      

   }           (3) 
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Fig. 1. Proposed ML-FSPS Driven BigData Analytics. 
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In (3)    
  states the   th packet of the IOT-device   . 

Now, towards data pre-processing task, it is needed to extract 
specific traffic traces or sequences for each IoT-device. In 
fact, each device type can be classified based on its feature 
such as MAC address in   or similar, on the basis of the 
traffic direction. Thus, the device-sensitive packet(s) can be 
distinguished as per (4). 

    {   
     

     
   }             (4) 

Observing above discussion, it can be easily inferred that 
the numerous chunks of information can be logged from the 
communication traces including Device ID, source and 
destination ID, timestamp, packet length, protocol etc. 
Additionally, out of these features other supplementary 
features too can be derived [34]. Since, a typical IoT network 
can have a large number of devices having non-linear 
transmission patterns, identifying active period for each is 
vital. In other words, in real-time applications, the traffic 
intensity for the different devices can be different. For 
instance, a normal CCTV camera can generate almost 140 
packets per minutes, on the contrary a motion sensor can 
generate more than 1900 packets per minute. On the other 
hand, a CCTV camera can generate the packets     , while 
a smoke sensor can have significantly lower transmission. It 
indicates that there are the differences in the active period and 
their traffic intensity amongst the devices across IoT-
ecosystem. The use of average traffic over the observation 
period can force the model to undergo data-imbalance and 
hence a machine learning model can show inferior 
performance. Considering this fact, an active period 
segmentation is performed. 

To achieve active period segmentation, the traffic flow 
across the defined time-period is segmented into multiple sub-
traffics, where only active network traces are considered for 
the further computation. Though, traffic flow can also be 
segmented at the interval of time   using time-stamp 
information. For instance, the network traffic flow from the 
device    can be segmented after   period, iteratively, as 
given in (5). 

    {     
         

          
             

   (   )   }   (5) 

In (5),      
   (   ) 

 states the all-traffic traces of the 

device    during    to (   )  time period. Mathematically, 
it can be presented as per (6). 

     
   (   )  {   

     
       

        
     }          (6) 

In this paper, MATLAB unique function was applied to 
segment the network traffic over the time-series information. 

C. Multi-dimensional Descriptive Statistical Feature 

Extraction 

In the proposed work, a standard benchmark data named 
UNSW IoT-traffic traces [13] was considered. Noticeably, the 
data comprised the network traffic of      time-period for 20 
days. A total of 1,60,000,000 traces were there as the original 
data. Unlike, classical methods where the same network traffic 
is used for prediction or classification, 10-different features 
for each network trace for each device was obtained. To 

perform descriptive feature extraction, at first the network 

traffic over defined time period      
   (   ) 

 was split into 

two broad types; control packets and the use packets. Here, 
user packet encompassed user-data and device-to-server or 
gateway communication packets. In this work, a packet was 
classified for its device to have the protocol either TCP, UDP, 
HTTP, DNS, ARP, or others. Similarly, on the basis of the 
direction of packet the traffic can be classified as either 
transmitted packets or the received packets. Noticeably, 
features for the different traces characterizing the Device ID, 
MAC ID, Protocol used, Size of the Data communicated etc 
were obtained. A specific traffic pattern for example packet 
size, transmission period or the timestamp etc. can have 
certain dynamism over the operating periods. Considering this 
fact a multi-dimensional descriptive (statistical) assessment 
such as Maximum, Minimum Median, Mean, Variance, 
Upper-Quartile, Lower-Quartile, Kurtosis, Skewness was 
performed. 

In this manner, a total of ten features including Device 
Source ID (Packet ID), Source ID, Destination ID, source and 
destination MAC protocol, IP protocols for both source and 
destination, packet size, transmission period, etc. Thus, 
extracting above stated features, a humongous volume of 
features was obtained. Before proceeding for the sample 
selection the feature selection algorithm was executed. Here, 
the WRST algorithm was applied, which is briefed as follows. 

D. Wilcox on Rank Sum Test based Feature Selection 

The WRST method was used to process the retrieved 
features in the suggested study. The WRST method is notable 
for being a sort of non-parametric test with independent 
samples. This method evaluates the relationship between 
variables (in this case, network traffic features) and their 
likelihood of affecting a given device type. WRST was used to 
estimate the association between network or trace features and 
their relative inclination towards a given device type in the 
suggested work. Different extracted attributes were treated as 
independent variables, whereas device type probability was 
treated as a dependent variable. This method calculated a p-
value for each feature variable based on its importance in 
device prediction or classification. As a result, each feature 
factor was classified as significant or unimportant based on its 
p-value. WRST was applied to each feature element, yielding 
a collection of characteristics (say, a feature vector) that can 
be speculated to be the sole important features influencing 
device type categorization. After obtaining the feature vector 
the FSPS model was used to select the suitable samples. The 
proposed FSPS model is described in depth in the next 
section. 

E. K-Means Driven Feature Sensitive Progressive Sampling 

The key objective of progressive sampling is to retain the 
minimum possible nu samples while achieving the expected 
performance (i.e., accuracy, AUC, etc.). Unfortunately, in 
majority of the classical progressive sampling methods such as 
[10], the additional samples are selected randomly, and hence 
don’t consider data imbalance or non-linear nature of the 
features. Such approaches can greatly be limited due to high 
inaccuracy. Such random sample selection based progressive 
sampling methods might select the network traces containing 
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merely CCTV, or only motion sensor. On the contrary, 
minimum or possibly negligible frequency of fire sensor traces 
might skew the learning model towards majority class (i.e., the 
device(s) with higher packets or its frequency). To alleviate 
such problems, selecting feature-sensitive samples can be 
vital. In sync with the proposed IoT-device classification 
problem, where there is non-linearity in network traces of 
traffic from each device, random sampling based progressive 
sampling concept can’t be suitable. Considering this fact, in 
the proposed model, the entire network traces for each feature 
over the complete operating period (i.e.,           
       )             . In other words, over a total of 
16,000,000 network traces or packets characterizing the 
different features were clustered using K-Mean algorithm. K-
Mean algorithm over the aforesaid packets to cluster entire 
traces into five distinct clusters (for each feature) was applied. 
Once clustering the network traces over the aforesaid 
operating period (                  ) the proposed 
progressive sampling method selected data from each cluster 
for each feature. The overall process is illustrated in Fig. 2. As 
depicted in Fig. 2, the proposed FSPS model at first considers 
10% of the data (or the selected features) as initial sample, and 
executes progressive sampling that updates the sample by 0.5-
5%, iteratively, till it achieves the expected performance. The 
sample update takes place as per the model derived in (6). 

                       (6) 

Here,    represents the updated sample or data size, while 
  states the initial sample size, which was selected as 10% in 
this work. The other parameter     represents the progressive 
addition value, which is selected in between 0.5% to 5%. 
Here, the value of     is appended iteratively to   No, till it 
results the expected performance (here, accuracy). Noticeably, 
unlike random selection-based sampling approaches [10], in 
the proposed FSPS method, samples from each cluster, 
pertaining to the different features (Fig. 2) was selected. This 
as a result helped retaining maximum feature diversity to train 
the model and hence provide better accuracy. Moreover, since 
the equal samples were taken from each cluster (i.e., K1 to K5 

for each feature, as depicted in Fig. 2) to update the data, it 
tried to avoid data skewness or over-fitting. 

F. HEL-assisted Multi-class Classification 

A progressive sampling-based analytics model can only be 
effective if it maintains optimal performance in terms of both 
sample selection, as well as classification performance. 
Considering this fact, in this paper, unlike standalone 
classifiers such as SVM, ANN, decision tree, k-NN etc., a 
homogenous ensemble learning (HEL) environment was 
developed. As the name indicates multiple base classifiers of 
the same category was employed. More specifically, in the 
proposed HEL model, three different and well-known 
ensemble classifiers named AdaBoost, Random Forest and 
Extended Tree classifier, were applied as the base classifiers. 
Thus, executing these three base-classifiers independently, 
each device was classified and labelled. The labels obtained 
by each classifier was applied to estimate the maximum voting 
ensemble (MVE), and hence with the higher (here, minimum 
two out of three labels) labels, the MVE model predicted an 
IoT-device for a specific category. Here, the only motive was 
to exploit higher consensus for final prediction so as to 
increase reliability as well as accuracy of the analytics 
solution. 

  In the proposed multi-class device classification 
problem, the following algorithmic paradigm was followed: 

1) Let   *    +,   *     +. 

 S –Set of traffic instances. 

 N-Number of traces. 

 C-Labels for each device. 

2)   *      +   
    -Input dimensionality. 

3)   *      +    set of labels for N traces. 

4) let *   +  *(     )   (     )+  be the training set, 

comprising   samples. 
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Fig. 2. Proposed Feature Sensitive Progressive Sampling (FSPS) Model. 
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The motive is to assign label      to each network trace 
    on the basis of the vector   and provide a network trace 
to the class label   .Unlike classical standalone classifier-
based learning, three distinct ensemble learning models as the 
base classifiers was applied. These algorithms are: 

1) Random Forest. 

2) AdaBoost. 

3) Extra Tree Ensemble Classifier. 

Noticeably, all these algorithms represent an ensemble 
learning approach, and thus their use as the base classifier in 
MVE gives rise to the Homogenous Ensemble Learning 
(HEL) ability. A snippet of these base classifiers is given as 
follows. 

G. Random Forest Algorithm 

The RF algorithm is an ensemble machine learning method 
that uses numerous tree-structured classifiers. At each input, 
each tree in the composing tree-structures casts a unit vote 
(say, an individual vote to establish consensus) for the most 
likely or popular class. If the number of cases in the training 
dataset is N, a sample of N cases is randomly chosen from the 
original data. This sample is also used as a training set for 
building a tree. If there are M input variables, a number m<M 
is supplied so that m variables are randomly chosen from the 
M at each node, and the best split on these m is used to divide 
the node. During the growth of the forest, the value of m is 
kept constant .In comparison to the other machine learning 
models such as SVM, J48, ANN, C5.0, k-NN, etc., RF 
algorithm requires fewer parameter estimation during 
processing that makes it more computationally-efficient. In RF 
algorithm, a collection of distinct tree structured classifier can 
be defined as (7). 

* (    )          +             (7) 

In (7),   states the RF classifier, while *  +  refers the 
random vector distributed identical and each tree possesses a 
vote for the most probable class at certain input variable  . 
The nature and dimensionality of   relies on its use in the tree 
construction. In RF algorithm the most vital part is the forest 
of decision trees.. It applies a bootstrapped subset of training 
samples to train each tree across the constructed forest, which 
enables almost 70% of the training data usages, while the 
remaining dataset is stated to be the out-of-bag (OOB) 
samples, which are typically applied to perform inner cross-
validation to assess the classification performance. 

In this process during the classification process, the input 
sample   is classified by going through each tree till a leaf-
node is obtained. Here, the classification result (say, the 
decision function  ) is assigned to each leaf node. Thus, the 
final class label   is estimated by selecting the class with the 
major votes. Mathematically, 

                 * + ∑   
    ( )  

           (8) 

H. AdaBoost 

AdaBoost represents an adaptive boosting concept, also 
referred as a commonplace learning paradigm having the 
ability to improve the characterization potentiality, iteratively. 
In initialization the prerequisite tests are doled-out to a similar 

weight to retrieve some weak learners with some preparation 
emphases. After each cycle it estimates the error rate of the 
weak classifier and thus the weight of the accurately classified 
sample is expanded that reduces the weights of the 
inaccurately grouped samples. Finally, the weak learner 
becomes a strong learner to complete the classification. The 
details of the algorithm applied in this work are given in [33]. 

I. Extra Tree Classifier 

The Extra-Trees classifier constitutes a cluster of unpruned 
decision trees as per the classical top-down approach. Unlike 
Random Forest algorithm, it involves randomization of both 
attribute as well as cut-point selection while splitting a node of 
a tree. Though, it can also create complete randomized trees 
possessing structures independent of the output values of the 
training sample. Primarily, it is distinguishing itself from other 
tree-based ensemble methods due to two key factors. These 
are, it splits nodes by selecting cut-points completely at 
random, and employs the complete training sample (unlike 
Random Forest which applies bootstrap replica) to enable tree 
growth. Subsequently, the classified outputs or the predictions 
of all the trees are combined together to provide final 
prediction output, by applying MVE method. Summarily, the 
key concept behind the Extra Tree Classifier is that the 
complete randomization of the cut-point and attribute 
altogether with ensemble averaging reduces the variance 
better in comparison to the weaker randomization approaches 
used in other methods. Moreover, the use of the original 
training samples rather than the bootstrap replicas too 
decreases the likelihood of bias and hence achieved more 
accurate and efficient classification outputs. Thus, applying 
above stated classifiers as the base classifiers a MVE 
ensemble decision was performed where the consensus value 
was applied to perform device classification. To be noted, 
since the data considered in this study comprised a total of 26 
devices pertaining to six different device categories, the 
proposed classification model performed multi-class 
classification. Hence, with the higher number of labels per 
traffic traces, it labelled the device for the specific category. 
The simulation results and related inferences are discussed in 
the subsequent sections. 

V. RESULTS AND DISCUSSIONS 

Considering the high pace increase in Big Data analytics 
and its time-efficient computing demands have motivated us 
to design an optimistically designed computing environment 
which could achieve expected performance while reducing 
computational overheads and time-exhaustion. Though to 
achieve it, the foundation of overall contribution was built 
onto the improved progressive sampling concept; however, to 
support efficient computation efforts were made for better pre-
processing, feature extraction and selection, and classification 
as well. Realizing the fact that the use of progressive sampling 
can help retaining minimum sample volume while achieving 
higher accuracy, this research employed it as sample selection 
method. However, recalling the undeniable fact that the 
typical Big Data analytics models undergo exceedingly high 
data imbalance, heterogeneity and multi-dimensional features, 
the random selection based progressive sampling methods 
can’t yield accurate performance. Moreover, the likelihood of 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 12, No. 11, 2021 

338 | P a g e  

www.ijacsa.thesai.org 

over-fitting and skewed performance can’t be ignored. 
Considering all this facts a feature sensitive progressive 
sampling (FSPS) model was developed which comprised 
feature extraction and selection followed by FSPS sampling 
and homogenous ensemble learning to perform classification. 

To assess efficacy of the proposed BigData analytics 
model, a highly complex and undeniably suitable data 
pertaining to the IoT-device classification was taken into 
consideration. A snippet of the considered data is given in the 
subsequent section. The overall performance analysis was 
done in terms of classification accuracy, F-Measure and Area 
Under Curve (AUC). To develop the overall proposed model, 
MATLAB2020a and Python 3.7 were taken into 
consideration. Here, MATLAB helped extracting the 
descriptive statistical features, while rest of the computing 
algorithms were developed using Anaconda supported Python 
3.7 platform. The proposed model was simulated over 
Microsoft Windows armored with 8 GB RAM and 2.8 GHz 
processor. The details of the proposed model solution are 
given in the subsequent section. Before discussing the 
simulation outputs, a snippet of the data considered and 
feature distribution is given as follows: 

A. Dataset 

A benchmark data provided by the University of New 
South Wales (UNSW), Sydney, Australia [34] was considered. 
The database was obtained from an IoT-ecosystem created 
within the university with a total of 26 devices deployed 
randomly across the university. The network traffic traces 
were obtained for 20 days (23 Sep. 2016 to 12 Oct. 2016) over 
     operating period. Statistically, the collected data 
contained a total of 1,60,00,000 network traces or traffic 
instances carrying packets. The packets captured were parsed 
to the IP header and was composed to derive other features so 
as to further perform device category classification or 
identification. Noticeably, the considered data comprised 26 
devices of six different categories. The device and their 
categories are presented in Table I. 

TABLE I. DEVICE CATEGORY 

Device Categories with description No.of Devices Label/Class  

Smart Plugs 5 1 

IP Camera 5 2 

Motion Sensors 5 3 

Temperature Sensor 5 4 

Electronics 4 5 

Others 22 6 

The different devices and their corresponding categories 
and related labels are given in Table I. 

A confusion matrix was obtained in the form of true 
positive (TP), true negative (TN), false positive (FP) and false 
negative (FN) to measure the overall performance. 
Considering data imbalance nature, the classification 
accuracy, F-Measure and Recall was considered as the key 
performance parameters. The statistical definition of these 
performance parameters is given in Table II. 

TABLE II. PERFORMANCE PARAMETERS 

Parameter 
Mathematical 

Expression 
Definition 

Accuracy 
(     )

(           )
 

It is a measure of predicted 

devices from the overall 

devices 

F-Score 
  (                )
 (                ) 

It is harmonic mean of recall 

and precision numeric values 

AUC ------- 
It represents the area under 
curve performance. 

The overall performance characterization is made in two 
phases; intra-model assessment and the inter-model 
assessment. Here, intra-model assessment discusses the 
performance of the proposed model with the currently 
proposed configuration, while the inter-model assessment 
discusses the relative performance between the proposed 
FSPS based BigData analytics and other existing algorithms. 
The outcome of the comparison is elaborated as below. 

B. Intra-Model Assessment 

In this assessment processes, whether the inclusion of 
FSPS helps achieving better performance with lower data size 
was examined. Moreover, the performance with the different 
sample sizes was also assessed. Additionally, realizing the 
data unbalanced nature, and a complex multi-class 
classification problem the accuracy, F-score and AUC with 
the different base-classifiers was examined. Also, the 
performance patterns by the proposed model when the sample 
size is varied were examined. To assess whether the proposed 
FSPS model helps achieving better performance with 
minimum data size, the model was tested with 10% data size 
and subsequently increased sample rate with 0.5%. For the 
sake of easy presentation and understandability, the results 
were obtained for 10%, 12%, 14% and 16% of the sample or 
data size. The accuracy F-score and AUC obtained are given 
in Table III. Noticeably, here, for classification (over the FSPS 
samples) the proposed HEL ensemble learning model 
comprising three base classifiers, Random Tree, AdaBoost 
and Extra or Extended Tree classifiers were applied. 

TABLE III. PERFORMANCE WITH THE DIFFERENT SAMPLE SIZES 

Data Size (%) Accuracy (%) F-Measure AUC 

10 95.7 0.97 0.99 

12 96.4 0.98 0.99 

14 97.9 0.98 1.0 

16 98.9 0.99 1.0 

TABLE IV. PERFORMANCE COMPARISON WITH THE FSPS DRIVEN 

STANDALONE CLASSIFIERS 

Classifier Accuracy (%) F-Measure AUC 

Random Forest 97.9 0.98 0.99 

AdaBoost 93.6 0.94 0.93 

Extended Tree 98.6 0.99 0.99 

HEL Ensemble  98.9 0.99 1.0 
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The key purpose of above assessment (Table IV) was to 
examine whether the use of FSPS sampling can help a 
standalone classifier achieving better performance. The results 
(Table IV) depicts that amongst the different base-classifiers 
Extended Tree algorithm has exhibited the superior 
performance with the (multi-class classification) accuracy of 
98.6%, F-Measure and AUC of 0.99 and 0.99, respectively. 
On the other hand, Random Forest algorithm exhibited the 
accuracy of 97.9%, F-Measure of 0.98 and AUC of 0.99. 
Unlike Random Forest and Extended Tree algorithm, 
AdaBoost exhibited inferior with the accuracy of 93.6%, F-
Measure of 0.94 and AUC of 0.93. Amongst the three base 
classifiers AdaBoost algorithm performed inferior; however, 
recalling the fact that the performance obtained is with merely 
16% of the data size, it can be stated as a satisfactory solution. 

Noticeably, the proposed IoT-device classification 
problem was a multi-class classification problem, where the 
proposed model was supposed to classify each device (here, a 
total of 26 devices connected to the network and operating 
autonomously). Though the total number of traces were 
almost 1,60,000,000, where each trace represents one packet 
belonging to a specific device of a particular category 
(Table I). Considering this fact, where the proposed model 
classified devices into six different categories (it represents the 
devices of Class 1.0, Class 2.0, Class 3.0, Class 4.0, Class 5.0 
and Class 6.0), within micro-average as well as macro-average 
(between the class and within the class performance, 
respectively) performance was examined. The ROC 
performance for each category of the devices after 
classification was tested. The results obtained by the proposed 
FSPS-driven HEL ensemble classifier is given in Fig. 3. 

Observing the result (Fig. 3), it can observed that the 
proposed model has obtained the AUC near 0.98 for the 
complete classes, while the AUV observed for each class 
(macro-average ROC) is also 0.98. For multi-class 
classification as well, the average AUC obtained is 0.98. 

Typically, in progressive sampling based BigData 
analytics, in addition to the accuracy performance, time-
efficiency too remains the key motive to meet VELOCITY 
demands. In this reference, relative time-efficiency in between 
the original data (ORIG) and the FSPS based selected data 
(PSAM) was compared. The results obtained are given in 
Fig. 4 and Fig. 5 As depicted in Fig. 4, the proposed 
progressive sampling-based model (PSAM) performs 
significantly lower computation time (in seconds) in 
comparison to the original data-based analytics. Undeniably, 
such efficacy could be contributed due to significantly reduced 
data size (almost 86%). It indicates the robustness of the 
proposed model towards real-time BigData analytics, even 
under multi-class classification demands. 

C. Inter-Model Assessment 

In this section, the performance by the proposed model is 
compared with the other approaches. However, the survey 
indicates a few such as the work by ElRafey et al. [32] who 
developed a hybrid active learning based progressive sampling 
method. More specifically, authors developed a Progressive 
Batch Model Uncertainty Sampling (PBMUS) model to 
increase sample size proactively to cope up with 

(performance) demands. Authors simulated their model with 
the different datasets, including synthetic data as well as the 
real-time data. They applied Decision Tree C5.0 algorithm for 
classification. Authors examined their performance in terms of 
the classification accuracy and AUC considering 50% of the 
data size, while the increment boundary was decided as 1%. 

Venkatpathy et al. [30] too examined the efficacy of 
progressive sampling methods with real-time data. Though, 
the data considered in [30] were smaller in size and diversity 
as is expected from the Big Data analytics, to assess relative 
performance, we have considered it as a reference work, as 
well. Authors [30] had applied Apriori information to estimate 
the most frequent itemsets and resulting mid-point itemset for 
association rule-based mining. Authors have examined their 
performance with the datasets like Mushroom, Chess, 
Connect, Retail data, Traffic accident data, and synthetic data. 
To perform relative comparison, the average performance by 
[30].was calculated. Summarily, the performance comparison 
of both models and the proposed model is tabulated in 
Table V. 

 

Fig. 3. ROC Performance by the Proposed FSPS-driven HEL Ensemble 

Model. 

 

Fig. 4. Time Performance Analysis. 

 

Fig. 5. Time Comparison of Original Data and Progressive Sampled Data. 
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TABLE V. INTER-MODEL COMPARISON PERFORMANCE OF PROGRESSIVE 

SAMPLING METHOD 

Technique Accuracy (%) AUC 

[30] 78.0 - 

[32] 79.9 79.2 

Proposed 98.9 1.0 

The above results affirm that the proposed FSPS model 
achieves significantly better performance than the other state-
of-art (progressive sampling) approaches. 

Recalling the problem of IoT-device classification, the 
performance of the proposed model with other state-of-art 
methods such as [34] was examined. Bai et al. [34] applied the 
same dataset of UNSW to perform device classification. The 
authors merely applied the LSTM-CNN as classifier to 
perform classification over average features. The highest 
classification accuracy obtained by authors [34] could be 
merely 74.8%, which is significantly lower than the proposed 
model. To be noted, authors [34] had applied the complete 
data size (almost 2.7 GB) to perform classification. On the 
contrary, in the proposed model FSPS enabled applying 
merely 10%-16% of the original data to perform classification. 
Authors in [34] stated that their proposed LSTM-CNN based 
model could achieve the accuracy of near 99% with 75% of 
the data size, while with 25% of the training data they could 
achieve the maximum of 88.2%. However, these performances 
were merely for the two-class classification. For the multi-
class classification, which is expected from the IoT-device 
classification problem (Table I), the average performance over 
five repeated simulation was 74.8%, which is significantly 
lower than the proposed model. Noticeably, in [34] authors 
also examined the different machine learning classifiers for 
their respective efficacy for device classification, and hence 
have compared the performance of the proposed model with 
the existing approaches [34]. 

TABLE VI. INTER-MODEL PERFORMANCE COMPARISON FOR IOT- DEVICE 

CLASSIFICATION 

Reference Technique Accuracy (%) 

Existing 

work 

Support Vector Machine  58.5 

Random Forest  30.1 

KNN 27.6 

Decision Tree  46.4 

AdaBoost 48.5 

LDA 49.4 

QDA 52.4 

Multilayer perceptron 52.1 

Convolutional Neural Network (CNN) 56.3 

Long- and Short-Term Memory (LSTM) 65.4 

LSTM-CNN 74.8 

Proposed 

work 

Random Forest 97.9 

AdaBoost 93.6 

Extended Tree 98.6 

HEL Ensemble  98.9 

The results depicted in Table VI shows that in comparison 
to the existing IoT-device classification systems, the proposed 
(FSPS-driven HEL ensemble learning) model exhibits 
superior even at significantly lower sample or data size. 

VI. CONCLUSION 

This paper primarily focused on developing a feature 
sensitive progressive sampling (FSPS) approach which could 
retain optimal performance even with minimal data size. 
Moreover, the key emphasis was to inculcate FSPS while 
addressing the key problem of data imbalance, multi-
dimensionality and data heterogeneity in BigData analytics. 
Recalling the fact that in BigData analytics merely sampling 
can’t guarantee the optimality of the performance and hence 
improving both data as well as computing environment is 
must, this research improved each functional component of 
the analytics solution. Unlike random (sample) selection based 
progressive sampling methods, which can’t address the 
problem of data-imbalance, the proposed model employed 
machine learning driven FSPS to retain maximum possible 
feature diversity to perform better learning and hence 
classification performance.. The simulation results exhibited 
accuracy of 98.9%, F-score of 0.99 and AUC of more than 
one, affirming robustness of the proposed model towards 
lightweight, time-efficient and reliable BigData analytics 
solution. In future the focus can be made on further reducing 
data imbalance likelihood by applying certain re-sampling 
concepts. In addition, in future other machine learning models 
can also be assessed to have better performance for a 
generalized solution. 

REFERENCES 

[1] O. Duda et al., "Data Processing in IoT for Smart City Systems," 2019 
10th IEEE International Conference on Intelligent Data Acquisition and 
Advanced Computing Systems: Technology and Applications 
(IDAACS), Metz, France, 2019, pp. 96-99. 

[2] Thibaud Chardonnens, ―Big Data analytics on high velocity streams: 
specific use cases with Storm‖, Software Engineering Group, 
Department of Informatics, University of Fribourg, Switzerland, 2013. 

[3] H. Chiroma et al., "Progress on Artificial Neural Networks for Big Data 
Analytics: A Survey," in IEEE Access, vol. 7, pp. 70535-70551, 2019. 

[4] R. A. Alshawish, S. A. M. Alfagih and M. S. Musbah, "Big data 
applications in smart cities," 2016 International Conference on 
Engineering & MIS (ICEMIS), Agadir, 2016, pp. 1-7. 

[5] P. Bellini, F. Bugli, P. Nesi, G. Pantaleo, M. Paolucci and I. Zaza, "Data 
Flow Management and Visual Analytic for Big Data Smart City/IOT," 
2019 IEEE SmartWorld, Ubiquitous Intelligence & Computing, 
Advanced & Trusted Computing, Scalable Computing & 
Communications, Cloud & Big Data Computing, Internet of People and 
SmartCityInnovation (SmartWorld/SCALCOM/UIC/ATC/CBDCom/ 
IOP/SCI),Leicester, United Kingdom, 2019, pp. 1529-1536. 

[6] Cochran W.G., Sampling Techniques, 3rd edition, John Wiley and Sons, 
New York, 1977. 

[7] Parthasarathy S., Efficient Progressive Sampling for Association Rules, 
In: Ohsuga S. (Ed.), Proceedings of the IEEE International Conference 
on Data Mining (9-12 December 2002, Maebashi City, Japan), IEEE 
Computer Society, 2002, 354-361. 

[8] Chen B., Haas P., Scheuermann P., New Two-Phase Sampling Based 
Algorithm for Discovering Association Rules, In: Zaki M.J. (Ed.), 
Proceedings of the eighth ACM SIGKDD International Conference on 
Knowledge Discovery and Data Mining (23-26 July, 2002, Alberta, 
Canada), ACM, 2002, 462-468. 

[9] Zaki M.J., Parthasarathy S., Li W., Ogihara, M., Evaluation of Sampling 
for Data Mining of Association Rules, Proceedings of the 7th 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 12, No. 11, 2021 

341 | P a g e  

www.ijacsa.thesai.org 

International workshop on Research Issues in Data Engineering (7-8 
April 1997, Birmingham, UK), IEEE Computer Society, 1997, 42-50. 

[10] N. Bangera, and N. Kayarvizhy, ―A Progressive Sampling based 
Approach to Reduce Sampling Time‖, 2019 4th International 
Conference on Recent Trends on Electronics, Information, 
Communication & Technology (RTEICT-2019), MAY, pp. 74-78. 

[11] Chuang K.T., Chen M.S., Yang W.C., Progressive Sampling for 
Association Rules Based on Sampling Error Estimation, LECT NOTES 
COMPUT SC, 2005, 3518, 505-515. 

[12] Estrada A., Morales E.F., NSC: A New Progressive Sampling 
Algorithm, Proceedings of the Workshop: Machine Learning for 
Scientific Data Analysis (Iberamia) (22-26 November, 2004, Iberamia), 
2004, 335-344 

[13] A. Hsu, J. Tronty, D. Raymondy, G. Wang, A. Butt, ―Automatic IoT 
Device Classification using Traffic Behavioral Characteristics‖, IEEE 
Conference, 2019, pp. 1—7. 

[14] M. Miettinen, S. Marchal, I. Hafeez, N. Asokan, A.-R. Sadeghi, and S. 
Tarkoma, ―Iot sentinel: Automated device-type identification for 
security enforcement in iot,‖ in Distributed Computing Systems 
(ICDCS), 2017 IEEE 37th International Conference on. IEEE, 2017, pp. 
2177–2184. 

[15] A. Sivanathan, D. Sherratt, H. H. Gharakheili, A. Radford, C. 
Wijenayake, A. Vishwanath, and V. Sivaraman, ―Characterizing and 
classifying iot traffic in smart cities and campuses,‖ in Computer 
Communications Workshops (INFOCOM WKSHPS), 2017 IEEE 
Conf.on. IEEE, 2017, pp. 559–564. 

[16] Y. Meidan, M. Bohadana, A. Shabtai, M. Ochoa, N. O. Tippenhauer, J. 
D. Guarnizo, and Y. Elovici, ―Detection of unauthorized IoT devices 
using machine learning techniques,‖ CoRR, vol. abs/1709.04647, 2017. 
[Online]. Available: http://arxiv.org/abs/1709.04647. 

[17] Mahafzah B.A., Al-Badarneh A.F., Zakaria M.Z., A new sampling 
technique for association rule mining, J INF SCI, 2009, 35, 358-376. 

[18] Jia C.Y., Gao X.P., Multi-scaling sampling: an adaptive sampling 
method for discovering approximate association rules, J COMPUT SCI 
TECHNOL, 2005, 20, 309-318. 

[19] Chuang K.T., Chen M.S., YangW.C., Progressive Sampling for 
Association Rules Based on Sampling Error Estimation, LECT NOTES 
COMPUT SC, 2005, 3518, 505-515. 

[20] Li Y., Gopalan R.P., Effective Sampling for Mining Association Rules, 
LECT NOTES COMPUT SC, 2005, 3339, 391-401. 

[21] Lin T.Y., Sampling in Association Rule Mining, In: Dasarathy B. (Ed.), 
Data Mining and Knowledge Discovery: Theory, Tools, and Technology 
VI, Proceedings of SPIE (Orlando, Fl, USA), SPIE, 2004, 161-167. 

[22] Chakaravarthy V.T., Pandit V., Sabharwal Y., Analysis of sampling 
techniques for association rule mining, In: Fagin R. (Ed.), Proceedings 

of the 12th International Conference on Database Theory (23-25 March 
2009, St. Petersburg, Russia), ACM Press, 2009, 276-283. 

[23] Zhao Y., Zhang C., Zhang S., Efficient frequent itemsets mining by 
sampling, In: Li Y. (Ed.), Proceedings of the fourth International 
Conference on Active Media Technology (7-9 June, 2006, Amsterdam, 
The Netherlands), IOS Press, 2006, 112-117. 

[24] Chen B., Haas P., Scheuermann P., New Two-Phase Sampling Based 
Algorithm for Discovering Association Rules, In: Zaki M.J. (Ed.), 
Proceedings of the eighth ACM SIGKDD International Conference on 
Knowledge Discovery and Data Mining (23-26 July, 2002, Alberta, 
Canada), ACM, 2002, 462-468. 

[25] S.Parthasarathy, ―Efficient progressive sampling for association rules‖, 
IEEE International Conference on Data Mining, 2002. 

[26] S. S. Thakur, Shalini Zanzote Ninori, ―An Improved Progressive 
Sampling based Approach for Association Rule Mining International 
Journal of Computer Applications‖ (0975 –8887), Volume 165 – No.7, 
May 2017. 

[27] P.A. De los Santos, R.J. Burke, J.M. Tien, ―Progressive random 
sampling: A multiperiod estimation technique with applications IEEE 
Transactions on Systems, Man, and Cybernetics, Part C (Applications 
and Reviews‖, Volume: 30, Issue: 4, Nov 2000. 

[28] Antal van den Bosch, ―Wrapped Progressive Sampling for optimizing 
Learning Algorithm Parameters, Netherlands Organisation for Scientific 
Research‖. 

[29] François Portet, Feng Gao, Jim Hunter and René Quiniou, ―Reduction of 
Large Training Set by Guided Progressive Sampling: Application to 
Neonatal Intensive Care Data‖. 

[30] Venkatapathy Umarani Muthusamy Punithavalli- Analysis of the 
progressive sampling-based approach using real life datasets 
https://link.springer.com/journal/13537. 

[31] Zeng X, Luo G, ―Progressive sampling Based Bayesian optimization for 
Efficient and Automatic Machine Learning Model Selection‖, Springer 
2017. 

[32] Amr ElRafey and Janusz Wojtusiak, ―A Hybrid Active Learning and 
Progressive Sampling Algorithm, International Journal of Machine 
Learning and Computing‖, Vol. 8, No. 5, October 2018. 

[33] Q. Li, W. Li, J. Wang and M. Cheng, "A SQL Injection Detection 
Method Based on Adaptive Deep Forest," IEEE Access, vol. 7, pp. 
145385-94, 2019. 

[34] L. Bai, L. Yao, S. alil, S. Kanhere, X. Wang, and Z. Yang, ―Automatic 
Device Classification from Network Traffic Streams of Internet of 
Things‖, 2018, IEEE 43rd conference on Local Computer Nrtworks 
(LCN), 2018, pp. 1-9. 

 


