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Abstract—The high-pace emergence in Cloud Computing 

technologies demands and alarmed academia-industries to attain 

Quality-of-Service (QoS) oriented solutions to ensure optimal 

network performance in terms of Service Level Agreement (SLA) 

provision as well as Energy-Efficiency. Majority of the at-hand 

solutions employ Virtual Machine Migration to perform dynamic 

resource allocation which fails in addressing the key problem of 

SLA-sensitive scheduling where it demands timely and reliable 

task-migration solution. Undeniably, VM consolidation may help 

achieve energy-efficiency along with dynamic resource allocation 

where the classical heuristic methods which are often criticized 

for its local minima and premature convergence doesn’t 

guarantee the optimality of the solution, especially over large 

cloud infrastructures. Considering these key problems as 

motivation, in this paper a highly robust and improved meta-

heuristic model based on Ant Colony System is developed to 

achieve Task Scheduling and Resource Allocation. CloudSim 

based simulation over different PlanetLab cloud traces exhibited 

superior performance by the proposed task-scheduling model in 

terms of negligible SLA violence, minimum downtime, minimum 

energy-consumption and higher number of migrations over other 

heuristic variants, which make it suitable towards realistic Cloud 

Computing purposes. 

Keywords—Task-scheduling; VM-migration; improved ant 
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I. INTRODUCTION 

In the last few years, the high-pace rise in advanced 
software systems and decentralized computing environments 
has broadened the horizon for a state-of-art new paradigm 
named cloud computing. Cloud computing has emerged as a 
potential technology serving decentralized scalable services to 
the significantly large number of users for respective data 
and/or query driven computation and information services. 
Cloud computing technology can be characterized as an array 
of network-enabled services facilitating quality-of-service 
(QoS) assured scalable and personalized (computing) solutions, 
even at the inexpensive cost [1-3]. The potential to serve 
decentralized data or (computing) infrastructure, independent 
of the geographical boundaries makes cloud computing an 
inevitable need to meet contemporary or even NextGen 
industrial as well as personal computing demands [2]. Based 
on the usage of the Cloud it is understood that it has been 
applied as a key technology to serve civic purposes, financial 
sector, industries, government agencies, scientific community, 
diverse business houses, etc. Noticeably, to serve aforesaid 

stakeholders, cloud services are classified into three key types; 
Infrastructure as a Service (IaaS), Platform as a Service (PaaS), 
and Software as a Service (SaaS). Irrespective of the service 
types, fulfilling QoS in cloud computing has always remained 
a challenge. To meet aforesaid service demands industry 
requires providing decentralized storage infrastructure, often 
called data centers; however, with exponential rise in 
computing demands with non-linear (demand or use) patterns, 
the at-hand solutions often undergo disrupted performance or 
connectivity. This as a result impacts overall QoS performance. 
Typically, delivering Service Level Agreement (SLA) by 
Cloud Service Providers ensures to provide QoS support to its 
customers while maintaining reliable services with higher 
scalability, reliability and continuity over operating periods [4, 
5]. It is a challenging task to retain SLA over highly dynamic 
load demands and use patterns across a gigantically large user-
base, located around the globe. 

A cloud infrastructure mainly encompasses physical 
machines, also called servers, virtual machines (VMs) and 
allied controllers. Noticeably, hosts of the physical machines 
primarily acts as the component serving computing ability and 
memory, while VMs function as containers possessing 
different independent tasks. A huge cloud infrastructure may 
consist of multiple hosts, where each host can have multiple 
VMs, carrying different parallel-computing tasks. In this case, 
due to dynamism in resource demands by each task a VM 
might undergo an exceedingly large resource demand, which 
could not be facilitated by the currently attached physical 
machine or host. In such a case, a VM carrying multiple tasks 
is required to be migrated to the suitable host, which could 
provide sufficient resources to the associated task for SLA 
assurance and QoS provision. However, it may take 
significantly large traversal time or allocation scheduling 
related delay, impacting downtime and hence overall 
performance. Being an uncertain demand scenario, the tasks or 
allied VMs can have to traverse across the network as per at-
hand overloading and under-loading scenario. Undeniably, it 
can increase downtime as well as QoS violation. On the other 
hand, cloud being an energy-exhaustive technique requires 
addressing energy-minimization needs and therefore 
simultaneous dynamic resource allocation, task scheduling and 
energy minimization turn out to be a complex NP-hard 
problem [1-5]. In sync with cloud with the heterogeneous 
demand types, the load pertaining to each VM might vary as 
per task-types and demand-density over the operating period. 
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Therefore, merely random host selection concepts or even the 
classical bin-packing models, cannot be appropriate. Such 
classical methods might give rise to the overloading or 
underloading condition, and hence can impact both SLA as 
well as energy-efficiency. 

With this context, the research work proposes a “Multi-
Level Hierarchical Controller Assisted Dynamic Task 
Scheduling and Resource Allocation Model for Large Cloud 
Infrastructures” which involves a hybrid evolutionary concept 
named Improved Ant Colony System (I-ACS) to achieve SLA 
with energy efficiency to meet cloud demands. The proposed 
model is developed using CloudSim platform, where 
simulation over PlanetLab cloud trace data revealed superiority 
of the proposed model over major existing approaches in terms 
of downtime, SLA violation, number of migrations and energy-
consumption. 

The further sections of the presented document are given as 
follows. Section II discusses the Literature Survey pertaining to 
SLA oriented and Energy-Efficient task-scheduling methods, 
Section III discusses the proposed method followed by 
Section IV which provides Results and Discussion. The overall 
research Conclusion and allied inferences are presented in 
Section V. References followed in this research are provided at 
the end of the manuscript. 

II. RELATED WORK 

Afzal et al. [6] focuses on Load balancing based heuristic 
assisted task scheduling concept under static or dynamic load 
conditions. However, unlike classical static resource allocation 
that employs a first-come-first-servemethod, it can't be suitable 
under dynamic load conditions. Pradhan et al. [7] discusses 
about modifying especially round robin methods, which 
authors applied in their research to reduce the waiting time. 
Mogeset al. [8]focused on energy efficiency as the key concept 
to perform task scheduling. To reduce energy-exhaustion, 
authors proposed VM consolidation concept, which was 
performed to shut-down underutilized hosts and by removing 
hotspots. However, the classical use of bin-packing based 
consolidation could not address latency and QoS degradation 
issues. In addition to the power enhancement, the work 
suggested to perform consolidation scheduling in such a 
manner that it could retain lower task response time to meet 
SLA demands. To achieve it, authors suggested to focus on 
modified bin-packing based consolidation. 

Syed Arshad Ali et al. [9] implemented task scheduling 
using Resource aware min- min algorithm where task-
scheduling was performed on the basis of the load of the 
servers to minimize makespan. Mosa et al. [10] on the other 
hand emphasized on load balancing in the cloud by distributing 
the workload dynamically across the cloud infrastructure with 
multiple nodes. Authors applied utility functions and GA 
heuristic model to optimize VM allocation, Energy 
consumption and SLA violations. Jyothi S et.al. [18] Bhaskar 
R et.al [19] discussed numerous key challenges in dynamic 
load management in heterogeneous cloud environments. 
Authors proposed a heterogeneity- aware dynamic application 
provisioning model to reduce energy consumption in cloud 
environments. 

Doppaet al. [11] designed a self-aware framework to adjust 
or optimize resource and SLA. However, the use of DVFS 
based methods can’t be suitable for a heterogeneous cloud 
network with dynamic load conditions. In addition to the SLA 
expectations, authors [12 -13] focused on resource allocation 
while maintaining lower computation and energy-exhaustion. 
Liet al. [12] designed a directed acyclic graph (DAG) model to 
perform priority bound task scheduling. Here, in DAG 
construction the nodes characterize the tasks, while the edges 
represent the allied messages among jobs [14-16]. Tang et 
al.[14] applied DAG-based workflow where tasks were 
prioritized based on respective sizes to perform resource 
allocation. Zhu et al. [17] Jyothi et al. [18] performed task 
scheduling on the different multiprocessing environment, 
which can be solved using NP-hard optimization. Considering 
this as motivation, dynamic task-scheduling and resource 
allocation is performed by applying the concepts of co-
evolution system and multi-population strategy for Meta-
heuristic method such as ACO is considered. 

III. SYSTEM MODEL 

This discussion primarily discusses the proposed model and 
its implementation including the multi-controller assisted 
overload and underload detection, VM selection and the 
proposed Improved Ant Colony System (I-ACS) based task 
scheduling. 

The task scheduling or allied VM migration can be 
inducted as per the task-(heterogeneous) demands’ and hence a 
controller can migrate one or multiple VMs to the suitable 
hosts (via consolidation) while retaining SLA performance and 
energy-efficiency. The proposed model introduces multi-
layered controller units to dynamically monitor the VMs and 
allied task’s demand to stochastically predict the demands and 
accordingly the global controller performs scheduling in 
advance to avoid any SLA violation, QoS-compromise or even 
energy-exhaustion. 

The overall proposed model encompasses four key steps. 
They are: 

Step-1 Hierarchical Multi-layered controller assisted cloud 
monitoring, 

Step-2 Underload and Overload detection, 

Step-3 Minimum Migration Time (MMT) oriented VM 
selection, 

Step-4 Improved ACS (I-ACS) assisted S-DTS  

The details of the overall proposed model are given in the 
subsequent sections. 

Hierarchical Multi-layer Controller assisted Cloud 
Monitoring. 

An illustration of the different controller and its respective 
task is given in Fig. 1. 
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Fig. 1. Proposed Multi-controller Assisted Cloud Monitoring and Task-

Scheduler. 

Typically, cloud infrastructures that often accommodate a 
significantly large number of independent tasks operating or 
executed onto assigned VMs, undergo exceedingly high 
demand-dynamism. In other words, the different tasks 
connected to each VM undergo non-linear traffic demands, and 
therefore might require dynamic resource to continue its 
operation. Under such scenario, a VM encompassing single or 
multiple tasks might exhibit non-linear resource demand, 
influencing a host or physical machine to undergo under-
utilization or overloading. Consequently, it might significantly 
impact the overall performance and SLA-reliability of the 
system. Considering this fact, performing demand-sensitive 
resource allocation or task-scheduling is must. To achieve it in 
the proposed method, a state-of-art new Hierarchical Multi-
Layered Controller (HMLC) design is applied, which 
especially monitors demands or resource utilization pattern at 
each task connected to a VM. The proposed HMLC model 
encompassed a local controller and a global controller, 
especially designed to perform task-scheduling or dynamic 
resource allocation so as to preserve SLA, QoS as well as 
energy-efficiency. To perform task-level resource utilization 
assessment, local controller (LC) is applied that measures 
resource utilization per VM and updates the same to the global 
controller (GC), dynamically so as to make stochastic 
prediction-based task-scheduling decision in advance. 

As shown in Fig. 1, the proposed local controller unit 
operates over each VM, accommodating multiple tasks. Here, 
it acts as an autonomous VMM manager that measures 
resource utilization dynamically and updates to the global 
controller so as to make dynamic task reallocation. 
Additionally, the proposed controller mechanism enables 
dynamic underload/overload detection and (proactive) 
avoidance. Once detecting any hotspot or any PM undergoing 
overload, the local controller executes VM selection 
mechanism (discussed in subsequent section) and selects the 
VM to be unloaded from the at-hand overloaded hosts. 
However, recalling the SLA assurance to the offloaded VM 
and allied tasks, the proposed model introduces a state-of-art 
new and robust dynamic VM scheduling model which 
guarantees optimal task-scheduling and allied VM migration, 
without affecting SLA performance. To achieve it, the 
proposed global controller model retrieves VM’s and hosts’ 
information proactively from the local controller and executing 
the proposed I-ACS concept it schedules VM placement or 

migration in advance so as to retain SLA intact. Once 
traversing or offloading the suitable VM from a host, the local 
controller updates the node-parameters and updates the same to 
the global controller for further decision making. To achieve 
SLA-assurance and energy-efficiency, at first, a dynamic 
threshold-based underload and overload detection unit is 
applied. The details are given as follows. 

A. Underload and Overload Detection 

To cope up with the dynamic resource demands and allied 
scheduling tasks, the work is carried out which examines the 
load condition of each task and associated host that helps in 
identifying under-loaded and overloaded nodes in the network. 
To ensure SLA-sensitive and energy-efficient scheduling, once 
detecting a node as under-loaded either certain specific VM 
(including all connected tasks) or all VMs are off-loaded, 
which are then migrated to the other suitable hosts. This 
approach not only helps in optimal resource allocation, but also 
preserves significant energy. On the other hand, detecting a 
host undergoing overload, the proposed model offloads tasks or 
allied VM(s) and migrates them to the other suitable host, 
while ensuring that the migration doesn’t cause overload on 
another host (say, target host) or impacts SLA performance. 

1) Underload detection: The proposed model discusses a 

host with load lower than a predefined minimum workload 

condition or resource utilization is referred as an underload 

host. In order to preserve energy, once identifying a host with 

under-utilized resources, it’s connected VMs or allied tasks 

are migrated to the other host(s) strategically. However, this 

scheduling or migration takes place in such a manner that it 

doesn’t cause overload on other nodes or hosts. In sync with 

the concept of VM consolidation, once migrating all VMs to 

the other host, successfully, it shuts down the host to preserve 

the energy. Here the task-migration or allied resource 

allocation strategy schedules the migration in such a manner 

that neither it causes SLA violation nor energy exhaustion or 

any possible overload situation on the target host. To 

guarantee SLA provision, the source host remains active or 

ON, until all allied tasks and the target host(s) holds the 

migrated connected VMs. 

2) Adaptive threshold-sensitive host overload detection: 

To detect the overloaded VM (containing independent tasks), 

a stochastic prediction assisted approach is applied. In this 

each host node performs periodic load assessment of each host 

which eventually assists detecting an overloaded node. Here, 

each host’s resource (i.e., CPU or MIPS) utilization is 

measured to assess the host node whether it is overloaded or 

not. Most of the existing approaches towards task-scheduling 

apply a static threshold method to detect an overloaded host. 

Unfortunately, IaaS which often undergoes dynamic loads 

over the operating period and the different tasks consume 

different resources at the varied time-instant. Therefore, the 

use of the static threshold method can’t be suitable for 

overload detection. Here, dynamic CPU utilization 

(cumulative CPU utilization per VM over multiple 

independently processing tasks) assessment method to 

perform overload detection is applied. More specifically, in 
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this method, the CPU utilization threshold value is adjusted 

dynamically on the basis of the changes in continuous CPU 

utilization. It assumes that higher fluctuation in use-pattern 

can be stated as the lower upper CPU utilization (threshold). 

In general, the higher value of such non-linear resource 
utilization indicates an overloaded condition, with 100% 
resource utilization. To cope up with the exceedingly high 
dynamism in the cloud network, a hybrid concept 
encompassing both inter-service (task) relation along with 
varying information to achieve dynamic thresholding is 
applied. Here, a state of art new hybrid concept to exploit task 
level resource utilization and their cumulative impact as 
eventual load to perform overload detection is designed. 

More specifically, interquartile range (IQR) and modified 
local regression methods is applied to measure dynamic CPU 
utilization and eventually predict adaptive threshold. Here, IQR 
algorithm follows a statistical dispersion approach to represent 
association between the first and the third quartile, as depicted 
in equation (1). The value of IQR is estimated to employ the 
equation (2) to obtain the upper-threshold of the CPU 
utilization. 

3 1IQR Q Q 
              (1) 

1 .uT s IQR 
              (2) 

With the consideration of dynamic load conditions and 
fluctuations in resource utilization for the same ongoing task, 
there can be significant effect on the upper threshold estimation 
(2). Any possible inaccuracy in threshold estimation might 
cause wrong resource allocation and allied task migration 
activities that as a result can affect overall SLA performance. 
Realizing this fact, in this research paper a state-of-art new 
dual-level threshold estimation model is formulated, where at 
first it applies IQR based   estimation, while in the subsequent 
phase it applies local linear regression (LRR) method. 
Noticeably, in the proposed model, LRR exhibits fitting of the 
(utilization) trend polynomial to the preceding   CPU 
utilization values, obtained as per (3) for each observation 
value. 

  ˆˆ        g x a b x 
              (3) 

Now, measuring the observation values, the next 

observation value,  1 ˆ kg x  is estimated. Now, to perform 

offloading of a host, the following condition is applied. 

 1. ˆ 1ks g x  
              (4) 

1k k mx x t  
 

In above conditions (4),      signifies the maximum 
level of tolerance by a host. Here, the maximum time required 
to migrate a VM (containing one of multiple independently 
executing tasks) from host  be   . The classical local 
regression concepts which are often found limited under higher 
dynamic value changes and allied regression estimation. 
Additionally, it performs inferior due to the outliers introduced 
by leptokurtic or heavy-tailed distributions. Considering this 

fact, modified the classical least square (LR) algorithm is 
applied by a bi-square model. Noticeably, LR improves 
iteratively so as to estimate the initial fitting for which the 
tricube weights are obtained using a Tricube Weight Function 
(TWF). Here, the obtained fitting parameter at    was applied 
to retain the fitted values using ̂ . In this manner, the residual 
value, signifying        ̂  was estimated. Thus, with the 
estimated values of   and  , it was assigned in (5) to estimate a 
factor called robustness factor   . 

6

l̂

iR B
s

 
  

                (5) 

Every observation value was allocated
iR . In (6), 

 ( )represents the bisquare weight function and   represents 
the Medium Absolute Deviation (MAD) to achieve least square 
fitting. Thus, obtaining  ( )As per (6). 

   
2

2. { 1         1, 0       B u if u Otherwise  
           (6) 

In above derived equation (5),   was obtained as per (7). 

  îs mediun 
              (7) 

Thus, employing the above derived model (4) for the 
estimated trend line, the predicted possible value or instance, 
for any inequalities (with reference to the predicted value and 
the observed value), a host was identified as an overloaded 
host. Eventually, identifying the overloaded host, the local 
controller unit informs the global controller and meanwhile 
identifies the VMs to be migrated to the other resource-
sufficient (optimal) host node. Though, in literature, 
researchers have randomly considered any VM to execute 
migrate; however, for SLA-sensitive task migration purposes, 
such approaches might undergo SLA-violation phase or QoS 
compromise, especially due to increased downtime and even 
complete task or transaction failure. Considering this fact, 
distinct unit called VM selection model is necessary. A snippet 
of the VM selection method applied is given as follows. 

B. SLA Oriented Minimum Migration Time-based VM 

Selection 

In order to preserve SLA, while guaranteeing minimum 
downtime, the minimum migration time (MMT) based VM 
selection method is applied. In other words, once identifying an 
overloaded host, only that specific VM is migrated, which 
takes minimum migration time. Hypothesizing the fact that 
higher downtime can lead higher losses, so maintaining lower 
downtime as favorable, MMT as a VM selection policy is 
considered. This approach can be suitable towards SLA 
preserving effort as well as reliable cloud service provision. 
Migration time for each task and allied VM connected to the 
overloaded host of PM is estimated. Thus, sorting the VMs 
based on their respective migration time, the VM is chosen 
with the minimum migration delay, at first to migrate towards 
the target host. Thus, applying this method, broadened the 
horizon for delay-resilient migration over cloud platforms. 
Now, once selecting the VM to be migrated, the local 
controller passes all allied details to the global controller, 
which employs a highly robust improved ACS heuristic 
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concept to perform VM placement of migration. Though, the 
proposed VM migration or allied task scheduling concept 
resembles a VM consolidation problem; however, considering 
real-time tasks characteristics, classical meta-heuristics is 
improved to not only alleviate local minima and convergence 
but also ensure timely and SLA-centric task-migration or allied 
resource allocation. 

The following section discusses the proposed I-ACS model 
for task-scheduling over a large Infrastructure as a Service 
(IaaS) cloud platform. 

C. Task-Migration Problem Definition 

Consider that the set of operating physical machines or the 
hosts be    *                 +  where,     
represents the specific host conditioned as     . In the 
same manner, let the set of VMs encompassing or containing 
multiple autonomously operating tasks be     
{                   }, where each VM is connected to 

certain host.      be the   th    connected on the   th host. 

The variable      presents a binary variable signifying on host j 

connected by the  -th VM. Consider that      be the resource 

capacity (in terms of the CPU utilization) of   on the   th host 
and the resource demanded by the   th VM be    . In this 

manner the total load at that host can be characterized in the 
form of the total load caused by all VMs and allied tasks 
running onto it. Let,   be the time-period or observation 
period. Thus, the sub-gap can be estimated by splitting   into 

   intervals    [(     )(     ) (       )] . 

Noticeably, the time-slot         represents the interval  . 
Thus, over  , the CPU utilization is estimated at a host using 
(8). 

 , ,   ,

1

n

i Util CPU j CPU j

j

CPU k vm pm


 
            (8) 

In (8), the parameter   refers to the CPU utilization which 
was collected for certain period. The average CPU utilization is 
estimated using (9). 

   , , 1
k

k

t n

i AvgUtil i Util

t t

pm pm t q




  
            (9) 

In (9), (   ) states the total amount of sub intervals or 

gap over   observation period. Let,      ( ) be the power of 

  th host over    span, then the power status can be obtained 

based on the CPU utilization value.     
( )which signifies the 

energy consumption by the   th host from the last time 
interval to the current time interval and hence is estimated as 
per (10). 

       , ,1 ( 1 ( ))( 1
k

i iw i w i w k kpm E pm k pm k pm k t t      
 (10) 

Based on host consumption hypothesis, for any host    , 

employing CPU utilization,           ( ) the energy consumed 

can be obtained as per (11). 

     , .   1  .   . max max

j j j j j i UtilE pm K e k e CPU k  
        (11) 

In (11),    signifies the portion of energy exhausted when 

the host (i.e.,    ) is in idle state; while   
    refers the energy 

exhaustion of     when being utilized completely. Moreover, 

the parameter           ( )  presents the CPU utilization by 

    over   duration. Thus, applying this mechanism, the 

resource utilization is estimated dynamically over each host 
and correspondingly the resource demand by each task or allied 
VM is estimated. Now, the resource consumption for all active 
hosts,   ( ) since the last or passed time interval to the current 
instant is estimated as per (12). The key dominant goal behind 
task migration or VM allocation problem is to obtain the set of 
VM-host mapping, where the proposed allocation model is 
supposed to place the targeted VM onto the suitable host, 
without impacting SLA performance or energy-exhaustion. 
Here, the resource allocation is performed in such manner that 
the proposed scheduling model attains minimal resource 
exhaustion  ( ), conditioned at: 

1

1

m

i ij

j

x 




            (12) 

, ,

1

n

j CPU i ij CPU j

i

vm X pm


 
           (13) 

Thus, with the above derived motive, in this research work, 
a state-of-art new improved ACS heuristic model is developed 
for SLA-centric task-scheduling and allied VM or resource 
allocation strategy. The details of the planned I-ACS model is 
given in the following section. 

D. Improved-ACS based Task Scheduling 

Unlike classical heuristic models, a hybrid ACS algorithm 
for task scheduling or allied VM allocation is applied. The VM 
scheduling model proposed in this paper is based on a well-
known heuristic model named ACO in which multiple agents 
estimate the solution-likelihood in iterative cycles. During this 
process, they converse ultimately by dropping the pheromone, 
which is a chemical substance called on respective paths they 
traverse. But, for research-intended task-scheduling or VM 
placement doesn’t employ the notion of path, in the proposed 
model pheromone is deposited by the ants on each task (or 
VM) and within a pheromone matrix by the host pair. The ants 
retrieve VMs in each series, and starts forming local solutions 
by means of a probabilistic decision rule that signifies the 
attractiveness for an ant to select a specific VM (MMT based 
VM selection) as the next one to pack in its current host. In this 
mechanism, the higher the amount of pheromone deposition 
and higher information related to a VM-host pair, the 
probability that it will be selected for migration will also be 
higher. Fig. 2 presents the solution formation for a single ant. 
In this mechanism, the ant initiates with four VMs, calculates 
the probabilities for each of the VMs using the probabilistic 
decision rule, and begins allocating the (selected) VMs for 
each selected host as per the estimated probabilities. Once the 
host is completely occupied with the migrated task or allied 
VMs the proposed model identifies a new host on the basis of 
corresponding likelihood. 
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Fig. 2. ACS-assisted Task-scheduling or VM Placement. 

This process continues till all tasks or VMs are assigned to 
the suitable hosts. During the optimal solution estimation, in 
each cycle or iteration, local solutions are assessed and the one 
demanding the minimum number of hosts is selected as the 
different optimal solution globally. Subsequently, it updates the 
pheromone matrix to estimate pheromone loss and reinforce 
VM-host pairs belonging to the set of the optimal or the best 
solution. To achieve it, ACS implements the pheromone update 
rule. In the proposed ACS based task-migration model, the 
proposed I-ACS gets triggered during VM assignment to the 
target host. It outputs a solution comprising VM to host (map) 
while maintaining no (or negligible) SLA violation or 
maximum host-shutdown (to achieve energy-efficiency). 

In this research the emphasis has been made on optimizing 
classical ACO to avoid local minima, convergence and 
enhance solution diversity to meet dynamic cloud resource 
optimization. The proposed model encompasses some of the 
key optimizations such as multi-population strategy, co-
evolution concept, dynamic pheromone update and dynamic 
pheromone diffusion. Such optimization measures enable the 
proposed model to retain optimal balance in between the 
convergence rate as well as solution diversity which helps 
perform better VM scheduling or placement decisions. 
Moreover, it helps perform swift computation which is 
effective towards large scale mega-cloud infrastructures. To 
achieve it, the proposed model is designed in such manner that 
it splits overall optimization problem into multiple sub-
problems where to avoid local minima and convergence (i.e., 
to achieve local optima), the ant-population is split into two 
specific categories; Elite Population and Normal Ant-
Population. This process not only increases computational 
efficiency (i.e., higher convergence rate) but also retains swift 
global-optima identification. Additionally, incorporating a 
dynamic pheromone update mechanism to enhance 
optimization ability over large network sizes. Similarly, the 
intent of pheromone diffusion was to make the pheromone 
released by ants at a certain point, which gradually affects a 
certain range of adjacent regions. 

Realizing large scale cloud infrastructure, the concept of 
co-evolution (in reference to both populations based as well as 
diffusion based) is applied that helps interchanging local 
information amongst varied sub-population to achieve dynamic 
information sharing. Noticeably, each VM is hypothesized to 
be a component possessing or encompassing operating tasks, 
and therefore the concept of co-evolution can enable dynamic 
decision without imposing an SLA violation issue. Thus, the 

implementation of the overall proposed model can ensure 
optimal energy as well as QoS oriented task scheduling across 
a large-scale cloud-infrastructure. 

Before discussing the overall proposed improved ACS 
model for the intended task-scheduling or VM migration, a 
ACO model is given as follows. 

E. Probabilistic Decision Rule 

In VM allocation strategy, at first ACS defines the 
likelihood of an ant to select a VM  for migrating it to a 
specific host   using (14). 

, ,

, ,

,

p

v p v pv

p v p

v p v pu N

Pr N

 

 

 

 


      
 

    



 
          (14) 

In (14), the parameter      states the pheromone-based 

attractiveness to migrate or attack VM   onto the host  . 
Similarly, the parameter      represents the VMs heuristic 

information. Moreover, the other variables         are 
applied to either focus more on the pheromone or the vital 
heuristic information. Moreover,    states the total number of 

VMs encompassing single or multiple tasks which are suitable 
to be attacked or connected with the current host  .    states the 

overall utilized memory or capacity of the current host, which 
can be estimated as the sum of all requested resources by the 

connected VMs, i.e.,     ∑       . Here, the task 

scheduling or allied VM placement is accomplished by means 
of a parameter     , which is estimated as per (15). 

 
,

1

1
v p

p C vTC T RC
 

 
           (15) 

Thus, once estimating the value of (15), a d-dimensional 
demand vector is created which is subsequently mapped in 
terms of a scalar value. Here, the L1-norm method is applied to 
perform mapping the VM and host so as to perform migration 
decisions. 

F. Pheromone Trail Update 

Once performing initial solution construction, the 
pheromone trails on all the pairs of VM-hosts are updated, 
which helps global solution retrieval. Classically ACS systems 
apply MAX-MIN Ant System (MMAS) and therefore the ant 
with the best solution in iteration is permitted to deposit 
pheromone. Thus, the pheromone update is performed as per 
(16). 

   , , ,: 1 , ,best

v p v p v pp v p V P       
         (16) 

In (16),   (          ) plays a vital role in simulating 
the pheromone evaporation. Noticeably, the higher value of   
results in an increased rate of evaporation. Additionally, a few 
pairs of the target VM and host pair require reinforcement and 

therefore      
    is defined as the best pheromone amount 

deposited in each iteration by that VM-host pair. In other 

words,      
     states the amount of pheromone added or 

deposited to the edge (   ). In this manner, the VM-host pairs 
with       is reinforced that gains higher attraction. 
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               (17) 

In ACS based task-scheduling or resource allocation, VMs 
and host nodes are considered as input along with respective 
demanded resource capacity and total capacity     and   , 

respectively. Furthermore, certain parameters like α       , 
    ,               are initialized and the initial pheromone 
trails for VM (tasks)-host pairs is defined as     . nCycles 
represents the number of iterations. In individual iteration an 
ant   initiates a host set     and performs solution retrieval 

process  . Thus, with these initialized parameters, ACS model 
performs task-migration or VM allocation to the different 
suitable hosts, while maintaining optimal SLA and higher 
energy-efficiency. A snippet of the classical ACS based task 
scheduling is given as follows. 

Algorithm 1 ACS-based VM scheduling or the task scheduling 

Input: Declare VMs and hosts with respective resource requirement, 

   and     

Output: Best solution       
Assign initial pheromone value for the pair of VM-host with      

for all   *              +do 

 for all   *            +do 

 :   ;   :  0IS V p   

   , :    :  0 ,  0, . . . , 1 ,  0, . . . ,  1a v pS x v m p n           while 

    do 
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if      then 

Select          as per the probability  
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,  : 1 v px   

  :    IS IS v  

:    lp lp RCv   

 else 

 :     1 p p   

 end if 

 end while 

end for 

Estimate the solutions   as per the objective function and declare as 

       

if           (      ) then 

 Declare iteration (cycle) as best solution with       as the best 

solution. 

end if 

Estimate                
for all pair of VMs and hosts(   )      do 

 , , , :  1   best

v p v p v pT p       

 if          then 

,v p minT T  

 end if 

 if          then 

,v p minT T  

end if 

end for 

end for 

return       

As depicted in the above snippet, once identifying the best 
host solution, the proposed global controller schedules the VM 
(containing task(s)) to the selected host, and this process 
continues till all tasks or allied VMs are assigned a suitable 
host to continue respective functions. In classical ACS based 
optimization methods, ACS algorithm exploits the positive 
feedback and parallel computing concept to perform 
optimization. However, the majority of the ACS solutions 
undergo local minima and convergence problems, especially 
due to the complexity in estimating the optimal control 
parameter, etc. Though, a few efforts such as co-evolution, 
derived on the basis of the co-evolutionary phenomenon in 
nature have emerged as potential alternatives to the classical 
optimization solutions. These approaches employ the concept 
of decomposition and coordination to split a complex problem 
into multiple small but interacting optimization sub-problems. 
Such sub-problems are enhanced distinctly and perform as an 
eventual standalone solution. Thus, the strategic 
implementation of multi-population strategy along with co-
evolution can improve overall performance. In sync with the 
ACS solution, the implementation of multiple generation, co-
evolution, improved pheromone update concept and 
pheromone diffusion can achieve relatively better performance. 
Additionally, such approaches can greatly help avoiding local 
minima and convergence issues in the ACS system. 

The intended improvement in convergence rate can 
significantly help in avoiding local optimal value and hence 
more precise resource allocation can be accomplished. This 
approach can be well suited towards the large-scale task-
scheduling and allied resource allocation problem in cloud 
(IaaS) infrastructure. In reference to the above stated ACS 
optimization requirement, the proposed model applies a multi-
generation concept that splits the complete population or ants 
into two broad categories; elite ants and the common ants. 
Moreover, it introduces state-of-art new and robust pheromone 
update mechanism to enhance the optimization capacity of 
ACS to meet at-hand task scheduling and allied VM migration 
control. Subsequently, a novel pheromone diffusion model is 
applied that effectively controls the pheromone release by ants 
at specific points, which subsequently impacts adjacent regions 
to optimize solution faster. 

On the other hand, the proposed co-evolution concept helps 
exchanging information amongst the varied sub-populations 
for better information sharing. These enhancement efforts 
intend to achieve more efficient, fast and accurate task-
scheduling over cloud to meet real-world cloud demands. The 
detailed discussion of the above stated improvement and allied 
implementation towards S-DTS purpose is given in the 
subsequent sections. 

G. Multi-Population Generation Mechanism 

In the classical ACS model, as discussed in the previous 
section, it applies merely one kind of population (i.e., ants) to 
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retrieve new solutions. In this process, these classical methods 
apply predefined fixed values of the ant-colony size, 
convergence parameter, and selection parameter to control the 
solution-estimation. However, under dynamic applications 
such as at-hand cloud computing problems, it is highly 
complex and challenging to estimate the suitable set of 
parameters to retrieve the enhanced performance with swift 
convergence rate. Such limitations often results in premature 
convergence, and hence seems inferior towards task-scheduling 
in cloud infrastructure. To alleviate such problems, a concept 
of multi-population is applied that splits the entire population 
of ants into two categories: elite ants and common ants. The 
elite ants retrieve information from the solution archive that 
eventually helps in generating solutions by implementing a 
Gaussian kernel function assisted likelihood selection model. 
More specifically, the proposed elite ants possess a set of 
distinct parameters that help them (i.e., elite ants) to enhance 
the convergence rate. On the contrary, the common-ants are 
employed to generate new solutions with relatively slower 
speed by means of a single Gaussian function. Noticeably, to 
achieve it, the common ants employ the mean value of each 
dimension that helps in avoiding local optima. The proposed 
model applies the following Gaussian function to generate 
common ants. 
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In (18), the parameter   
 ( )  represents the Gaussian 

function used for common ant generation in the      

dimension. The other parameter,      represents the sample 

value while      refers to the obtained standard deviation. The 

average value of the solution in the  -th dimension is given by 
  . Here,    be the constant employed to control the 
convergence rate of the common ants. Thus, the proposed 
model enables common antsto increase the search space 
sufficiently large which eventually helps improve the global 
search ability. 

H. Multi-level Pheromone Update 

In the majority of the classical ACS solutions, the key 
challenge is the pheromone update. To alleviate such 
limitations in the proposed ACS solution, the two different 
pheromone update mechanisms; the local pheromone update 
and the global pheromone update is applied. A snippet of the 
proposed multi-level pheromone update method is given as 
follows: 

I. Local Pheromone Update 

In the proposed model, before executing the optimization 
(say, the first iteration of the optimization), the pheromone 
deposition on each edge (signifying the VM-host pair) remains 

the same and constant. The local pheromone model is executed 
on each (passed) VM-host pair’s edge once any ant completes 
the current iteration. Similar to the classical ACS model, it 
updates the local pheromone using (21). 

       
, , 01
i i i

x y G x y L       
          (21) 

In (21),    (   ) refers the local pheromone evaporation 
coefficient, while      be the pheromone residue factor. The 

other parameter,   
( )

 presents the initial pheromone value. For 

a node value as 1,   
( )

 used to be the small negative number, 

while the same as 0, indicates   
( )
  . 

J. Global Pheromone Update 

Once all ants complete one iteration and achieve a solution 
set, the passed nodes exhibit the global pheromone update. 
Unlike classical pheromone update model (17), the proposed 
model performs pheromone update as per (22). 
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          (22) 
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          (23) 

In (22-23),    (   ) refers the global pheromone 
evaporation coefficient, while (    )  presents the residue 

factor,   
( )

 is global optimal solution and while   
( )

 signifies 

the iterative optimal solution. 

K. Pheromone Diffusion 

In Pheromone Diffusion process, the ants (agent) apply a 
single pheromone release mechanism. This approach can 
merely influence the subsequent ants with the passed same 
point; however doesn’t guide the ant-search within a specific 
range of neighboring regions, and therefore influences the 
overall optimization performance. Based on the above 
discussed multi-layer pheromone update model, the pheromone 
diffusion concept to enhances the performance. The likelihood 
of superior solutions in the neighboring region used to be 
higher in comparison to the other neighboring regions. Hence, 
the pheromone diffusion concept can enable pheromone release 
by the agents at a certain point that slowly influences a specific 
range of the adjoining regions. On the other hand, the other 
ants (elite ants) intend to avoid making any search in its 
vicinity of the poor solution and often intend to search the 
solution near or in the neighborhood of the better solution. This 
as a result not only improves time performance but also 
accuracy of the selected solution in each iteration. 
Mathematically, the pheromone update and diffusion concept 
are presented as per (24-25). 
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In (25),   refers the total number of estimated solutions in 

current iteration, while   
( )

 refers the left guiding pheromone 
concentration on the source object   . The other parameter, 

  (     )    (   ) represents the correlation distance in 

between the two maps or objects. 

L. The Co-Evolution 

Unlike classical evolutionary computing approaches, co-
evolution is an improved concept that enables higher biological 
diversity, by emphasizing on certain reliance on intra-
organisms (between organisms and organisms), inter-
organisms (organisms and environment) during the evolution 
process. Functionally, it employs evolution theory to construct 
the competition relation or cooperation relation among two or 
more populations so as to enhance optimization performance 
by the interaction of multiple populations. It also focusses on 
exploiting at-hand interaction amongst the varied sub-
populations, and eventually influences each other to co-evolve 
altogether to attain superior optimization performance. In 
proposed ACS solution, a co-evolution concept to realize the 
information interaction amongst the varied sub-population to 
yield better optimization performance. Thus, implementing the 
above stated improved ACS model dynamic task scheduling 
and allied resource allocation. The results obtained by carrying 
out simulation and its inferences are discussed in the following 
sections. 

IV. RESULTS AND DISCUSSION 

Ensuring SLA/QoS centric task migration while preserving 
energy-efficiency is a NP-hard problem, a state of art new 
Improved ACS model (I-ACS) for VM migration scheduling is 
applied. Unlike classical heuristic methods, including the 
conventional ACS or ACO, the proposed method applied 
multi-population with co-evolution and dynamic pheromone 
update capacity. This approach not only intended to improve 
overall scheduling efficiency but also intended to alleviate the 
problem of local minima and convergence. Thus, performing 
above stated activities achieves SLA-sensitive and energy-
efficient task scheduling in large scale cloud infrastructure. The 
details of the simulation environment applied is given as 
follows. 

A. Experimental Setup 

To simulate the overall proposed model, CloudSim 
simulation environment and allied benchmark tool is 
considered. The overall programs were developed in Java 
programming language and emulation was performed over 
Java Eclipse platform. Noticeably, the higher scalability, ease 
of implementation and realistic problem realization was the 
foundation behind the selection of CloudSim based simulation. 

In cloud configuration setup, each host is characterized in 
terms of corresponding utilization of memory and the 
performance of Central Processing Unit (CPU). The 
parameters are Million Instruction Per Second (MIPS), 
signifying the resource being used or demanded by each task 
and the resource available onto a host. Moreover, memory 
(RAM) utilization and bandwidth information of each host as 
well as VM, which are supposed to be monitored continuously 
to ensure QoSand SLA oriented task scheduling. 

To consider the effectiveness of the proposed task-
migration of the VM allocation model, the multiple real-time 
cloud-computing traces obtained from the CoMon data project, 
a PlanetLab simulation benchmark (cloud trace) dataset are 
used. The employed dataset comprised the cloud traffic and 
allied CPU utilization traces from 1000 plus VMs and allied 
autonomous tasks, where the different VMs were located at the 
different locations. The considered benchmark data 
encompassed the cloud traces over 10 randomly selected data 
in March and April, 2011. In the considered dataset, the CPU 
utilization measurement interval was fixed at five minutes. A 
simulation environment is considered with the system 
architecture consisting of two heterogeneous servers with dual-
core CPUs, one HP ProLiant ML110 G5 with Intel Xeon 3040, 
2 cores  1860 MHz processors, armored with 4GB RAM. 
Additionally, it encompassed HP ProLiant ML110 G5 server 
with Intel Xeon 3075, 2 cores   2660 MHz, 4 GBRAM) to 
represent a heterogeneous cloud environment. The server’s 
frequency is mapped onto MIPS specifications where HP 
ProLiant ML110 G4 server was mapped with 1860 MIPS, 
while for HP ProLiant ML110 G5 server mapping with 2660 
MIPS. Each server was armored with 1 Gbps network 
bandwidth. To assess the efficacy of the proposed task 
migration or VM allocation (say, resource allocation) model, 
the performance is obtained in terms of SLA violation (often 
called, SLAV), SLA downtime, number of migration and 
energy-consumption. Before discussing the empirical 
outcomes, a snippet of the different SLA sensitive performance 
variable is given as follows: 

B. The Cost of Tack-Scheduling or VM Migration 

Undeniably, the key intent behind the task-migration or 
allied VM migration is its QoS-affinity or SLA demands. 
Additionally, this mechanism demands the proposed 
scheduling model to ensure minimum SLA violation (SLAV), 
maximum migration with minimum downtime performance. 
Moreover, maintaining lower energy-consumption has always 
been the dominant demand from cloud infrastructures. 
Typically, the SLAV or downtime probability primarily rely on 
the key factors such as resource demand or memory expected 
by the different tasks operating onto the VMs, number of 
memory disks updated over varied execution periods, etc. 
Under dynamic workload scenarios, the average performance 
degradation caused due to the downtime is nearly 10% of the 
overall CPU utilization. Each VM migration introduces a 
certain SLAV and therefore the minimization of the migration 
while maintaining SLA performance can be vital. However, 
maintaining higher task migration without causing any SLAV 
can also be suitable towards real world application. It seems 
more realistic under resource constrained scenarios with 
exceedingly high dynamism. Practically, the migration period 
relies on the total amount of memory used by the tasks at a 
certain VM and the available network bandwidth. The 
migration period for a specific VM, say     can be estimated 

as per (26). 
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In (26), the memory employed by     is    , while the 

available bandwidth is given by   . Here, the focus is on 

reducing SLAV by maintaining MMT to avoid downtime. To 
assess performance, the overall performance degradation 
during the targeted task-scheduling was assessed as per (27). 
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           (27) 

In (27), the parameter     signifies the overall performance 

degradation during the task-migration or VM allocation from 
one host to another,    be the initial migration (start) time, 

while     be the overall time exhausted during migration. The 

other parameter   ( )  is the overall CPU utilization by a 

node   . 

C. SLAV Metrics 

Considering the SLA objective in cloud infrastructure, the 
performance of the proposed task scheduling or VM migration 
model in terms of the different SLAV parameters is examined. 
To meet QoS and SLA demands, migration model are required 
to be optimal in delivering minimum throughput and maximum 
response time. Functionally, these performance parameters 
change based on the application demands and allied scheduling 
modalities. The overall SLAV is defined as the disparity in 

between the demanded MIPS by the tasks or VMs (   ( )) 

and the actual assigned MIPS (   ( )) over the life time of 

VM (28). 
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In (28), the total number of active VMs is given as  .This 
work considered MIPS information as well as CPU utilization. 
Noticeably, here the CPU utilization refers the memory 
demands which couldn’t be assigned when demanded. In the 
proposed method, distinct two SLA metrics, one the duration 
through which the active host nodes have experienced 100% 
CPU utilization, called Overload Time Fraction (OTF); and the 
performance degradation by VMs (PDM) caused due to VMs 
migrations have been considered for performance analysis. 
Here, the value of OTF and PDM is estimated using the 
following equations (29-30). 
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In (29-30),   represents the total number of active hosts, 
while the number of active VMs is  . The other parameter 

   be the total time-period over which the   th host 

experienced complete (i.e., 100%) resource utilization giving 
rise to the SLAV. Here, the total number of active hosts or 

servers are     and     be the performance degradation of     

due to migration. In the proposed model, the overall CPU 
demanded by the cumulative tasks at    is    . Since, the 

above stated SLAV parameters or metrics, OTF and PDM 
represent SLAV distinctly, and therefore combining the both 
metrics as a unified performance parameter named SLAV, 
which is defined as (31). 

.SLAV OTF PDM            (31) 

The detailed discussion of the simulated performance 
outcomes in terms of the above discussed SLA performance 
metrics, downtime and energy is given as follows: Unlike 
major classical researches such as [1-5], authors have focused 
on assessing resource scheduling performance based on the 
parameters like make span, scheduling time, etc.; however, 
could not assess whether their approach delivers SLA or not. 
Unlike the performance assessment in terms of makeover or 
scheduling time, a real-world cloud infrastructure, especially 
IaaS often demands ensuring minimum or even negligible 
downtime, SLAV, etc. Moreover, assessing their suitability in 
terms of energy is equally significant. Therefore, taking into 
consideration of this fact, in this research the performance of 
the proposed system is examined in terms of the following 
parameters: 

No. of VM migrations, 

SLA-Violation (SLAV), 

SLA performance degradation, 

SLA Violation per active host, 

Host Shut-Down, 

Energy-Consumption. 

Amongst the above stated performance metrics, 2, 3, and 4 
represents robustness of the scheduling methods towards SLA 
assurance or QoS. On the contrary, 1 and 5 presents scalability 
of the proposed cloud model, while 7 indicates swiftness. 
Though, 1, 3 and 5 are highly dependent. Similarly, 6

th
 

performance metrics indicate the energy-efficacy by the 
proposed model. Noticeably, for an SLA-oriented solution a 
task scheduler requires maintaining a greater number of 
migrations while maintaining negligible SLAV, SLAV per 
active host, and scheduling time. On the contrary, higher 
number of active hosts shut down indicates energy-
convergence ability by the proposed model. To compare the 
performance by the proposed model i.e. I-ACS model, with 
other recent approaches as well; though these methods 
examined their performance in the different terms like make-
span or time over varying tasks. Noticeably, scheduling 
methods are considered as the foundation and performed task-
migration hypothesizing that each VM carries a single 
operating task, and hence the task migration can be realized as 
a classical VM-consolidation or migration problem. Thus, with 
this hypothesis, three different existing approaches as 
mentioned in [2], [3] and [4] are implemented. 

Velliangiri et al. has focused on improving heuristic model 
to achieve better performance and local minima and 
convergence avoidance. In this regard, authors [2] designed a 
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Hybrid Electro Search with GA (HESGA) algorithm for task-
scheduling. To achieve better performance, authors applied GA 
to obtain local optimal solution, while Electro Search algorithm 
was applied to improve global optima solution. However, 
authors failed in addressing the dynamism of the resource 
demands under uncertain predefined heterogeneous (dynamic) 
clouds. Recalling the fact, unlike [2], where authors applied 
static threshold-based hotspot detection, to cope up with the 
exceedingly dynamic cloud environment IQR-LRR based 
stochastic prediction concept for overloading detection is 
applied, which helped making task-scheduling on time and 
hence preserved SLA performance. Recently, an improved 
effort was made in [3], where Liu et al. [3] proposed an 
improved GA based collaborative scheduling concept for cloud 
infrastructure. With the same intend as [2], or the proposed I-
ACS model, authors [3] targeted on avoiding local minima and 
convergence problems for better scheduling. 

Xiang et al. [4] recently proposed the Greedy-ACO 
algorithm for workflow scheduling in heterogeneous cloud 
environments. To be noted, there are a large number of existing 
method or literatures discussing heuristic based task 
scheduling, VM consolidation and VM migration; however, 
considering these three key recent methods which not only 
intend to perform task-scheduling, but also address the existing 
drawbacks of the major existing methods such as local minima 
and convergence. 

Recalling the fact that the considered cloud traces or 
benchmark data was taken from PlanetLab datasets, to examine 
or simulate the proposed model (as well as the existing 
methods [2-4] over the different datasets. More precisely, the 
proposed model is executed with the cloud traces obtained 03 
March 2011, 06 March 2011 09 March 2011, 22 March 2011, 
25 March 2011, 03 April 2011, 09 April 2011, 11 April 2011, 
12 April 2011 and 20 April 2011. Thus, simulating the 
different methods, including the proposed I-ACS model 
obtains performance outputs in terms of 1-6 metrics. To 
generalize the performance over multiple test instances or 
cases, the average performance is considered. The outputs 
obtained in terms of the different SLA metrics is given as 
follows: 

Fig. 3 presents the number of VM migrations by the 
different techniques. After the observations, the overall results 
obtained by the proposed I-ACS model show a higher number 
of task migration, exhibiting robustness towards superior 
scalability. It is further be identified in terms of the minimum 
SLA violation and downtime, as depicted in Fig. 4 to Fig. 6. 
Noticeably, literature hypothesizes that maintaining a lower 
number of migrations can avoid any likelihood of SLAV; 
however, the proposed model has exhibited on the contrary, 
affirming that one can achieve superior SLA performance even 
with a higher number of migrations. Since, in the proposed 
model, each VM was considered as one autonomously 
operating task, scheduling a larger number of tasks shows the 
superior scalability by the proposed method. It affirms 
robustness of the proposed model towards realistic mega data 
center applications. 

 

Fig. 3. Number of VM Migrations using different Techniques. 

Fig. 4 presents the SLA violation, here called SLAV. The 
observations with overall results achieved by the proposed I-
ACS model shows better than other existing approaches; 
however, its performance is far better than the classical ACO 
algorithms. This performance enhancement could be 
contributed because of multiple-generation, dynamic 
pheromone update and co-evolution concept. Statistically, I-
ACS model has exhibited almost 0.03% of SLA violation, 
which shows its robustness. A similar performance was 
observed in terms of SLA performance degradation per host 
(Fig. 5). As depicted in Fig. 5, the proposed method performs 
superior over other heuristic based scheduling. To be noted, 
since HESGA [2] and improved GA [3] algorithms were 
developed similar to the proposed I-ACS concept, where the 
key focus was made on alleviating the at hand local minima 
and convergence and hence these approaches showed better 
performance than the classical ACO based scheduling. 
However, these methods [2][3], due to the lack of adaptive 
overloading or hotspot detection and dynamic scheduling 
(performed using multiple controller-based systems), were 
found inferior than the proposed model. 

 

Fig. 4. SLA Violation (SLAV) Performance by the different Techniques. 
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Fig. 5. SLA Performance Degradation by the different Techniques. 

A similar performance was found in SLA per active host 
(Fig. 6). Observing overall performance, it can easily be found 
that the proposed multi-controller assisted I-ACS based task-
scheduling model achieves better SLA performance and 
eventual QOS to meet major cloud computing demands. In 
terms of time of execution, Fig. 6 reveals that the proposed I-
ACS model exhibits superior in terms of the SLA time per- 
active host (second), signifying very small or near tolerable 
downtime. The comparative outcomes too reveal that the 
proposed model shows almost 18% lower downtime than other 
heuristic based approaches. 

Considering about the number of hosts shut-down, Fig. 7 
reveals that the proposed I-ACS based task-scheduling model 
exhibits a higher number of host-shut down, signifying better 
energy-efficiency and optimal resource utilization. 

Fig. 8 can be found in affirmation, where the proposed I-
ACS model has exhibited almost 8% lower energy than the 
classical ACO based scheduling. Noticeably, in Fig. 8, the 
energy consumption by GA variants is relatively higher. This 
could be because of the predefined number of stopping criteria 
(considering 200 number of generations). It could have taken 
more time for computation and hence higher energy 
exhaustion. Thus, considering the overall performance outputs, 
it can be stated that the proposed I-ACS based model achieves 
superior performance than other existing (recent) heuristic 
based task-scheduling systems or resource allocation (say, VM 
migration) methods. The overall research conclusion and its 
related inferences are given in the subsequent sections. 

 

Fig. 6. SLA Time Per Active Host (sec.) by different Techniques. 

 

Fig. 7. No. of Host Shut-down by the different Techniques. 

 

Fig. 8. Energy Consumption by the different Techniques. 

V. CONCLUSION 

The research work primarily focused on improving the 
task-scheduling and allied dynamic resource allocation to meet 
SLA-centric cloud services. To meet contemporary as well as 
future demands including QoS, SLA-agreement and energy-
efficiency, the proposed work introduced multiple 
enhancement at the different levels of computation. The 
proposed model applied multi-controller strategies, where the 
use of local controllers enabled task-level resource utilization 
assessment and stochastic prediction-based overloading or 
underloading detection avoiding any possible downtime. The 
proposed local controller applied minimum migration time 
based VM selection strategy that greatly helped for timely task-
migration scheduling. Eventually, exploiting the task and 
possible target host information, the proposed involves 
improved multi-population, adaptive or dynamic pheromone 
update and co-evolution-based I-ACS model which performs 
dynamic task-migration or allied resource scheduling. The 
overall proposed I-ACS model not only enabled superior task-
migration but also avoided any possible local minima and 
convergence problem. This as a result affirmed optimality of 
the proposed solution exhibiting superior performance in terms 
of minimum SLA violation, minimum downtime, lower energy 
consumption and higher number of task-migration. 
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