
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 11, 2021

382 | P a g e

www.ijacsa.thesai.org

Multi-level Hierarchical Controller Assisted Task

Scheduling and Resource Allocation in Large Cloud

Infrastructures

Jyothi S, B S Shylaja

Department of Information Science & Engineering

Dr.Ambedkar Institute of Technology, Bengaluru, India

Abstract—The high-pace emergence in Cloud Computing

technologies demands and alarmed academia-industries to attain

Quality-of-Service (QoS) oriented solutions to ensure optimal

network performance in terms of Service Level Agreement (SLA)

provision as well as Energy-Efficiency. Majority of the at-hand

solutions employ Virtual Machine Migration to perform dynamic

resource allocation which fails in addressing the key problem of

SLA-sensitive scheduling where it demands timely and reliable

task-migration solution. Undeniably, VM consolidation may help

achieve energy-efficiency along with dynamic resource allocation

where the classical heuristic methods which are often criticized

for its local minima and premature convergence doesn’t

guarantee the optimality of the solution, especially over large

cloud infrastructures. Considering these key problems as

motivation, in this paper a highly robust and improved meta-

heuristic model based on Ant Colony System is developed to

achieve Task Scheduling and Resource Allocation. CloudSim

based simulation over different PlanetLab cloud traces exhibited

superior performance by the proposed task-scheduling model in

terms of negligible SLA violence, minimum downtime, minimum

energy-consumption and higher number of migrations over other

heuristic variants, which make it suitable towards realistic Cloud

Computing purposes.

Keywords—Task-scheduling; VM-migration; improved ant

colony system; SLA assurance; energy-efficient consolidation

I. INTRODUCTION

In the last few years, the high-pace rise in advanced
software systems and decentralized computing environments
has broadened the horizon for a state-of-art new paradigm
named cloud computing. Cloud computing has emerged as a
potential technology serving decentralized scalable services to
the significantly large number of users for respective data
and/or query driven computation and information services.
Cloud computing technology can be characterized as an array
of network-enabled services facilitating quality-of-service
(QoS) assured scalable and personalized (computing) solutions,
even at the inexpensive cost [1-3]. The potential to serve
decentralized data or (computing) infrastructure, independent
of the geographical boundaries makes cloud computing an
inevitable need to meet contemporary or even NextGen
industrial as well as personal computing demands [2]. Based
on the usage of the Cloud it is understood that it has been
applied as a key technology to serve civic purposes, financial
sector, industries, government agencies, scientific community,
diverse business houses, etc. Noticeably, to serve aforesaid

stakeholders, cloud services are classified into three key types;
Infrastructure as a Service (IaaS), Platform as a Service (PaaS),
and Software as a Service (SaaS). Irrespective of the service
types, fulfilling QoS in cloud computing has always remained
a challenge. To meet aforesaid service demands industry
requires providing decentralized storage infrastructure, often
called data centers; however, with exponential rise in
computing demands with non-linear (demand or use) patterns,
the at-hand solutions often undergo disrupted performance or
connectivity. This as a result impacts overall QoS performance.
Typically, delivering Service Level Agreement (SLA) by
Cloud Service Providers ensures to provide QoS support to its
customers while maintaining reliable services with higher
scalability, reliability and continuity over operating periods [4,
5]. It is a challenging task to retain SLA over highly dynamic
load demands and use patterns across a gigantically large user-
base, located around the globe.

A cloud infrastructure mainly encompasses physical
machines, also called servers, virtual machines (VMs) and
allied controllers. Noticeably, hosts of the physical machines
primarily acts as the component serving computing ability and
memory, while VMs function as containers possessing
different independent tasks. A huge cloud infrastructure may
consist of multiple hosts, where each host can have multiple
VMs, carrying different parallel-computing tasks. In this case,
due to dynamism in resource demands by each task a VM
might undergo an exceedingly large resource demand, which
could not be facilitated by the currently attached physical
machine or host. In such a case, a VM carrying multiple tasks
is required to be migrated to the suitable host, which could
provide sufficient resources to the associated task for SLA
assurance and QoS provision. However, it may take
significantly large traversal time or allocation scheduling
related delay, impacting downtime and hence overall
performance. Being an uncertain demand scenario, the tasks or
allied VMs can have to traverse across the network as per at-
hand overloading and under-loading scenario. Undeniably, it
can increase downtime as well as QoS violation. On the other
hand, cloud being an energy-exhaustive technique requires
addressing energy-minimization needs and therefore
simultaneous dynamic resource allocation, task scheduling and
energy minimization turn out to be a complex NP-hard
problem [1-5]. In sync with cloud with the heterogeneous
demand types, the load pertaining to each VM might vary as
per task-types and demand-density over the operating period.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 11, 2021

383 | P a g e

www.ijacsa.thesai.org

Therefore, merely random host selection concepts or even the
classical bin-packing models, cannot be appropriate. Such
classical methods might give rise to the overloading or
underloading condition, and hence can impact both SLA as
well as energy-efficiency.

With this context, the research work proposes a “Multi-
Level Hierarchical Controller Assisted Dynamic Task
Scheduling and Resource Allocation Model for Large Cloud
Infrastructures” which involves a hybrid evolutionary concept
named Improved Ant Colony System (I-ACS) to achieve SLA
with energy efficiency to meet cloud demands. The proposed
model is developed using CloudSim platform, where
simulation over PlanetLab cloud trace data revealed superiority
of the proposed model over major existing approaches in terms
of downtime, SLA violation, number of migrations and energy-
consumption.

The further sections of the presented document are given as
follows. Section II discusses the Literature Survey pertaining to
SLA oriented and Energy-Efficient task-scheduling methods,
Section III discusses the proposed method followed by
Section IV which provides Results and Discussion. The overall
research Conclusion and allied inferences are presented in
Section V. References followed in this research are provided at
the end of the manuscript.

II. RELATED WORK

Afzal et al. [6] focuses on Load balancing based heuristic
assisted task scheduling concept under static or dynamic load
conditions. However, unlike classical static resource allocation
that employs a first-come-first-servemethod, it can't be suitable
under dynamic load conditions. Pradhan et al. [7] discusses
about modifying especially round robin methods, which
authors applied in their research to reduce the waiting time.
Mogeset al. [8]focused on energy efficiency as the key concept
to perform task scheduling. To reduce energy-exhaustion,
authors proposed VM consolidation concept, which was
performed to shut-down underutilized hosts and by removing
hotspots. However, the classical use of bin-packing based
consolidation could not address latency and QoS degradation
issues. In addition to the power enhancement, the work
suggested to perform consolidation scheduling in such a
manner that it could retain lower task response time to meet
SLA demands. To achieve it, authors suggested to focus on
modified bin-packing based consolidation.

Syed Arshad Ali et al. [9] implemented task scheduling
using Resource aware min- min algorithm where task-
scheduling was performed on the basis of the load of the
servers to minimize makespan. Mosa et al. [10] on the other
hand emphasized on load balancing in the cloud by distributing
the workload dynamically across the cloud infrastructure with
multiple nodes. Authors applied utility functions and GA
heuristic model to optimize VM allocation, Energy
consumption and SLA violations. Jyothi S et.al. [18] Bhaskar
R et.al [19] discussed numerous key challenges in dynamic
load management in heterogeneous cloud environments.
Authors proposed a heterogeneity- aware dynamic application
provisioning model to reduce energy consumption in cloud
environments.

Doppaet al. [11] designed a self-aware framework to adjust
or optimize resource and SLA. However, the use of DVFS
based methods can’t be suitable for a heterogeneous cloud
network with dynamic load conditions. In addition to the SLA
expectations, authors [12 -13] focused on resource allocation
while maintaining lower computation and energy-exhaustion.
Liet al. [12] designed a directed acyclic graph (DAG) model to
perform priority bound task scheduling. Here, in DAG
construction the nodes characterize the tasks, while the edges
represent the allied messages among jobs [14-16]. Tang et
al.[14] applied DAG-based workflow where tasks were
prioritized based on respective sizes to perform resource
allocation. Zhu et al. [17] Jyothi et al. [18] performed task
scheduling on the different multiprocessing environment,
which can be solved using NP-hard optimization. Considering
this as motivation, dynamic task-scheduling and resource
allocation is performed by applying the concepts of co-
evolution system and multi-population strategy for Meta-
heuristic method such as ACO is considered.

III. SYSTEM MODEL

This discussion primarily discusses the proposed model and
its implementation including the multi-controller assisted
overload and underload detection, VM selection and the
proposed Improved Ant Colony System (I-ACS) based task
scheduling.

The task scheduling or allied VM migration can be
inducted as per the task-(heterogeneous) demands’ and hence a
controller can migrate one or multiple VMs to the suitable
hosts (via consolidation) while retaining SLA performance and
energy-efficiency. The proposed model introduces multi-
layered controller units to dynamically monitor the VMs and
allied task’s demand to stochastically predict the demands and
accordingly the global controller performs scheduling in
advance to avoid any SLA violation, QoS-compromise or even
energy-exhaustion.

The overall proposed model encompasses four key steps.
They are:

Step-1 Hierarchical Multi-layered controller assisted cloud
monitoring,

Step-2 Underload and Overload detection,

Step-3 Minimum Migration Time (MMT) oriented VM
selection,

Step-4 Improved ACS (I-ACS) assisted S-DTS

The details of the overall proposed model are given in the
subsequent sections.

Hierarchical Multi-layer Controller assisted Cloud
Monitoring.

An illustration of the different controller and its respective
task is given in Fig. 1.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 11, 2021

384 | P a g e

www.ijacsa.thesai.org

Fig. 1. Proposed Multi-controller Assisted Cloud Monitoring and Task-

Scheduler.

Typically, cloud infrastructures that often accommodate a
significantly large number of independent tasks operating or
executed onto assigned VMs, undergo exceedingly high
demand-dynamism. In other words, the different tasks
connected to each VM undergo non-linear traffic demands, and
therefore might require dynamic resource to continue its
operation. Under such scenario, a VM encompassing single or
multiple tasks might exhibit non-linear resource demand,
influencing a host or physical machine to undergo under-
utilization or overloading. Consequently, it might significantly
impact the overall performance and SLA-reliability of the
system. Considering this fact, performing demand-sensitive
resource allocation or task-scheduling is must. To achieve it in
the proposed method, a state-of-art new Hierarchical Multi-
Layered Controller (HMLC) design is applied, which
especially monitors demands or resource utilization pattern at
each task connected to a VM. The proposed HMLC model
encompassed a local controller and a global controller,
especially designed to perform task-scheduling or dynamic
resource allocation so as to preserve SLA, QoS as well as
energy-efficiency. To perform task-level resource utilization
assessment, local controller (LC) is applied that measures
resource utilization per VM and updates the same to the global
controller (GC), dynamically so as to make stochastic
prediction-based task-scheduling decision in advance.

As shown in Fig. 1, the proposed local controller unit
operates over each VM, accommodating multiple tasks. Here,
it acts as an autonomous VMM manager that measures
resource utilization dynamically and updates to the global
controller so as to make dynamic task reallocation.
Additionally, the proposed controller mechanism enables
dynamic underload/overload detection and (proactive)
avoidance. Once detecting any hotspot or any PM undergoing
overload, the local controller executes VM selection
mechanism (discussed in subsequent section) and selects the
VM to be unloaded from the at-hand overloaded hosts.
However, recalling the SLA assurance to the offloaded VM
and allied tasks, the proposed model introduces a state-of-art
new and robust dynamic VM scheduling model which
guarantees optimal task-scheduling and allied VM migration,
without affecting SLA performance. To achieve it, the
proposed global controller model retrieves VM’s and hosts’
information proactively from the local controller and executing
the proposed I-ACS concept it schedules VM placement or

migration in advance so as to retain SLA intact. Once
traversing or offloading the suitable VM from a host, the local
controller updates the node-parameters and updates the same to
the global controller for further decision making. To achieve
SLA-assurance and energy-efficiency, at first, a dynamic
threshold-based underload and overload detection unit is
applied. The details are given as follows.

A. Underload and Overload Detection

To cope up with the dynamic resource demands and allied
scheduling tasks, the work is carried out which examines the
load condition of each task and associated host that helps in
identifying under-loaded and overloaded nodes in the network.
To ensure SLA-sensitive and energy-efficient scheduling, once
detecting a node as under-loaded either certain specific VM
(including all connected tasks) or all VMs are off-loaded,
which are then migrated to the other suitable hosts. This
approach not only helps in optimal resource allocation, but also
preserves significant energy. On the other hand, detecting a
host undergoing overload, the proposed model offloads tasks or
allied VM(s) and migrates them to the other suitable host,
while ensuring that the migration doesn’t cause overload on
another host (say, target host) or impacts SLA performance.

1) Underload detection: The proposed model discusses a

host with load lower than a predefined minimum workload

condition or resource utilization is referred as an underload

host. In order to preserve energy, once identifying a host with

under-utilized resources, it’s connected VMs or allied tasks

are migrated to the other host(s) strategically. However, this

scheduling or migration takes place in such a manner that it

doesn’t cause overload on other nodes or hosts. In sync with

the concept of VM consolidation, once migrating all VMs to

the other host, successfully, it shuts down the host to preserve

the energy. Here the task-migration or allied resource

allocation strategy schedules the migration in such a manner

that neither it causes SLA violation nor energy exhaustion or

any possible overload situation on the target host. To

guarantee SLA provision, the source host remains active or

ON, until all allied tasks and the target host(s) holds the

migrated connected VMs.

2) Adaptive threshold-sensitive host overload detection:

To detect the overloaded VM (containing independent tasks),

a stochastic prediction assisted approach is applied. In this

each host node performs periodic load assessment of each host

which eventually assists detecting an overloaded node. Here,

each host’s resource (i.e., CPU or MIPS) utilization is

measured to assess the host node whether it is overloaded or

not. Most of the existing approaches towards task-scheduling

apply a static threshold method to detect an overloaded host.

Unfortunately, IaaS which often undergoes dynamic loads

over the operating period and the different tasks consume

different resources at the varied time-instant. Therefore, the

use of the static threshold method can’t be suitable for

overload detection. Here, dynamic CPU utilization

(cumulative CPU utilization per VM over multiple

independently processing tasks) assessment method to

perform overload detection is applied. More specifically, in

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 11, 2021

385 | P a g e

www.ijacsa.thesai.org

this method, the CPU utilization threshold value is adjusted

dynamically on the basis of the changes in continuous CPU

utilization. It assumes that higher fluctuation in use-pattern

can be stated as the lower upper CPU utilization (threshold).

In general, the higher value of such non-linear resource
utilization indicates an overloaded condition, with 100%
resource utilization. To cope up with the exceedingly high
dynamism in the cloud network, a hybrid concept
encompassing both inter-service (task) relation along with
varying information to achieve dynamic thresholding is
applied. Here, a state of art new hybrid concept to exploit task
level resource utilization and their cumulative impact as
eventual load to perform overload detection is designed.

More specifically, interquartile range (IQR) and modified
local regression methods is applied to measure dynamic CPU
utilization and eventually predict adaptive threshold. Here, IQR
algorithm follows a statistical dispersion approach to represent
association between the first and the third quartile, as depicted
in equation (1). The value of IQR is estimated to employ the
equation (2) to obtain the upper-threshold of the CPU
utilization.

3 1IQR Q Q
 (1)

1 .uT s IQR
 (2)

With the consideration of dynamic load conditions and
fluctuations in resource utilization for the same ongoing task,
there can be significant effect on the upper threshold estimation
(2). Any possible inaccuracy in threshold estimation might
cause wrong resource allocation and allied task migration
activities that as a result can affect overall SLA performance.
Realizing this fact, in this research paper a state-of-art new
dual-level threshold estimation model is formulated, where at
first it applies IQR based estimation, while in the subsequent
phase it applies local linear regression (LRR) method.
Noticeably, in the proposed model, LRR exhibits fitting of the
(utilization) trend polynomial to the preceding CPU
utilization values, obtained as per (3) for each observation
value.

 ˆˆ g x a b x
 (3)

Now, measuring the observation values, the next

observation value, 1 ˆ kg x is estimated. Now, to perform

offloading of a host, the following condition is applied.

 1. ˆ 1ks g x
 (4)

1k k mx x t

In above conditions (4), signifies the maximum
level of tolerance by a host. Here, the maximum time required
to migrate a VM (containing one of multiple independently
executing tasks) from host be . The classical local
regression concepts which are often found limited under higher
dynamic value changes and allied regression estimation.
Additionally, it performs inferior due to the outliers introduced
by leptokurtic or heavy-tailed distributions. Considering this

fact, modified the classical least square (LR) algorithm is
applied by a bi-square model. Noticeably, LR improves
iteratively so as to estimate the initial fitting for which the
tricube weights are obtained using a Tricube Weight Function
(TWF). Here, the obtained fitting parameter at was applied
to retain the fitted values using ̂ . In this manner, the residual
value, signifying ̂ was estimated. Thus, with the
estimated values of and , it was assigned in (5) to estimate a
factor called robustness factor .

6

l̂

iR B
s

 (5)

Every observation value was allocated
iR . In (6),

 ()represents the bisquare weight function and represents
the Medium Absolute Deviation (MAD) to achieve least square
fitting. Thus, obtaining ()As per (6).

2

2. { 1 1, 0 B u if u Otherwise
 (6)

In above derived equation (5), was obtained as per (7).

 îs mediun
 (7)

Thus, employing the above derived model (4) for the
estimated trend line, the predicted possible value or instance,
for any inequalities (with reference to the predicted value and
the observed value), a host was identified as an overloaded
host. Eventually, identifying the overloaded host, the local
controller unit informs the global controller and meanwhile
identifies the VMs to be migrated to the other resource-
sufficient (optimal) host node. Though, in literature,
researchers have randomly considered any VM to execute
migrate; however, for SLA-sensitive task migration purposes,
such approaches might undergo SLA-violation phase or QoS
compromise, especially due to increased downtime and even
complete task or transaction failure. Considering this fact,
distinct unit called VM selection model is necessary. A snippet
of the VM selection method applied is given as follows.

B. SLA Oriented Minimum Migration Time-based VM

Selection

In order to preserve SLA, while guaranteeing minimum
downtime, the minimum migration time (MMT) based VM
selection method is applied. In other words, once identifying an
overloaded host, only that specific VM is migrated, which
takes minimum migration time. Hypothesizing the fact that
higher downtime can lead higher losses, so maintaining lower
downtime as favorable, MMT as a VM selection policy is
considered. This approach can be suitable towards SLA
preserving effort as well as reliable cloud service provision.
Migration time for each task and allied VM connected to the
overloaded host of PM is estimated. Thus, sorting the VMs
based on their respective migration time, the VM is chosen
with the minimum migration delay, at first to migrate towards
the target host. Thus, applying this method, broadened the
horizon for delay-resilient migration over cloud platforms.
Now, once selecting the VM to be migrated, the local
controller passes all allied details to the global controller,
which employs a highly robust improved ACS heuristic

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 11, 2021

386 | P a g e

www.ijacsa.thesai.org

concept to perform VM placement of migration. Though, the
proposed VM migration or allied task scheduling concept
resembles a VM consolidation problem; however, considering
real-time tasks characteristics, classical meta-heuristics is
improved to not only alleviate local minima and convergence
but also ensure timely and SLA-centric task-migration or allied
resource allocation.

The following section discusses the proposed I-ACS model
for task-scheduling over a large Infrastructure as a Service
(IaaS) cloud platform.

C. Task-Migration Problem Definition

Consider that the set of operating physical machines or the
hosts be * + where,
represents the specific host conditioned as . In the
same manner, let the set of VMs encompassing or containing
multiple autonomously operating tasks be
{ }, where each VM is connected to

certain host. be the th connected on the th host.

The variable presents a binary variable signifying on host j

connected by the -th VM. Consider that be the resource

capacity (in terms of the CPU utilization) of on the th host
and the resource demanded by the th VM be . In this

manner the total load at that host can be characterized in the
form of the total load caused by all VMs and allied tasks
running onto it. Let, be the time-period or observation
period. Thus, the sub-gap can be estimated by splitting into

 intervals [()() ()] .

Noticeably, the time-slot represents the interval .
Thus, over , the CPU utilization is estimated at a host using
(8).

 , , ,

1

n

i Util CPU j CPU j

j

CPU k vm pm

 (8)

In (8), the parameter refers to the CPU utilization which
was collected for certain period. The average CPU utilization is
estimated using (9).

 , , 1
k

k

t n

i AvgUtil i Util

t t

pm pm t q

 (9)

In (9), () states the total amount of sub intervals or

gap over observation period. Let, () be the power of

 th host over span, then the power status can be obtained

based on the CPU utilization value.
()which signifies the

energy consumption by the th host from the last time
interval to the current time interval and hence is estimated as
per (10).

 , ,1 (1 ())(1
k

i iw i w i w k kpm E pm k pm k pm k t t
 (10)

Based on host consumption hypothesis, for any host ,

employing CPU utilization, () the energy consumed

can be obtained as per (11).

 , . 1 . . max max

j j j j j i UtilE pm K e k e CPU k
 (11)

In (11), signifies the portion of energy exhausted when

the host (i.e.,) is in idle state; while
 refers the energy

exhaustion of when being utilized completely. Moreover,

the parameter () presents the CPU utilization by

 over duration. Thus, applying this mechanism, the

resource utilization is estimated dynamically over each host
and correspondingly the resource demand by each task or allied
VM is estimated. Now, the resource consumption for all active
hosts, () since the last or passed time interval to the current
instant is estimated as per (12). The key dominant goal behind
task migration or VM allocation problem is to obtain the set of
VM-host mapping, where the proposed allocation model is
supposed to place the targeted VM onto the suitable host,
without impacting SLA performance or energy-exhaustion.
Here, the resource allocation is performed in such manner that
the proposed scheduling model attains minimal resource
exhaustion (), conditioned at:

1

1

m

i ij

j

x

 (12)

, ,

1

n

j CPU i ij CPU j

i

vm X pm

 (13)

Thus, with the above derived motive, in this research work,
a state-of-art new improved ACS heuristic model is developed
for SLA-centric task-scheduling and allied VM or resource
allocation strategy. The details of the planned I-ACS model is
given in the following section.

D. Improved-ACS based Task Scheduling

Unlike classical heuristic models, a hybrid ACS algorithm
for task scheduling or allied VM allocation is applied. The VM
scheduling model proposed in this paper is based on a well-
known heuristic model named ACO in which multiple agents
estimate the solution-likelihood in iterative cycles. During this
process, they converse ultimately by dropping the pheromone,
which is a chemical substance called on respective paths they
traverse. But, for research-intended task-scheduling or VM
placement doesn’t employ the notion of path, in the proposed
model pheromone is deposited by the ants on each task (or
VM) and within a pheromone matrix by the host pair. The ants
retrieve VMs in each series, and starts forming local solutions
by means of a probabilistic decision rule that signifies the
attractiveness for an ant to select a specific VM (MMT based
VM selection) as the next one to pack in its current host. In this
mechanism, the higher the amount of pheromone deposition
and higher information related to a VM-host pair, the
probability that it will be selected for migration will also be
higher. Fig. 2 presents the solution formation for a single ant.
In this mechanism, the ant initiates with four VMs, calculates
the probabilities for each of the VMs using the probabilistic
decision rule, and begins allocating the (selected) VMs for
each selected host as per the estimated probabilities. Once the
host is completely occupied with the migrated task or allied
VMs the proposed model identifies a new host on the basis of
corresponding likelihood.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 11, 2021

387 | P a g e

www.ijacsa.thesai.org

Fig. 2. ACS-assisted Task-scheduling or VM Placement.

This process continues till all tasks or VMs are assigned to
the suitable hosts. During the optimal solution estimation, in
each cycle or iteration, local solutions are assessed and the one
demanding the minimum number of hosts is selected as the
different optimal solution globally. Subsequently, it updates the
pheromone matrix to estimate pheromone loss and reinforce
VM-host pairs belonging to the set of the optimal or the best
solution. To achieve it, ACS implements the pheromone update
rule. In the proposed ACS based task-migration model, the
proposed I-ACS gets triggered during VM assignment to the
target host. It outputs a solution comprising VM to host (map)
while maintaining no (or negligible) SLA violation or
maximum host-shutdown (to achieve energy-efficiency).

In this research the emphasis has been made on optimizing
classical ACO to avoid local minima, convergence and
enhance solution diversity to meet dynamic cloud resource
optimization. The proposed model encompasses some of the
key optimizations such as multi-population strategy, co-
evolution concept, dynamic pheromone update and dynamic
pheromone diffusion. Such optimization measures enable the
proposed model to retain optimal balance in between the
convergence rate as well as solution diversity which helps
perform better VM scheduling or placement decisions.
Moreover, it helps perform swift computation which is
effective towards large scale mega-cloud infrastructures. To
achieve it, the proposed model is designed in such manner that
it splits overall optimization problem into multiple sub-
problems where to avoid local minima and convergence (i.e.,
to achieve local optima), the ant-population is split into two
specific categories; Elite Population and Normal Ant-
Population. This process not only increases computational
efficiency (i.e., higher convergence rate) but also retains swift
global-optima identification. Additionally, incorporating a
dynamic pheromone update mechanism to enhance
optimization ability over large network sizes. Similarly, the
intent of pheromone diffusion was to make the pheromone
released by ants at a certain point, which gradually affects a
certain range of adjacent regions.

Realizing large scale cloud infrastructure, the concept of
co-evolution (in reference to both populations based as well as
diffusion based) is applied that helps interchanging local
information amongst varied sub-population to achieve dynamic
information sharing. Noticeably, each VM is hypothesized to
be a component possessing or encompassing operating tasks,
and therefore the concept of co-evolution can enable dynamic
decision without imposing an SLA violation issue. Thus, the

implementation of the overall proposed model can ensure
optimal energy as well as QoS oriented task scheduling across
a large-scale cloud-infrastructure.

Before discussing the overall proposed improved ACS
model for the intended task-scheduling or VM migration, a
ACO model is given as follows.

E. Probabilistic Decision Rule

In VM allocation strategy, at first ACS defines the
likelihood of an ant to select a VM for migrating it to a
specific host using (14).

, ,

, ,

,

p

v p v pv

p v p

v p v pu N

Pr N

 (14)

In (14), the parameter states the pheromone-based

attractiveness to migrate or attack VM onto the host .
Similarly, the parameter represents the VMs heuristic

information. Moreover, the other variables are
applied to either focus more on the pheromone or the vital
heuristic information. Moreover, states the total number of

VMs encompassing single or multiple tasks which are suitable
to be attacked or connected with the current host . states the

overall utilized memory or capacity of the current host, which
can be estimated as the sum of all requested resources by the

connected VMs, i.e., ∑ . Here, the task

scheduling or allied VM placement is accomplished by means
of a parameter , which is estimated as per (15).

,

1

1
v p

p C vTC T RC

 (15)

Thus, once estimating the value of (15), a d-dimensional
demand vector is created which is subsequently mapped in
terms of a scalar value. Here, the L1-norm method is applied to
perform mapping the VM and host so as to perform migration
decisions.

F. Pheromone Trail Update

Once performing initial solution construction, the
pheromone trails on all the pairs of VM-hosts are updated,
which helps global solution retrieval. Classically ACS systems
apply MAX-MIN Ant System (MMAS) and therefore the ant
with the best solution in iteration is permitted to deposit
pheromone. Thus, the pheromone update is performed as per
(16).

 , , ,: 1 , ,best

v p v p v pp v p V P
 (16)

In (16), () plays a vital role in simulating
the pheromone evaporation. Noticeably, the higher value of
results in an increased rate of evaporation. Additionally, a few
pairs of the target VM and host pair require reinforcement and

therefore
 is defined as the best pheromone amount

deposited in each iteration by that VM-host pair. In other

words,
 states the amount of pheromone added or

deposited to the edge (). In this manner, the VM-host pairs
with is reinforced that gains higher attraction.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 11, 2021

388 | P a g e

www.ijacsa.thesai.org

, ,

,

1
{ 1 0 best

v p v p

v p

if x otherwise
f s

 (17)

In ACS based task-scheduling or resource allocation, VMs
and host nodes are considered as input along with respective
demanded resource capacity and total capacity and ,

respectively. Furthermore, certain parameters like α ,
 , are initialized and the initial pheromone
trails for VM (tasks)-host pairs is defined as . nCycles
represents the number of iterations. In individual iteration an
ant initiates a host set and performs solution retrieval

process . Thus, with these initialized parameters, ACS model
performs task-migration or VM allocation to the different
suitable hosts, while maintaining optimal SLA and higher
energy-efficiency. A snippet of the classical ACS based task
scheduling is given as follows.

Algorithm 1 ACS-based VM scheduling or the task scheduling

Input: Declare VMs and hosts with respective resource requirement,

 and

Output: Best solution
Assign initial pheromone value for the pair of VM-host with

for all * +do

 for all * +do

 : ; : 0IS V p

 , : : 0 , 0, . . . , 1 , 0, . . . , 1a v pS x v m p n while

 do

1

,

0

 : 0
n

p v p p v p

p

N v x l RC TC

if then

Select as per the probability

:v

pPr
, ,

, ,
p

v p v p

v p v pu N

, : 1 v px

 : IS IS v

: lp lp RCv

 else

 : 1 p p

 end if

 end while

end for

Estimate the solutions as per the objective function and declare as

if () then

 Declare iteration (cycle) as best solution with as the best

solution.

end if

Estimate
for all pair of VMs and hosts() do

 , , , : 1 best

v p v p v pT p

 if then

,v p minT T

 end if

 if then

,v p minT T

end if

end for

end for

return

As depicted in the above snippet, once identifying the best
host solution, the proposed global controller schedules the VM
(containing task(s)) to the selected host, and this process
continues till all tasks or allied VMs are assigned a suitable
host to continue respective functions. In classical ACS based
optimization methods, ACS algorithm exploits the positive
feedback and parallel computing concept to perform
optimization. However, the majority of the ACS solutions
undergo local minima and convergence problems, especially
due to the complexity in estimating the optimal control
parameter, etc. Though, a few efforts such as co-evolution,
derived on the basis of the co-evolutionary phenomenon in
nature have emerged as potential alternatives to the classical
optimization solutions. These approaches employ the concept
of decomposition and coordination to split a complex problem
into multiple small but interacting optimization sub-problems.
Such sub-problems are enhanced distinctly and perform as an
eventual standalone solution. Thus, the strategic
implementation of multi-population strategy along with co-
evolution can improve overall performance. In sync with the
ACS solution, the implementation of multiple generation, co-
evolution, improved pheromone update concept and
pheromone diffusion can achieve relatively better performance.
Additionally, such approaches can greatly help avoiding local
minima and convergence issues in the ACS system.

The intended improvement in convergence rate can
significantly help in avoiding local optimal value and hence
more precise resource allocation can be accomplished. This
approach can be well suited towards the large-scale task-
scheduling and allied resource allocation problem in cloud
(IaaS) infrastructure. In reference to the above stated ACS
optimization requirement, the proposed model applies a multi-
generation concept that splits the complete population or ants
into two broad categories; elite ants and the common ants.
Moreover, it introduces state-of-art new and robust pheromone
update mechanism to enhance the optimization capacity of
ACS to meet at-hand task scheduling and allied VM migration
control. Subsequently, a novel pheromone diffusion model is
applied that effectively controls the pheromone release by ants
at specific points, which subsequently impacts adjacent regions
to optimize solution faster.

On the other hand, the proposed co-evolution concept helps
exchanging information amongst the varied sub-populations
for better information sharing. These enhancement efforts
intend to achieve more efficient, fast and accurate task-
scheduling over cloud to meet real-world cloud demands. The
detailed discussion of the above stated improvement and allied
implementation towards S-DTS purpose is given in the
subsequent sections.

G. Multi-Population Generation Mechanism

In the classical ACS model, as discussed in the previous
section, it applies merely one kind of population (i.e., ants) to

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 11, 2021

389 | P a g e

www.ijacsa.thesai.org

retrieve new solutions. In this process, these classical methods
apply predefined fixed values of the ant-colony size,
convergence parameter, and selection parameter to control the
solution-estimation. However, under dynamic applications
such as at-hand cloud computing problems, it is highly
complex and challenging to estimate the suitable set of
parameters to retrieve the enhanced performance with swift
convergence rate. Such limitations often results in premature
convergence, and hence seems inferior towards task-scheduling
in cloud infrastructure. To alleviate such problems, a concept
of multi-population is applied that splits the entire population
of ants into two categories: elite ants and common ants. The
elite ants retrieve information from the solution archive that
eventually helps in generating solutions by implementing a
Gaussian kernel function assisted likelihood selection model.
More specifically, the proposed elite ants possess a set of
distinct parameters that help them (i.e., elite ants) to enhance
the convergence rate. On the contrary, the common-ants are
employed to generate new solutions with relatively slower
speed by means of a single Gaussian function. Noticeably, to
achieve it, the common ants employ the mean value of each
dimension that helps in avoiding local optima. The proposed
model applies the following Gaussian function to generate
common ants.

2

,

2
,

,

2

,

1

2

i N

i N

x

i

N

i N

f x e

 (18)

, ,

1

K

i N i k

k

S

 (19)

,

,

1 1

K
i e i

i N N

e

S s

K

 (20)

In (18), the parameter
 () represents the Gaussian

function used for common ant generation in the

dimension. The other parameter, represents the sample

value while refers to the obtained standard deviation. The

average value of the solution in the -th dimension is given by
 . Here, be the constant employed to control the
convergence rate of the common ants. Thus, the proposed
model enables common antsto increase the search space
sufficiently large which eventually helps improve the global
search ability.

H. Multi-level Pheromone Update

In the majority of the classical ACS solutions, the key
challenge is the pheromone update. To alleviate such
limitations in the proposed ACS solution, the two different
pheromone update mechanisms; the local pheromone update
and the global pheromone update is applied. A snippet of the
proposed multi-level pheromone update method is given as
follows:

I. Local Pheromone Update

In the proposed model, before executing the optimization
(say, the first iteration of the optimization), the pheromone
deposition on each edge (signifying the VM-host pair) remains

the same and constant. The local pheromone model is executed
on each (passed) VM-host pair’s edge once any ant completes
the current iteration. Similar to the classical ACS model, it
updates the local pheromone using (21).

, , 01
i i i

x y G x y L
 (21)

In (21), () refers the local pheromone evaporation
coefficient, while be the pheromone residue factor. The

other parameter,
()

 presents the initial pheromone value. For

a node value as 1,
()

 used to be the small negative number,

while the same as 0, indicates
()
 .

J. Global Pheromone Update

Once all ants complete one iteration and achieve a solution
set, the passed nodes exhibit the global pheromone update.
Unlike classical pheromone update model (17), the proposed
model performs pheromone update as per (22).

, , 01
i i i

x y G x y L
 (22)

{ , ,

 ,

 0,

i i

G G

i

I

F x j

Global optimal Solution F

Iterativeoptimal Solution Otherwise

 (23)

In (22-23), () refers the global pheromone
evaporation coefficient, while () presents the residue

factor,
()

 is global optimal solution and while
()

 signifies

the iterative optimal solution.

K. Pheromone Diffusion

In Pheromone Diffusion process, the ants (agent) apply a
single pheromone release mechanism. This approach can
merely influence the subsequent ants with the passed same
point; however doesn’t guide the ant-search within a specific
range of neighboring regions, and therefore influences the
overall optimization performance. Based on the above
discussed multi-layer pheromone update model, the pheromone
diffusion concept to enhances the performance. The likelihood
of superior solutions in the neighboring region used to be
higher in comparison to the other neighboring regions. Hence,
the pheromone diffusion concept can enable pheromone release
by the agents at a certain point that slowly influences a specific
range of the adjoining regions. On the other hand, the other
ants (elite ants) intend to avoid making any search in its
vicinity of the poor solution and often intend to search the
solution near or in the neighborhood of the better solution. This
as a result not only improves time performance but also
accuracy of the selected solution in each iteration.
Mathematically, the pheromone update and diffusion concept
are presented as per (24-25).

, , ,1
i i i

x y D x y L x y
 (24)

 ,

1
{ , , 1 0,

1 ,

i

i x

x y r x y

r x y

d o o Otherwise
N d o o

 (25)

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 11, 2021

390 | P a g e

www.ijacsa.thesai.org

In (25), refers the total number of estimated solutions in

current iteration, while
()

 refers the left guiding pheromone
concentration on the source object . The other parameter,

 () () represents the correlation distance in

between the two maps or objects.

L. The Co-Evolution

Unlike classical evolutionary computing approaches, co-
evolution is an improved concept that enables higher biological
diversity, by emphasizing on certain reliance on intra-
organisms (between organisms and organisms), inter-
organisms (organisms and environment) during the evolution
process. Functionally, it employs evolution theory to construct
the competition relation or cooperation relation among two or
more populations so as to enhance optimization performance
by the interaction of multiple populations. It also focusses on
exploiting at-hand interaction amongst the varied sub-
populations, and eventually influences each other to co-evolve
altogether to attain superior optimization performance. In
proposed ACS solution, a co-evolution concept to realize the
information interaction amongst the varied sub-population to
yield better optimization performance. Thus, implementing the
above stated improved ACS model dynamic task scheduling
and allied resource allocation. The results obtained by carrying
out simulation and its inferences are discussed in the following
sections.

IV. RESULTS AND DISCUSSION

Ensuring SLA/QoS centric task migration while preserving
energy-efficiency is a NP-hard problem, a state of art new
Improved ACS model (I-ACS) for VM migration scheduling is
applied. Unlike classical heuristic methods, including the
conventional ACS or ACO, the proposed method applied
multi-population with co-evolution and dynamic pheromone
update capacity. This approach not only intended to improve
overall scheduling efficiency but also intended to alleviate the
problem of local minima and convergence. Thus, performing
above stated activities achieves SLA-sensitive and energy-
efficient task scheduling in large scale cloud infrastructure. The
details of the simulation environment applied is given as
follows.

A. Experimental Setup

To simulate the overall proposed model, CloudSim
simulation environment and allied benchmark tool is
considered. The overall programs were developed in Java
programming language and emulation was performed over
Java Eclipse platform. Noticeably, the higher scalability, ease
of implementation and realistic problem realization was the
foundation behind the selection of CloudSim based simulation.

In cloud configuration setup, each host is characterized in
terms of corresponding utilization of memory and the
performance of Central Processing Unit (CPU). The
parameters are Million Instruction Per Second (MIPS),
signifying the resource being used or demanded by each task
and the resource available onto a host. Moreover, memory
(RAM) utilization and bandwidth information of each host as
well as VM, which are supposed to be monitored continuously
to ensure QoSand SLA oriented task scheduling.

To consider the effectiveness of the proposed task-
migration of the VM allocation model, the multiple real-time
cloud-computing traces obtained from the CoMon data project,
a PlanetLab simulation benchmark (cloud trace) dataset are
used. The employed dataset comprised the cloud traffic and
allied CPU utilization traces from 1000 plus VMs and allied
autonomous tasks, where the different VMs were located at the
different locations. The considered benchmark data
encompassed the cloud traces over 10 randomly selected data
in March and April, 2011. In the considered dataset, the CPU
utilization measurement interval was fixed at five minutes. A
simulation environment is considered with the system
architecture consisting of two heterogeneous servers with dual-
core CPUs, one HP ProLiant ML110 G5 with Intel Xeon 3040,
2 cores 1860 MHz processors, armored with 4GB RAM.
Additionally, it encompassed HP ProLiant ML110 G5 server
with Intel Xeon 3075, 2 cores 2660 MHz, 4 GBRAM) to
represent a heterogeneous cloud environment. The server’s
frequency is mapped onto MIPS specifications where HP
ProLiant ML110 G4 server was mapped with 1860 MIPS,
while for HP ProLiant ML110 G5 server mapping with 2660
MIPS. Each server was armored with 1 Gbps network
bandwidth. To assess the efficacy of the proposed task
migration or VM allocation (say, resource allocation) model,
the performance is obtained in terms of SLA violation (often
called, SLAV), SLA downtime, number of migration and
energy-consumption. Before discussing the empirical
outcomes, a snippet of the different SLA sensitive performance
variable is given as follows:

B. The Cost of Tack-Scheduling or VM Migration

Undeniably, the key intent behind the task-migration or
allied VM migration is its QoS-affinity or SLA demands.
Additionally, this mechanism demands the proposed
scheduling model to ensure minimum SLA violation (SLAV),
maximum migration with minimum downtime performance.
Moreover, maintaining lower energy-consumption has always
been the dominant demand from cloud infrastructures.
Typically, the SLAV or downtime probability primarily rely on
the key factors such as resource demand or memory expected
by the different tasks operating onto the VMs, number of
memory disks updated over varied execution periods, etc.
Under dynamic workload scenarios, the average performance
degradation caused due to the downtime is nearly 10% of the
overall CPU utilization. Each VM migration introduces a
certain SLAV and therefore the minimization of the migration
while maintaining SLA performance can be vital. However,
maintaining higher task migration without causing any SLAV
can also be suitable towards real world application. It seems
more realistic under resource constrained scenarios with
exceedingly high dynamism. Practically, the migration period
relies on the total amount of memory used by the tasks at a
certain VM and the available network bandwidth. The
migration period for a specific VM, say can be estimated

as per (26).

j

j

m

j

M
T

B

 (26)

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 11, 2021

391 | P a g e

www.ijacsa.thesai.org

In (26), the memory employed by is , while the

available bandwidth is given by . Here, the focus is on

reducing SLAV by maintaining MMT to avoid downtime. To
assess performance, the overall performance degradation
during the targeted task-scheduling was assessed as per (27).

0

0

0.1 .

m j

j

t T

d j

t

U u t dt

 (27)

In (27), the parameter signifies the overall performance

degradation during the task-migration or VM allocation from
one host to another, be the initial migration (start) time,

while be the overall time exhausted during migration. The

other parameter () is the overall CPU utilization by a

node .

C. SLAV Metrics

Considering the SLA objective in cloud infrastructure, the
performance of the proposed task scheduling or VM migration
model in terms of the different SLAV parameters is examined.
To meet QoS and SLA demands, migration model are required
to be optimal in delivering minimum throughput and maximum
response time. Functionally, these performance parameters
change based on the application demands and allied scheduling
modalities. The overall SLAV is defined as the disparity in

between the demanded MIPS by the tasks or VMs (())

and the actual assigned MIPS (()) over the life time of

VM (28).

1

1

j j

j

M

r aj t

M

rj t

U t U t dt
SLA

U t dt

 (28)

In (28), the total number of active VMs is given as .This
work considered MIPS information as well as CPU utilization.
Noticeably, here the CPU utilization refers the memory
demands which couldn’t be assigned when demanded. In the
proposed method, distinct two SLA metrics, one the duration
through which the active host nodes have experienced 100%
CPU utilization, called Overload Time Fraction (OTF); and the
performance degradation by VMs (PDM) caused due to VMs
migrations have been considered for performance analysis.
Here, the value of OTF and PDM is estimated using the
following equations (29-30).

1

1
i

i

N
s

i a

T
OTF

N T

 (29)

1

1 j

j

M
d

j r

C
PDM

M C

 (30)

In (29-30), represents the total number of active hosts,
while the number of active VMs is . The other parameter

 be the total time-period over which the th host

experienced complete (i.e., 100%) resource utilization giving
rise to the SLAV. Here, the total number of active hosts or

servers are and be the performance degradation of

due to migration. In the proposed model, the overall CPU
demanded by the cumulative tasks at is . Since, the

above stated SLAV parameters or metrics, OTF and PDM
represent SLAV distinctly, and therefore combining the both
metrics as a unified performance parameter named SLAV,
which is defined as (31).

.SLAV OTF PDM (31)

The detailed discussion of the simulated performance
outcomes in terms of the above discussed SLA performance
metrics, downtime and energy is given as follows: Unlike
major classical researches such as [1-5], authors have focused
on assessing resource scheduling performance based on the
parameters like make span, scheduling time, etc.; however,
could not assess whether their approach delivers SLA or not.
Unlike the performance assessment in terms of makeover or
scheduling time, a real-world cloud infrastructure, especially
IaaS often demands ensuring minimum or even negligible
downtime, SLAV, etc. Moreover, assessing their suitability in
terms of energy is equally significant. Therefore, taking into
consideration of this fact, in this research the performance of
the proposed system is examined in terms of the following
parameters:

No. of VM migrations,

SLA-Violation (SLAV),

SLA performance degradation,

SLA Violation per active host,

Host Shut-Down,

Energy-Consumption.

Amongst the above stated performance metrics, 2, 3, and 4
represents robustness of the scheduling methods towards SLA
assurance or QoS. On the contrary, 1 and 5 presents scalability
of the proposed cloud model, while 7 indicates swiftness.
Though, 1, 3 and 5 are highly dependent. Similarly, 6

th

performance metrics indicate the energy-efficacy by the
proposed model. Noticeably, for an SLA-oriented solution a
task scheduler requires maintaining a greater number of
migrations while maintaining negligible SLAV, SLAV per
active host, and scheduling time. On the contrary, higher
number of active hosts shut down indicates energy-
convergence ability by the proposed model. To compare the
performance by the proposed model i.e. I-ACS model, with
other recent approaches as well; though these methods
examined their performance in the different terms like make-
span or time over varying tasks. Noticeably, scheduling
methods are considered as the foundation and performed task-
migration hypothesizing that each VM carries a single
operating task, and hence the task migration can be realized as
a classical VM-consolidation or migration problem. Thus, with
this hypothesis, three different existing approaches as
mentioned in [2], [3] and [4] are implemented.

Velliangiri et al. has focused on improving heuristic model
to achieve better performance and local minima and
convergence avoidance. In this regard, authors [2] designed a

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 11, 2021

392 | P a g e

www.ijacsa.thesai.org

Hybrid Electro Search with GA (HESGA) algorithm for task-
scheduling. To achieve better performance, authors applied GA
to obtain local optimal solution, while Electro Search algorithm
was applied to improve global optima solution. However,
authors failed in addressing the dynamism of the resource
demands under uncertain predefined heterogeneous (dynamic)
clouds. Recalling the fact, unlike [2], where authors applied
static threshold-based hotspot detection, to cope up with the
exceedingly dynamic cloud environment IQR-LRR based
stochastic prediction concept for overloading detection is
applied, which helped making task-scheduling on time and
hence preserved SLA performance. Recently, an improved
effort was made in [3], where Liu et al. [3] proposed an
improved GA based collaborative scheduling concept for cloud
infrastructure. With the same intend as [2], or the proposed I-
ACS model, authors [3] targeted on avoiding local minima and
convergence problems for better scheduling.

Xiang et al. [4] recently proposed the Greedy-ACO
algorithm for workflow scheduling in heterogeneous cloud
environments. To be noted, there are a large number of existing
method or literatures discussing heuristic based task
scheduling, VM consolidation and VM migration; however,
considering these three key recent methods which not only
intend to perform task-scheduling, but also address the existing
drawbacks of the major existing methods such as local minima
and convergence.

Recalling the fact that the considered cloud traces or
benchmark data was taken from PlanetLab datasets, to examine
or simulate the proposed model (as well as the existing
methods [2-4] over the different datasets. More precisely, the
proposed model is executed with the cloud traces obtained 03
March 2011, 06 March 2011 09 March 2011, 22 March 2011,
25 March 2011, 03 April 2011, 09 April 2011, 11 April 2011,
12 April 2011 and 20 April 2011. Thus, simulating the
different methods, including the proposed I-ACS model
obtains performance outputs in terms of 1-6 metrics. To
generalize the performance over multiple test instances or
cases, the average performance is considered. The outputs
obtained in terms of the different SLA metrics is given as
follows:

Fig. 3 presents the number of VM migrations by the
different techniques. After the observations, the overall results
obtained by the proposed I-ACS model show a higher number
of task migration, exhibiting robustness towards superior
scalability. It is further be identified in terms of the minimum
SLA violation and downtime, as depicted in Fig. 4 to Fig. 6.
Noticeably, literature hypothesizes that maintaining a lower
number of migrations can avoid any likelihood of SLAV;
however, the proposed model has exhibited on the contrary,
affirming that one can achieve superior SLA performance even
with a higher number of migrations. Since, in the proposed
model, each VM was considered as one autonomously
operating task, scheduling a larger number of tasks shows the
superior scalability by the proposed method. It affirms
robustness of the proposed model towards realistic mega data
center applications.

Fig. 3. Number of VM Migrations using different Techniques.

Fig. 4 presents the SLA violation, here called SLAV. The
observations with overall results achieved by the proposed I-
ACS model shows better than other existing approaches;
however, its performance is far better than the classical ACO
algorithms. This performance enhancement could be
contributed because of multiple-generation, dynamic
pheromone update and co-evolution concept. Statistically, I-
ACS model has exhibited almost 0.03% of SLA violation,
which shows its robustness. A similar performance was
observed in terms of SLA performance degradation per host
(Fig. 5). As depicted in Fig. 5, the proposed method performs
superior over other heuristic based scheduling. To be noted,
since HESGA [2] and improved GA [3] algorithms were
developed similar to the proposed I-ACS concept, where the
key focus was made on alleviating the at hand local minima
and convergence and hence these approaches showed better
performance than the classical ACO based scheduling.
However, these methods [2][3], due to the lack of adaptive
overloading or hotspot detection and dynamic scheduling
(performed using multiple controller-based systems), were
found inferior than the proposed model.

Fig. 4. SLA Violation (SLAV) Performance by the different Techniques.

23000

23500

24000

24500

25000

25500

26000

HESGA [2] GA [3] ACO [4] Proposed I-
ACS

N
o

. o
f

V
M

 M
ig

ra
ti

o
n

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 11, 2021

393 | P a g e

www.ijacsa.thesai.org

Fig. 5. SLA Performance Degradation by the different Techniques.

A similar performance was found in SLA per active host
(Fig. 6). Observing overall performance, it can easily be found
that the proposed multi-controller assisted I-ACS based task-
scheduling model achieves better SLA performance and
eventual QOS to meet major cloud computing demands. In
terms of time of execution, Fig. 6 reveals that the proposed I-
ACS model exhibits superior in terms of the SLA time per-
active host (second), signifying very small or near tolerable
downtime. The comparative outcomes too reveal that the
proposed model shows almost 18% lower downtime than other
heuristic based approaches.

Considering about the number of hosts shut-down, Fig. 7
reveals that the proposed I-ACS based task-scheduling model
exhibits a higher number of host-shut down, signifying better
energy-efficiency and optimal resource utilization.

Fig. 8 can be found in affirmation, where the proposed I-
ACS model has exhibited almost 8% lower energy than the
classical ACO based scheduling. Noticeably, in Fig. 8, the
energy consumption by GA variants is relatively higher. This
could be because of the predefined number of stopping criteria
(considering 200 number of generations). It could have taken
more time for computation and hence higher energy
exhaustion. Thus, considering the overall performance outputs,
it can be stated that the proposed I-ACS based model achieves
superior performance than other existing (recent) heuristic
based task-scheduling systems or resource allocation (say, VM
migration) methods. The overall research conclusion and its
related inferences are given in the subsequent sections.

Fig. 6. SLA Time Per Active Host (sec.) by different Techniques.

Fig. 7. No. of Host Shut-down by the different Techniques.

Fig. 8. Energy Consumption by the different Techniques.

V. CONCLUSION

The research work primarily focused on improving the
task-scheduling and allied dynamic resource allocation to meet
SLA-centric cloud services. To meet contemporary as well as
future demands including QoS, SLA-agreement and energy-
efficiency, the proposed work introduced multiple
enhancement at the different levels of computation. The
proposed model applied multi-controller strategies, where the
use of local controllers enabled task-level resource utilization
assessment and stochastic prediction-based overloading or
underloading detection avoiding any possible downtime. The
proposed local controller applied minimum migration time
based VM selection strategy that greatly helped for timely task-
migration scheduling. Eventually, exploiting the task and
possible target host information, the proposed involves
improved multi-population, adaptive or dynamic pheromone
update and co-evolution-based I-ACS model which performs
dynamic task-migration or allied resource scheduling. The
overall proposed I-ACS model not only enabled superior task-
migration but also avoided any possible local minima and
convergence problem. This as a result affirmed optimality of
the proposed solution exhibiting superior performance in terms
of minimum SLA violation, minimum downtime, lower energy
consumption and higher number of task-migration.

5.2

5.4

5.6

5.8

6

6.2

6.4

6.6

6.8

7

7.2

HESGA [2] GA [3] ACO [4] Proposed I-
ACS

SL
A

 P
e

rf
o

rm
an

ce
 D

e
gr

ad
at

io
n

 (
%

)

0

1

2

3

4

5

6

7

8

HESGA [2] GA [3] ACO [4] Proposed I-
ACS

SL
A

 T
im

e
 P

e
r

A
ct

iv
e

 h
o

st

(S
e

co
n

d
)

4800

4900

5000

5100

5200

5300

5400

5500

5600

5700

5800

5900

HESGA [2] GA [3] ACO [4] Proposed I-
ACS

N
o

. o
f

H
o

st
 S

h
u

td
o

w
n

0

20

40

60

80

100

120

140

160

HESGA [2] GA [3] ACO [4] Proposed I-
ACS

En
e

rg
y

C
o

n
su

m
p

ti
o

n
 (

kW
/h

)

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 11, 2021

394 | P a g e

www.ijacsa.thesai.org

REFERENCES

[1] S. Pang, W. Li, H. He, Z. Shan and X. Wang, "An EDA-GA Hybrid
Algorithm for Multi-Objective Task Scheduling in Cloud Computing,"
in IEEE Access, vol. 7, pp. 146379-146389, 2019.
DOI:10.1109/ACCESS.2019.2946216.

[2] S. Velliangiri, P. Karthikeyan, V.M. Arul Xavier, D. Baswaraj, “Hybrid
electro search with genetic algorithm for task scheduling in cloud
computing”, Ain Shams Engineering Journal, pp. 1-9; July 2020.
DOI:10.1016/j.asej.2020.07.003.

[3] S. Liu and N. Wang, "Collaborative Optimization Scheduling of Cloud
Service Resources Based on Improved Genetic Algorithm," in IEEE
Access,vol.8,pp.150878-150890,2020.
DOI:https://doi.org/10.1155/2021/5582646.

[4] B. Xiang, B. Zhang and L. Zhang, "Greedy-Ant: Ant Colony System-
Inspired Workflow Scheduling for Heterogeneous Computing," in IEEE
Access,vol.5,pp.11404-
11412,2017.DOI: 10.1109/ACCESS.2017.2715279.

[5] S. G. Domanal, R. M. R. Guddeti and R. Buyya, "A Hybrid Bio-Inspired
Algorithm for Scheduling and Resource Management in Cloud
Environment," in IEEE Transactions on Services Computing, vol. 13,
no. 1, pp. 3-15, 1 Jan.-Feb. 2020. DOI: 10.1109/TSC.2017.2679738.

[6] Afzal, S., Kavitha, G. Load balancing in cloud computing – A
hierarchical taxonomical classification. J Cloud Comp 8, 22 (2019).
https://doi.org/10.1186/s13677-019-0146-7.

[7] Pradhan, P., Behera, P.K. and Ray, B.N.B., 2016. Modified round robin
algorithm for resource allocation in cloud computing. Procedia
Computer Science, 85, pp.878-
890.https://doi.org/10.1016/j.procs.2016.05.278.

[8] Moges, F., Abebe, S. Energy-aware VM placement algorithms for the
OpenStack Neat consolidation framework. J Cloud Comp 8, 2 (2019).
https://doi.org/10.1186/s13677-019-0126-y.

[9] Syed Arshad Ali, Samiya Khan, MansafAlam, Resource-Aware Min-
Min (RAMM) Algorithm for Resource Allocation in Cloud Computing
Environment, International Journal of Recent Technology and
Engineering (IJRTE) ISSN: 2277-3878, Volume-8 Issue-3, September
2019. Pp 1863-1870 DOI: https://doi.org/10.35940/ijrte.c5197.098319.

[10] Mosa, A., Paton, N.W. Optimizing virtual machine placement for energy
and SLA in clouds using utility functions. J Cloud Comp 5, 17 (2016).
https://doi.org/10.1186/s13677-016-0067-7.

[11] J. R. Doppa, R. G. Kim, M. Isakov, M. A. Kinsy, H. Kwon and T.
Krishna, "Adaptive many core architectures for big data computing:
Special session paper," 2017 Eleventh IEEE/ACM International
Symposium on Networks-on-Chip (NOCS), Seoul, pp. 1-8, 21017. DOI:
https://doi.org/10.1145/3130218.3130236.

[12] Z. Li, J. Ge, H. Hu, W. Song, H. Hu and B. Luo, "Cost and Energy
Aware Scheduling Algorithm for Scientific Workflows with Deadline
Constraint in Clouds," in IEEE Transactions on Services Computing,
vol. 11, no. 4, pp. 713-726, 1 July-Aug. 2018. DOI:
https://doi.org/10.1109/TSC.2015.2466545.

[13] K. Li, “Power and performance management for parallel computations
in clouds and data centers,” J. Comput. Syst. Sci., vol. 82, no. 2, pp.
174–190, Mar. 2016. DOI: https://doi.org/10.1016/j.jcss.2015.07.001.

[14] 28 -30 Z. Tang, L. Qi, Z. Cheng, K. Li, S. U. Khan, and K. Li, “An
energyefficient task scheduling algorithm in DVFS-enabled cloud
environment,” J Grid Comput., vol. 14, no. 1, pp. 55–74, Mar. 2016.
DOI: DOI:10.1007/s10723-015-9334-y.

[15] G. Xie, L. Liu, L. Yang, and R. Li, “Scheduling trade-off of dynamic
multiple parallel workflows on heterogeneous distributed computing
systems,” Concurrency Comput.-Parctice Exp., vol. 29, no. 8, pp. 1–18,
Jan. 2017. DOI:10.1002/cpe.3782.

[16] G. Zeng, Y. Matsubara, H. Tomiyama, and H. Takada, “Energy Aware
task migration for multiprocessor real-time systems,” Future
Gen.Comput. Syst., vol.56, pp.220–228,Mar.2016.
https://doi.org/10.1016/j.future.2015.07.008.

[17] Z. Zhu, G. Zhang, M. Li and X. Liu, "Evolutionary Multi-Objective
Workflow Scheduling in Cloud," in IEEE Transactions on Parallel and
Distributed Systems, vol. 27, no. 5, pp. 1344- 1357, 1 May 2016.
DOI: 10.1109/TPDS.2015.2446459.

[18] Jyothi.S, Dr.B.S.Shylaja, ”Efficient Approach for Resource Provisioning
to manage Workload in Cloud Environment” in International Journal of
engineering Research and Technology(IJERT),ISSN 2278-0181,Vol
9,Issue 06,June2020.DOI:http://dx.doi.org/10.17577/IJERTV9IS060979.

[19] Bhaskar, Shylaja.B.S (2019)”KBR Knowledge Based Reduction Method
for Virtual Machine Migration in Cloud Computing”, International
Conference on Recent Trends in Advanced Computing 2019, ICRTAC-
2019 published in Elsevier Procedia Computer Science 00 (2019) 000–
000. DOI: https://doi.org/10.1016/j.procs.2020.01.026.

http://dx.doi.org/10.1109/ACCESS.2019.2946216
http://dx.doi.org/10.1016/j.asej.2020.07.003
https://doi.org/10.1155/2021/5582646
https://doi.org/10.1109/ACCESS.2017.2715279
https://doi.org/10.1109/TSC.2017.2679738
https://doi.org/10.1186/s13677-019-0146-7
https://doi.org/10.1016/j.procs.2016.05.278
https://doi.org/10.1186/s13677-019-0126-y
https://doi.org/10.35940/ijrte.c5197.098319
https://doi.org/10.1186/s13677-016-0067-7
https://doi.org/10.1145/3130218.3130236
https://doi.org/10.1109/TSC.2015.2466545
https://doi.org/10.1016/j.jcss.2015.07.001
http://dx.doi.org/10.1007/s10723-015-9334-y
http://dx.doi.org/10.1002/cpe.3782
https://doi.org/10.1016/j.future.2015.07.008
https://doi.org/10.1109/TPDS.2015.2446459
http://dx.doi.org/10.17577/IJERTV9IS060979
https://doi.org/10.1016/j.procs.2020.01.026

