
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 11, 2021

349 | P a g e

www.ijacsa.thesai.org

A New Back-off Algorithm with Priority Scheduling

for MQTT Protocol and IoT Protocols

Marwa O Al Enany
1
, Hany M. Harb

2

Department of Systems and Computers

Faculty of Engineering, Al-Azhar University

Cairo, Egypt

Gamal Attiya
3

Department of Computer Science and Engineering

Faculty of Engineering, Menoufia University

Menouf, Egypt

Abstract—The Internet of Things (IoT) protocols have

encountered great challenges as the growth of technology has led

to many limitations of the performance of the IoT protocols.

Message Queuing Telemetry Transport protocol (MQTT) is one

of the most dominant protocols in most fields of smart

applications, so it has been chosen in this research to be a use

case for implementing and evaluating a new proposed Back-off

algorithm that is designed to eliminate suspicious and fake

messages by calculating an initial frequent rate for each

publisher connected to the MQTT broker. The proposed Back-

off algorithm was designed to mitigate the traffic load of the

uplink traffic by applying an exponential delay factor to

suspicious publishers. Another priority scheduling algorithm was

proposed to classify publishers as high priority or low priority

depending on the new calculated frequent rate. The two

algorithms were implemented on the Mosquitto broker and

evaluated using a simulation environment by measuring specified

performance metrics. The simulated results proved that the

Back-off algorithm eliminated network load and introduced an

acceptable range of CPU and RAM consumption. The results

also concluded that the priority classification algorithm managed

to reduce the latency of high-priority publishers.

Keywords—Back-off algorithm; priority scheduling; MQTT

protocol; average transmission frequency rate; IoT protocols

I. INTRODUCTION

Binding the whole world became an easy mission by using
new technologies with the aid of the internet. One of the most
important and modern technologies that conquer all the fields of
human life is the IoT (Internet of Things) in which any group of
devices can be connected and communicate together without the
need for any interference or intervention of humans. Accessing
and controlling remote applications and remote information has
become easier and faster because of IoT. IoT extended the
capabilities of the internet to cut across ordinary computers by
allowing smart devices or actuators to send and receive
information remotely from different environments and
networks.

The most important fields of human life that depend
nowadays on IoT are Healthcare and wearable devices [1],
where treatment and patient follow-up became easier for the
medical board and for patients themselves without the need of
the presence of doctors and patients in the same place, smart
agriculture [2] depends on IoT as monitoring soil and factors
affecting agriculture crops can help in increasing the quantity
and quality of final products, smart homes[3] and smart cars

where the dream of an automated life became true and modern
houses are equipped with sensors which react with human to
facilitate our life and help elderly [4] like door authentication
scheme sensors [5], temperature sensors to adjust air
conditioner [6] automatically, car sensors that allow car parking
automatically [7] with only flipping a switch and other sensors
that can be managed remotely with smartphones.

Due to the diversity of IoT applications in different fields of
life, various types of IoT protocols are employed depending on
the required function of the protocol. These protocols can gather
data from sensing nodes or send data and manage
communication between sensing nodes and the processing
nodes depending on the function required from the protocol at
every point in the network, a suitable protocol was
employed [8].

One of the most widespread protocols is the Message
Queuing Telemetry Transport protocol (MQTT) which is a
small and lightweight messaging protocol suitable for resource-
constrained and machine to machine (M2M) networks and
relies on the TCP/IP protocol with a publish/subscribe model.
The main function of the MQTT protocol is to gather data from
sensing nodes, which are called publishers, and send them to a
central intermediate device called a broker, which in turn sends
this data to the required destination, which is called a
subscriber.

MQTT [9] is primarily used for low bandwidth and high
latency networks as it has a small fixed header of 2 bytes and
depending on the publish/subscribe model which guarantees
flexibility and simplicity of communication [10], it also used in
loosely coupled networks as publisher and subscribers are not
connected and they do not need to be available at the same time.
On the contrary, publishers and subscribers do not know the
availability or identification of each other. MQTT is considered
to be a many-to-many protocol as many subscribers and
publishers can be connected to the broker at the same time.
UTF-8 string topics like mynewhouse/myroom1/temperature
are used for message addressing in a hierarchal structure form
that can use single-level wildcards by using + character or
multilevel wildcards by using # character besides using
SSL/TLS for security.

Publisher or subscriber can select one of three quality of
service (QoS) levels defined in MQTT protocol depending on
the employed system and network condition [11] so, message
delivery assurance is performed depending on the selected level

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 11, 2021

350 | P a g e

www.ijacsa.thesai.org

of QoS. For QoS 0, the message is delivered at the best effort at
most once without any message acknowledgment or reception
assurance, so it is called "fire and forget". QoS 1 ensures
message receiving at least one time. The sender keeps the
message stored at its side until the reception of acknowledgment
of the message from the receiver. Thus, if an acknowledgment
was not received at a certain predefined time, the sender would
send the same message again until receiving acknowledgment
thus message could be sent several times to the receiver. QoS 2
uses 4-way handshaking for sending a message, so it is called
"exactly once" because this level ensures the message receiving
only one time without any duplication.

The main central device that is responsible for receiving and
sending messages from publishers to subscribers is called the
MQTT broker. The broker is responsible for message
organization and distribution of messages among publishers and
subscribers. It can handle thousands of connections
simultaneously. It accepts messages from publishers then
manages filters and distributes messages to the appropriate
subscribers depending on the associated topics identified by
subscribers. Many organizations have developed and
implemented different brokers for the MQTT protocol that vary
in features and programming language but all of them are made
to operate with the MQTT protocol and to meet its
specifications. The most famous brokers are Mosquitto which is
an open-source written in C as a part of Eclipse Foundation and
applicable for low powered devices because of being a very
lightweight broker, RabbitMQ which is written in Erlang
mainly to support AMQP protocol and MQTT protocol but it
lakes some features of MQTT like QoS 2, HiveMQ is another
famous MQTT broker written in Java with high and efficient
performance and 100% compliance with MQTT protocol, and
VerneMQ which is written in Erlang/OTP as a distributed
MQTT message broker.

MQTT is implemented in different widespread applications
such as Health care monitoring devices and sensors that rely on
IoT technology [12], social media like Instagram, a Facebook
messenger [13], energy monitoring in industrial applications
[14], surveillance [15], smart farming and soil states monitoring
[16], android application and smart homes[17].

II. MQTT CHALLENGES

Despite having many advantages, such as its lightweight,
simplicity of implementation, deploying it in most of the life
applications, and consuming lower power than other available
protocols, MQTT has many open issues and faces some
challenges that may affect its performance in critical
applications. Some security issues that need to be solved to
enhance the performance of MQTT as mentioned in [18], data
transit attacks, scalable key management, and the overload
resulting from TLS are the major security problems that some
new researchers are concerned with.

In [19], some security issues were discussed and some
mechanisms were presented that can help to enhance data
encryption, authentication, and confidentiality between clients
and brokers. It also proposed a Value-to-HMAC that can be
used to ensure message disclosure only by its specified client.
High latency and high bandwidth consumption for constrained
applications may be considered as a critical open issue of

MQTT. As it relies on the TCP protocol, latency and bandwidth
consumption are considered to be high because of the
exchanged acknowledgments and using the triple handshake of
TCP and QoS as mentioned in [20].

When comparing MQTT with Constrained Application
Protocol (COAP), in the case of losses, the COAP protocol
shows fewer delays than MQTT because of the TCP
handshaking over heading that leads to more delays as results
obtained in [21].

Another study to measure the performance of MQTT [22]
was done using an NB-IoT system that provided simulation
results that showed using TCP has a negative impact on the
performance of the MQTT protocol when compared to the
COAP protocol that uses UDP as a lightweight and cheap
reliability confirmation process. This leads to the fact of adding
TCP for reliability leads to less service availability than using
UDP, especially when deployed with MQTT it affects the
overall delay.

Most IoT applications and protocols are exposed to
malicious hacking where a hacker can abuse a client or any IoT
device to send fake messages only to keep the network busy and
degrade the performance of the connected devices. Besides that,
any sensor can be exposed to uncontrolled external factors that
can affect the performance of the sensor itself, like sending the
same message several times or accelerating the response and
sending rate of a sensor. All that mentioned problems affect the
communicating protocol and misbehave its performance,
leading to more limitations that affect its performance.

MQTT-SN [23] is a new modified version of MQTT that
mainly developed to operate with sensor networks was
proposed to overcome the previously mentioned problem of
TCP overhead work over UDP instead of TCP.

This paper contributes to proposing a new algorithm to help
overcome some of the presented problems and limitations of
IoT protocols, especially MQTT protocol that affects the
communication delay of the overall traffic of the network. By
proposing a new Back-off algorithm that organizes the
communication between the broker and publishers to prevent
overloading and, hence, broker failure due to unnecessary or
fake messages. Besides proposing a second algorithm that can
coordinate the publishing of messages between publishers
depending on specified priority parameters that help critical
messages to be delivered in time and reducing the latency of
these messages.

III. RELATED WORK

Because of the huge growth in the number of IoT devices
and applications, the number of messages generated from IoT
devices and sensors has increased. This increase leads to great
congestion and packet loss in some cases, resulting in a great
increase in latency, besides requiring high processing power and
a high amount of consumed bandwidth. So, the whole world
tends to solve these limitations by introducing new layers of
computing like edge, fog, and cloud computing [24], where,
cloud computing offers renting only the required amount of
resources where gathered data that needs further processing can
be transmitted to this layer. Transmitting data to this layer is
suitable for data that needs high processing. However, it can

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 11, 2021

351 | P a g e

www.ijacsa.thesai.org

affect sensitive data, especially real time data, and increase its
latency.

The need for intermediate processing layer leads to the fog
layer where it refers to moving computers with sufficient
storage and processing capabilities near to the sources of data
for further processing without the need of transferring data to
the cloud layer that will reduce the latency caused by
transferring data to the cloud layer. So, it decreased the amount
of data needed to be transferred to the cloud layer.

Due to the processing of data near to data sources,
responsiveness and throughput of applications will be increased
as processing data in this layer will be faster than processing it
in the cloud layer. The need for edge computing will be raised
as this layer will allow processing of data to be transferred near
to the edge of the network, which suits the most sensitive and
real time data, such as data generated from healthcare devices
and sensors. Because of this advancement, not all IoT
application layer protocols can operate in these modern
processing layers [25]. Only special protocols have the
capability of transferring data between these layers. One of
them is the MQTT protocol, which can operate on constrained
devices and even with cloud processing servers because of its
simplicity and flexibility. To cope with these new layers of
processing, it has become critical to modify MQTT and add
new features to its broker.

One of these MQTT enhancements was [26], where the
authors proposed a new model for MQTT edge and fog
communication. That model was called the multi-tier edge
computing model, in which a broker was added in the fog layer
besides the primary broker in the cloud layer, where users could
communicate directly with the fog layer broker rather than
communicate with the cloud broker. That led to reducing the
overall latency. The simulation environment was created to test
the proposed model as three levels of devices were created,
which are IoT devices, fog instances with the introduced
intermediate broker, and cloud components with the primary
broker. The simulation results were compared with the original
MQTT IoT-based broker and proved that the overall latency
was decreased and performance outperformed the original
model.

MQTT has many new features, and modern research is
concerned with enhancement of this protocol not only to
upgrade its performance in IoT but also to serve the edge and
fog layers. [27] Proposed a novel authentication mechanism for
ensuring data privacy and integrity where the authors presented
security threats to the IoT layer and MQTT attacks. When a
broker is installed on all edge hubs to use the MQTT protocol in
edge computing, the authority's complexity grows, and the
challenge of dealing with a large number of brokers develops.
Generally, IoT devices transmit a certain message to maintain
availability with the broker, and this operation might generate a
bottleneck due to several brokers installed on the edge hub. As a
result, a system is required to supervise brokers installed on all
edge hubs and to exchange data between many edge systems
without further affiliation with brokers by using cryptography
calculations of RSA and AES to encrypt the payload in order to
make the correspondence more secure.

Another new feature of MQTT was presented in [28], where
integration between blockchain and IoT systems has been done
and deployed in the edge layer to obtain the advantages of
blockchain decentralization in securing the IoT systems using
the MQTT protocol, which in turn will increase the overall
performance and security of the MQTT protocol. To control the
transmission of data, the authors utilized the MQTT protocol
and a central edge server as a broker. The IoT network will send
and receive data via a secure link provided by blockchain.

In the field of machine learning, the MQTT protocol has
attracted a great deal of attention. Some research has been
concerned with attacking MQTT to overcome its security
limitations by using a random forest algorithm for detecting
attacks, as in [29], and other research has been concerned with
generating new datasets like [30] that can help models in
training to detect more attacks on the MQTT protocol.

All of the mentioned new research and new features of
MQTT were concerned with security and decreasing latency,
with an overall increase in the performance of the MQTT
protocol. This research, on the other hand, is concerned with
reducing a network's overall traffic in the event of congestion,
which can result in significant packet loss. The concept of the
Back-off algorithm was introduced to the MQTT broker to
decrease suspicious traffic and a new mechanism of assigning
priority was proposed to filter and categorize received
messages.

A. Back-off Algorithm in IoT

Exponential Back-off is a prominent algorithm mainly used
in networks to efficiently separate the repeated retransmission
of messages or data by a random delay time depending on the
slot time to eliminate network congestion. This algorithm is the
organizer of retransmitted packets in the CSMA/CD after a
collision is detected as it identifies the waiting interval for
collisional stations after collision depending on the number of
collisions and the slot time. Each collide station picks a random
integer that can be presented by k from the contention window
to wait a period = k * slot time. If the collision occurs in for the
same packet, the contention window will be doubled. For
example, if the first collision occurs, a contention window will
be between 0, 1 and each station choose a random integer of it
and the probability of collision will be decreased to 50%. If a
collision occurs again the contention window will be doubled
and become {0, 1, 2, 3} and each station will choose a random
integer then the probability of collision will be decreased to
25% and so on. The contention window is doubled for each
collision and the waiting time increases exponentially.

Due to the great revolution in communication systems,
wireless systems need new solutions that can control congestion
and delay of messages. One of these new solutions was
proposed in [31] as a new algorithm that is based on the
concepts of the Back-off algorithm to help in improving the
MAC-layer performance by queuing the packets based on their
delay. This algorithm was evaluated in a dynamic wireless
sensor network where the network consists of several mobile
nodes by defining a new parameter called delay timer used for
reducing the number of dropped packets. Based on this
parameter, packets are queued and served with a minimum

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 11, 2021

352 | P a g e

www.ijacsa.thesai.org

delay timer first with a reduction in energy processing and a
high delivery ratio of packets.

The Back-off algorithm also has a vital role in Wireless
Body Area Networks, where [32] proposed a channel switching
procedure by a rescheduling algorithm based on optimal Back-
off time. By identifying the neighboring list, current channels
can be switched to one of its neighboring lists in the case of
performance degradation.

B. Priority Scheduling in IoT

Scheduling messages based on certain criteria is a severe
issue in assigning tasks to CPUs, hence the IoT extended that
concept to schedule tasks and received messages in a variety of
IoT applications. Some applications use the ordinary contending
priority algorithms such as Frist Come First Served, Round
Robin or Shortest Job First or any of other primary scheduling
algorithms. Other applications imposed a modified scheme of
scheduling based on the procedure applied to that application or
technology.

In the transportation field [33], an application was designed
to overcome the problem of traffic congestion using the IoT
environment by proposing a traffic monitoring system that in
turn controls the passing of vehicles depending on an assigned
level of priority to each lane where high priority passing
vehicles lane is assigned to the lanes with high traffic.

Smart homes have gained great attention for achieving
priority scheduling among their huge number of deployed
sensors and applications. The author in [34] introduced a new
technique for evaluating contextual priorities that is concerned
with non-functional requirements based on the end user's
preferences, and context awareness. According to the current
context, a context-aware system can adapt itself with the aid of
a developed web platform that asks users to classify their
preferences then users validate the assigned priority scheduling.
As a result, users were satisfied with the tested scenarios that
coped with their choice of contextual factors.

For healthcare, [35] has classified received data from
healthcare sensors into two categories as emerging data that has
a higher priority level or vital data that has a lower priority level
to save the battery life of wearable devices as much as possible.
An efficient routing protocol based on these two categories of
priority classification was proposed to deliver high-priority data
with direct communication. In contrast, low priority data will be
delivered using multi-hop communication.

Priority scheduling is one of the big open issues of the
MQTT protocol because it does not have any priority algorithm
of its common brokers. The author in [36] proposed a priority
algorithm in which messages were classified into three
categories. Based on the category, messages were classified into
three queues as normal or critical or urgent queues inside the
broker itself. Messages in the urgent queue have the highest
priority to be served first, which causes the latency of these
messages to become smaller and the message loss rate is
decreased. However, this algorithm was concerned only with
the latency and the loss rate of urgent messages and ignored the
latency of the overall network and the consumed memory
assigned to each queue.

As mentioned before, MQTT has no priority algorithms for
message scheduling. Even the proposed [36] algorithm is
concerned only with the urgent messages, not the overall
performance of the protocol. Besides, the priority level was
assigned by the client itself that allows any message to be
urgent without any constraints or predetermined specifications.

IV. INTEGRATED BACK-OFF WITH PRIORITY SCHEDULING

ALGORITHM

A. Proposed Back-off Algorithm

The proposed exponential Back-off algorithm aims to
reduce network congestion by slowing down the transmission
rate of suspicious devices. For each client connected to the
broker, the broker will record the arrival time of the first
message then repeat that for the next N messages. The time
interval length between every two consecutive messages will be
calculated to obtain an average frequent rate for each client.
After a chosen N messages, the broker will have a saved
average of the publishing frequent rate for each client. When the
publisher asks the broker to send a new message, the broker
compares the current publishing frequent rate with the initial
average frequent rate of that publisher. If the current rate is
higher than the initial rate, then that publisher may have a
problem or be under attack. So the broker activates an
exponential Back-off algorithm to hold on receiving from that
client until a specified waiting time depending on a calculated
delay factor based on the current frequent rate of that publisher.
The exponential delay continues with a publisher whenever the
current publishing rate became until the publisher reaches its
original frequent publishing rate. That delay will reduce
communication between these publishers and reduce network
overload. Fig. 1 shows the flow chart of the proposed Back-off
algorithm steps.

Fig. 1. Flowchart of Proposed Back-off Algorithm Steps.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 11, 2021

353 | P a g e

www.ijacsa.thesai.org

Fig. 2. The Proposed MQTT Back-off based Broker Structure.

The proposed Back-off algorithm can be deployed into the
Mosquitto broker for the MQTT protocol to test the
performance of the network under the new Back-off algorithm.
The Mosquitto broker, the most common broker for the MQTT
protocol was chosen because of its simplicity and its lightweight
as it is written in C language. Fig. 2 shows the proposed MQTT
Back-off based broker structure as it is modified according to
the proposed Back-off algorithm. The detailed steps of the
proposed Back-off algorithm were presented sequentially in
Algorithm1 under the name of enhanced Back-off algorithm as
it differs from the original CSMA/CD Back-off algorithm in the
deployed layer, function, and execution.

Algorithm1: Proposed Back-off algorithm.

INPUT: Messages received from publisher M1, M2, M3, .MK,

Number of messages selected for calculating average frequent rate N.

OUTPUT: Delay factor Df, Average frequent rate FRavg, New

frequent rate FRnew

00 For each publisher Pj

01 For Mi =1 to Mi = N

02 Save TMi

03 Calculate Time interval I (Mi, Mi+1) + = TM (i+1) -TMi

04 End for

05 FRavg = 1/[I (Mi, Mi+1) / (N-1)]

06 Save FRavg in Array FRPj []

07 End for

08 For each new message i = N +1 to i = k

09 FRnew = (1/ I(Mi, Mi+1)

10 If FRnew < FRavg

11 Calculate Df for the current message Mi

12 Set waiting time for Mi = Df

13 Accept Backed off message for subscribing

14 Else

15 Accept message for subscribing

16 process accepted messages

17 End If

18 Return Df, FRavg, FRnew

B. Back-off Delay Factor Calculations

The Back-off delay factor depends on the current frequent
rate as it is an exponential function of the current frequent rate
where DF represents the Back-off delay factor. Whenever the
current frequent rate increases, DF for this publisher will
increase until the publishing rate degrades to the original
frequent rate. Hence, the Back-off delay factor reaches its
threshold or its maximum value then terminates the Back-off
algorithm and begins again if the new frequent rate exceeds the
average frequent rate.

Suppose a publisher P sends a number of messages K and M
represents a sequence of published messages [M1, M2,
M3,….MK]. Each message arrives at Time T where TMi is the
arrival time saved for message Mi. For the first N messages, an
interval of time I between every two consecutive messages was
calculated in seconds to obtain the average frequent rate FRavg
of publisher P where I can be calculated from (1).

IMi,(Mi+1) = TM (i+1) -TMi (1)

Let N =4, where the number of messages selected by the
user to calculate the average frequent rate for each publisher.
Then three intervals of time I1, 2 , I2,3 , I3,4 will be calculated
to get the average frequent rate in messages per one second
from (2).

FRavg = 1/ (∑
) (2)

After calculating the average frequent rate, new messages
from P will be received. To calculate its current frequent rate,
let FRnew is the new current rate that can be calculated from (3)
where I MN, (MN+1) = T (M (i = N+1)) –T (M (i =N)) that represents the
new time interval between the new message MN+1 and the
previous message MN.

FRnew = (1/ IMN, (MN+1)) (3)

After calculating FRnew for the new message, it will be
compared with FRavg. If FRnew exceeds FRavg then a delay
factor Df can be calculated as an exponential function of FRnew
in (4) will be added to that publisher's message.

Df = e (FRnew) (4)

For example, if publisher P sends 5 messages per 30
seconds at a regular rate, by using the mentioned equations
FRavg will be 0.16 messages per second. If the publisher
continued with the same rate or less than that rate, the Back-off
algorithm will be inactive. If FRnew > FRavg, the Back-off
delay factor will be calculated and applied to the message in
turn.

Table I shows the effect of changing frequent rate on the
delay factor with different increased frequent rates for the same
publisher until reaching the maximum value of delay. Fig. 3
shows the exponential increase of delay factor based on the new
calculated frequent rate until reaching the maximum allowed
delay value.

C. Proposed Priority Scheduling Algorithm

Previously mentioned that MQTT protocol has no
methodology for priority scheduling messages as any message
received will be forward directly irrespective of its priority
level. So, if 2 messages arrived at the same time which one will

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 11, 2021

354 | P a g e

www.ijacsa.thesai.org

be processed first, this decision never exists in the MQTT
broker as there is no priority scheduling.

Based on the calculated average frequent rate recorded
previously in the broker of the MQTT protocol, K number of
publishers can be classified into levels based on the average
frequent rate as the higher frequent rate is assigned the lower
priority level donated by PRL as mentioned in (5) and the lower
frequent rate is assigned a higher priority level donated by PRH
as mentioned in (6) where Pi FRavg is the average frequent rate
for publisher Pj.

PRL = MIN {P1FRavg, P2FRavg, P3FRavg,.…PK FRavg} (5)

PRH = MAX {P1FRavg, P2FRavg, P3FRavg,.…PK FRavg} (6)

For example, a sensor that sends one message every 24
hours has a higher priority than a sensor that sends a message
every one second. As in the case of congestion, the first sensor's
data may be lost and cannot be retrieved or resent unless the
next 24 hours be over. Depending on the factor of original
publishing frequent rate, the arrived messages are arranged in a
queue for processing based on the assigned priority level.

This algorithm can be implemented with the Back-off
algorithm to organize the overall network communication,
where a network administrator can control the activation of this
algorithm depending on the nature of connected devices, as the
main goal of this algorithm is to assign priority to the connected
devices from the broker's side, not from the client's side, where
any hacker cannot assign himself a high priority.

TABLE I. DELAY FACTOR VARIATION ACCORDING TO INCREASING IN

NEW FREQUENT RATE

Number of messages per

seconds
I Mi, (Mi+1) FRnew Df

10 messages/30 seconds I1= 3 seconds 0.3 1.3 seconds

20 messages/30 seconds I2= 1.5 seconds 0.6 1.82 seconds

30 messages/30 seconds I3= 1 seconds 1 2.7 seconds

40 messages/30 seconds I4 = 0.75 seconds 1.3 3.66 seconds

50 messages/30 seconds I5 = 0.6 seconds 1.6 4.95 seconds

60 messages/30 seconds I6 = 0.5 seconds 2 7.38 seconds

Fig. 3. The Exponential Growth of Delay Factor According to Increased

New Frequent Rate.

Algorithm2: Priority scheduling algorithm based on

frequent rate

INPUT: Average frequent rate Array for publishers {P1, P2,

P3…Px} FRPj []

OUTPUT: priority level of publishers PRpj

00 Recall FRPj [] from Back-off algorithm

01 For each publisher pj

02 Get Max of FRPj []

03 Get Min of FRPj []

04 If Pj FRavg> Max of all items of Array FRPj []

05 Set priority level of Pj = PRL

06 Set location of Pj FRavg = last item of Array FRPj []

07 Else if Pj FRavg < Min of all items of Array FRPj []

08 Set PRPj = PRH

09 Set location of Pj FRavg = 1st item of Array FRPj []

10 Else

11 Sort Array FRPj []

12 Set PRPj = location of Pj FRavg in Array FRPj []

13 End if

14 Increment of j

15 Return PRpj

V. EVALUATION AND RESULTS

The open source Mosquitto version 1.6.12 broker was
chosen for evaluation and implementation of the new proposed
algorithm as it offers free, simple, and open-source libraries
written in C language that helped in modifying the broker
source to deploy the new algorithm in it. The Mosquitto Broker
was implemented on windows 10 pro, Intel® core ™ i7
machine with 16 GB RAM and 64-bit operating system. With
the aid of open-source libraries supported by the Eclipse Paho
project, the publishers and subscribers were implemented on the
same machine.

Simulation experiments were done on a variable number of
publishers and subscribers in each experiment. Starting from
only 2 publishers reaching 100 publishers, the performance
metrics were measured for each experiment respectively. The
Wireshark which is a network tracer program was used to
capture network traffic and consumed bandwidth. Consumed
CPU and RAM were measured and captured on the same
workstation using the jconsole application.

A. Network Traffic Load

The most important metric to be traced and measured was
the network traffic, especially from the publisher's side, which
is uplink traffic, because it is the main issue that this paper is
concerned with to eliminate suspicious and undesired traffic
from the publisher side that affects the performance of the
MQTT broker. Fig. 4 illustrates the uplink traffic for discrete
experiments using individual 2, 5, 10, 20, 30, 50, 100
publishers. Each experiment was traced for 10 minutes resulting
in the number of bytes transferred in this specified period. For
the Back-off MQTT broker, publishers were set up to publish
the first 4 messages regularly at constant frequent rates then
random intervals of time between messages were inserted to
create suspicious publishers and force the Back-off algorithm to

1.3
1.82

2.7
3.66

4.95

7.38

0
1
2
3
4
5
6
7
8

0.3 0.6 1 1.3 1.6 2

Ti
m

e
in

 s
ec

o
n

d
s

New frequent rate

Delay variation according to New frequent
rates

Delay factor

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 11, 2021

355 | P a g e

www.ijacsa.thesai.org

be activated. Compared with the original MQTT broker, the
occupied traffic was decreased in the Back-off broker by
filtering out the fast rate messages from suspicious publishers.
As shown in Fig. 4 for the original MQTT broker, whenever the
number of publishers becomes larger the load on the broker
becomes heavier and the network becomes exposed to
congestion. In contrast with Back-off MQTT, the network is not
exposed to congestion and still can serve a larger number of
publishers than the original MQTT broker.

According to Fig. 4, as the load becomes heavier on the
broker due to the increasing number of connected publishers,
the Back-off broker can manage traffic and accept a higher
number of publishers. However, the original MQTT broker
suffers from congestion and a high load of unwanted messages
that raise the network traffic. Taking 30 publishers as a use case
experiment for evaluating the new algorithm, the MQTT broker
consumed 29400 bytes in 10 minutes, whereas Back-off MQTT
consumed 24700 bytes in 10 minutes.

B. CPU Load

The second metric to be measured is the used CPU during
four whole minutes. It is expected that the processing power for

calculating the Back-off algorithm will be increased because of
the sophisticated calculation of temporal frequent rate for each
new message. However, the simulation results in Fig. 4 show
that a slight increase in processing power can be equal to less
than 0.75 % percent, which emphasizes that the Back-off broker
can be implemented in IoT applications and resource-
constrained devices. Fig. 5 shows that the maximum consumed
processing power for the original MQTT broker was 2.53%
whereas the Back-off MQTT broker consumed 3.53% where
the difference is less than 1% that IoT devices can handle.

C. Consumed RAM

The third metric to be measured is the consumed RAM for
the Back-off MQTT broker and the original MQTT broker.
Fig. 6 compares the consumed RAM for 30 connected
publishers in both cases with a table that shows the exact value
of RAM consumption. The figure shows that the consumed
RAM is approximately equal in both cases despite using the
calculations of delay factors and saving the arrival time of N
messages to calculate and save frequent rates. This proves that
the Back-off broker utilizes small RAM like the original broker
and can be applied to IoT devices easily.

Fig. 4. Uplink Traffic for MQTT broker and Back-off MQTT Broker.

Fig. 5. CPU Consumption for MQTT Broker and Back-off based Broker.

2 5 10 15 20 30 50 100

MQTT broker 7225 9520 11980 15460 18260 29400 57300 100500

Backoff MQTT broker 6825 8625 11750 15350 18140 24700 56650 85500

0

20000

40000

60000

80000

100000

120000

Number of Publishers

U
p

lin
k

Tr
af

fi
c

in
 B

yt
es

Network Traffic
MQTT broker Backoff MQTT broker

0 40 80 120 160 200 240

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Time in seconds

P
e

ce
n

ta
ge

 o
f

C
P

U
 U

sa
ge

 CPU Usage

CPU Usaage of Mosquitto broker

CPU Usage of Backoff Broker

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 11, 2021

356 | P a g e

www.ijacsa.thesai.org

Fig. 6. RAM Consumption for MQTT Broker and Back-off Broker.

Fig. 7. The Latency Variation for High Priority Publisher in MQTT Broker and Back-off Broker.

D. Latency

The latency was the most important metric to evaluate the
proposed priority scheduling mechanism as the high-priority
publishers should have fewer latency measurements. The
experiment was done to measure the latency of messages for
one publisher with a high priority level in the MQTT broker and
was repeated for the Back-off MQTT broker. Fig. 7 shows that
the same publisher was exposed to less latency in Back-off
Mosquitto with priority scheduling than the latency measured
by the original MQTT broker. As shown, the maximum latency
that was recorded for the Back-off broker was equal to the
minimum latency recorded by the original broker. As a result,
high-priority publishers can publish with less latency than other
low-priority publishers, as they have the priority of publishing
their message immediately.

VI. CONCLUSION

This research paper proposed a new Back-off algorithm that
was designed to eliminate the effect of network and traffic
congestion in IoT protocols. The problem was driven by
suspicious clients or clients with undetected errors that affect
the performance of the network. The MQTT protocol was
chosen to be tested and evaluated under the new Back-off

algorithm. Some performance metrics such as uplink traffic
showed better traffic performance and less congestion than the
original broker. Also, the CPU and RAM consumption were
measured to record approximate results as the original broker
that proved the ability to deploy that algorithm in resource-
constrained devices. Another algorithm for priority scheduling
was designed specially to cope with the new Back-off algorithm
and the MQTT broker as it does not possess any priority
scheduling algorithms. The experimental results recorded less
latency for the high-priority publisher in the Back-off broker
than the original broker.

Generally, the proposed Back-off and priority scheduling
algorithms showed an acceptable result for RAM and CPU
consumption with a minimum traffic load that leads to the
ability to be employed in constrained resource devices.

VII. FUTURE WORK

The MQTT protocol was chosen to be a use case for
evaluating the new algorithm because of its simplicity and its
prevalence. However, the new proposed algorithm can be
employed in another IoT protocol to increase its performance.
AMQP has a similar structure to the MQTT protocol and it
relies on distributing messages in queues that can help in

0 40 80 120 160 200 240

0

5

10

15

20

25

30

Time in Seconds

C
o

n
su

m
ed

 R
A

M
 in

 K
ilo

 B
yt

es
 Consumed Ram

RAM used in Mosquitto

RAM used in Backoff mosquitto

0 5 10 15 20 25

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Time in Second

La
te

n
cy

 in
 M

Se
c

Latency Measurement

Latency for Mosquitto

Latency for Backoff Mosquitto

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 11, 2021

357 | P a g e

www.ijacsa.thesai.org

deploying the priority based on frequent rate algorithm for this
protocol easily. Besides AMQP, the COAP protocol was
designed for resource-constrained devices that can afford the
implementation of the new proposed algorithm with higher
performance metrics.

REFERENCES

[1] Arefin, ASM Shamsul, KM Talha Nahiyan, and Mamun Rabbani. "The
basics of healthcare IoT: Data acquisition, medical devices,
instrumentations and measurements. and ook of Internet of Things
in iomedical and y er Physical ystem. pringer, ham, 2020. 1-37.

[2] arooq, Muhammad hoai , et al. ole of IoT technology in
agriculture: systematic literature review. Electronics 9.2 2020 : 319.

[3] Zaidan, . ., and . . aidan. review on intelligent process for
smart home applications ased on IoT: coherent taxonomy, motivation,
open challenges, and recommendations. rtificial Intelligence eview
53.1 2020 : 141-165.

[4] Sokullu, Radosveta, Mustafa Alper kka , and Eren emir. IoT
supported smart home for the elderly. Internet of Things 11 2020 :
100239.

[5] Kumar, Pankaj, and Lokesh Chouhan. "A secure authentication scheme
for IoT application in smart home." Peer-To-Peer Networking And
Applications 14.1 2021 : 420-438.

[6] amschie, li , ohan . Makal, and eny . Ponggawa.
 Implementation of the IoT oncept in ir onditioning ontrol ystem
 ase on ndroid. International ournal of omputer pplications 975:
8887.

[7] Sarangi, Manisha, et al. "IoT aware automatic smart parking system for
smart city. ognitive Informatics and oft omputing. pringer,
 ingapore, 2020. 469-481.

[8] Pandya, Hetal B., and Tushar A. Champaneria. "Notice of Removal:
Internet of things: Survey and case studies." 2015 international
conference on electrical, electronics, signals, communication and
optimization EE . IEEE, 2015.

[9] tandard, . . . I. . M TT version 3.1. 1. http: docs. oasis-
open. org mqtt mqtt v3 1 2014 .

[10] Soni, Dipa, and Ashwin Makwana. "A survey on mqtt: a protocol of
internet of things iot . International onference n
Telecommunication, Power nalysis nd omputing Techniques
 I TP T-2017 . ol. 20. 2017.

[11] Archana, E., et al. "A formal modeling approach for QOS in MQTT
protocol." Data Communication and etworks. pringer, ingapore,
2020. 39-57.

[12] Kadhim, Kadhim Takleef, et al. Monitor human vital signs ased on
IoT technolgy using M TT protocol. IP onference Proceedings.
 ol. 2290. o. 1. IP Pu lishing , 2020.

[13] Detti, Andrea, Ludovico Funari, and icola lefari-Melazzi. u -linear
scala ility of mqtt clusters in topic- ased pu lish-su scri e
applications. IEEE Transactions on etwork and ervice Management
17.3 2020 : 1954-1968.

[14] Ramelan, A., et al. "IoT Based Building Energy Monitoring and
 ontrolling ystem sing o a Modulation and M TT Protocol. I P
 onference eries: Materials cience and Engineering. ol. 1096. o.
1. I P Pu lishing, 2021.

[15] Norrdine, Abdelmoumen, et al. "MQTT-Based Surveillance System of
IoT Using UWB Real Time Location System." 2020 International
Conferences on Internet of Things (iThings) and IEEE Green
Computing and Communications (GreenCom) and IEEE Cyber,
Physical and Social Computing (CPSCom) and IEEE Smart Data
(SmartData) and IEEE Congress on Cybermatics (Cybermatics . IEEE,
2020.

[16] Mandal, Santanu, Imran Ali, and Sujoy Saha. "IoT in Agriculture: Smart
Farming Using MQTT Protocol Through Cost-Effective Heterogeneous
Sensors." Proceedings of International Conference on Frontiers in
Computing and Systems. Springer, ingapore, 2021.

[17] Eleyan, mna, and oshua allon. IoT- ased ome utomation sing
 ndroid pplication. 2020 International ymposium on etworks,
 omputers and ommunications I . IEEE, 2020.

[18] Frustaci, Mario, et al. "Evaluating critical security issues of the IoT
world: Present and future challenges. IEEE Internet of things journal
5.4 2017 : 2483-2495.

[19] inculeană, an, and Xiaochun heng. ulnera ilities and limitations
of MQTT protocol used between IoT devices." Applied Sciences 9.5
(2019): 848.

[20] amdani, amer, and assan eyti. omparative study of o P
and M TT communication protocols. 2019 7th International
 ymposium on igital orensics and ecurity I . IEEE, 2019.

[21] Prabhu Kumar, P. C., and G. Geetha. "Web‐cloud architecture levels
and optimized M TT and P protocol suites for we of things.
 oncurrency and omputation: Practice and Experience 31.12 2019 :
e4867.

[22] Larmo, Anna, Antti Ratilainen, and Juha Saarinen. "Impact of coap and
mqtt on nb-iot system performance." Sensors 19.1 2019 : 7.

[23] tanford- lark, ndy, and ong inh Truong. Mqtt for sensor
networks mqtt-sn protocol specification. International usiness
machines I M orporation version 1.2 2013 .

[24] Bierzynski, Kay, Antonio Escobar, and Matthias Eberl. "Cloud, fog and
edge: ooperation for the future . 2017 econd International
 onference on og and Mo ile Edge omputing ME . IEEE, 2017.

[25] izdarević, asenka, et al. survey of communication protocols for
internet of things and related challenges of fog and cloud computing
integration. M omputing urveys 51.6 2019 : 1-29.

[26] Veeramanikandan, M., and Suresh Sankaranarayanan.
"Publish/subscribe based multi-tier edge computational model in
Internet of Things for latency reduction." Journal of parallel and
distri uted computing 127 2019 : 18-27.

[27] Pandya, Sharnil, et al. "A Novel Multicast Secure MQTT Messaging
Protocol Framework for IoT-Related Issues." Proceedings of Second
International Conference on Computing, Communications, and Cyber-
Security. Springer, ingapore, 2021.

[28] Abdullah, Maha A., and Omar H. Alhazmi. "A Triumvirate Approach of
Blockchain MQTT and Edge Computing Toward Efficient and Secure
IoT." Proceedings of International Conference on Communication and
Computational Technologies. Springer, ingapore, 2021.

[29] hunduri, aga enkata rushikesh, and shok Kumar Mohan.
 orensic nalysis on the vaila ility of M TT etwork Traffic.
International ymposium on ecurity in omputing and
 ommunication. pringer, ingapore, 2020.

[30] Vaccari, Ivan, et al. M TTset, a new dataset for machine learning
techniques on M TT. ensors 20.22 2020 : 6578.

[31] Babu, Palamakula Ramesh, et al. "An enhanced virtual backoff
algorithm for wireless sensor networks." International Journal of
Wireless and Mobile Computing 13.3 2017 : 179-187.

[32] Xie, hijun, et al. n ptimal ackoff Time- ased Internetwork
Interference Mitigation Method in ireless ody rea etwork.
 ournal of ensors 2020 2020 .

[33] Nagmode, Varsha Sahadev, and S. M. Rajbhoj. "An IoT platform for
vehicle traffic monitoring system and controlling system ased on
priority. 2017 International onference on omputing,
 ommunication, ontrol and utomation I E . IEEE, 2017.

[34] Serral, Estefanía, et al. "Contextual requirements prioritization and its
application to smart homes. European conference on am ient
intelligence. pringer, ham, 2017.

[35] Bahattab, Abdullah Ali, Abdelbasset Trad, and Habib Youssef. "PEERP:
An Priority-Based Energy-Efficient Routing Protocol for Reliable Data
Transmission in Healthcare using the IoT. Procedia omputer cience
175 2020 : 373-378.

[36] Kim, ong- eong, et al. Message queue telemetry transport roker
with priority support for emergency events in Internet of Things.
 ensors and Materials 30.8 2018 : 1715-1721.

