
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 11, 2021

492 | P a g e

www.ijacsa.thesai.org

Improved GRASP Technique based Resource

Allocation in the Cloud

Madhukar E
1

Associate Professor, CSE

Sreenidhi Institute of Science and Technology

Hyderabad, India

Ragunathan T
2

Professor & Dean, CSE

SRM University

Amaravathi, India

Abstract—In the era of cloud computing, everyone is

somehow using cloud resources. However, the resources are

limited in the Cloud. Cloud vendors look for enhanced returns on

investments. Promising return on investment is possible only

when the cloud resources are scheduled efficiently to execute jobs

within the stipulated time. However, brute force methods require

exponential time to produce a schedule. Heuristic and meta-

heuristic algorithms have been proposed in the literature to

allocate resources to the jobs. These algorithms still suffer from

slow convergence. To overcome this problem, researchers

clubbed various heuristics and meta-heuristic to form a new

hybrid algorithm. With the same motive, this paper explores the

limitations of greedy random adaptive search and shows that

learning through a fixed set search enhances efficiency. Based on

the results, it can be concluded that the proposed algorithm is on

par with existing hybrid meta-heuristic algorithms.

Keywords—Cloud computing; task scheduling; meta-heuristics;

fixed set search; GRASP; resource allocation

I. INTRODUCTION

Cloud computing is one of the emerging technologies in
this era. It creates a new paradigm in information technology
and computing. Conventional computing methods are ousted
by Cloud computing by making "usage of computing as a
utility" [1] which is charged on pay-as-you-use provision
similar to "utilities like water, electricity, gas, and internet"
[1].

Cloud provides a metered service that automatically
delivers services when and where they are needed. It provides
virtualized, well-managed, abstracted, and on-demand
compute, storage, and network services with a deep internet
backbone.

While cloud computing has origins in Cluster, Parallel, and
Grid computing, it differs in terms of virtualization, resource
pooling, elasticity, and heterogeneity from these technologies.
The Cloud imposes several challenges to provide the features.

The challenges range from security, privacy, scalability,
fault tolerance, energy consumption, interoperability, and
scheduling. Cloud vendors have to be cautious with all these
challenges to dispense the service to the users. It is an arduous
task to stick to the service level agreement (SLA). Violations
of SLA lead to many legal problems.

Resource scheduling is required to balance the service
provider's challenges and fulfill the cloud user's requirements.

However, resource scheduling is an NP-hard problem. With

exhaustive search, it takes a longer time to give the schedule.
Within a polynomial-time, it is not proven to give an
optimal solution.

Cloud computing provides an infinite number of resources
on demand. The users can focus on business innovations
rather than focussing on the accumulation of physical
resources. Its pervasiveness helps the users by providing the
resources on-demand, convenient, and tailored to the
requirements. Many start-ups can effectively utilize the
services offered by cloud vendors. Special pricing schemes are
offered to the corporate users, as the resources are needed at a
large scale. The services can be divided into IaaS, PaaS, and
SaaS. The phrase "everything as service" XaaS was termed in
[2]. Many companies have moved to the Cloud to compute
and store information. The characteristics of cloud computing
benefit both cloud providers and users.

Three types of clouds exist based on their ownership.
Public, private, and hybrid clouds fulfill the user's
requirements. Public Cloud is made up of resources of third-
party companies. Private clouds, in general, will be located on
the premises of the organizations. Hybrid clouds consist of
combined features of public and private clouds.

Resource scheduling in a Cloud computing environment is
an important phenomenon. Researchers have been proposing
new heuristic and metaheuristic algorithms. In this paper, an
improved Greedy randomized adaptive search algorithm has
been proposed. The learning mechanism is added to the
existing algorithm. It is shown that the algorithm's simplicity
is not lost even after the addition of the learning to the existing
algorithm. Tasks will be allocated to the virtual machines with
efficiency. The main objective is to minimize the makespan.

A. GRASP

The "Greedy Random Adaptive Search Procedure
(GRASP)" [3] is one among many familiar meta-heuristic
algorithms proposed by Feo and Resende. It helps to solve the
NP hard problems, precisely like combinatorial problems.
This algorithm has two phases in each iteration. The algorithm
begins with a "randomized greedy allocation" [3]. The second
phase will be added with a procedure of local search with
existing solutions. If any improvement is added to the existing
solution in the objective function, the new solution is
considered a new incumbent solution. This procedure is

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 11, 2021

493 | P a g e

www.ijacsa.thesai.org

continued till it reaches an optimal solution or to stopping
criteria. However, it has a limitation of not learning.

The addition of the local search method improves the
performance of the metaheuristic algorithm. Hybridization is
such a process that can combine one or more metaheuristics,
to enhance efficiency. However, complexity may be increased
if such hybridization is done.

Model-based heuristic algorithms are made up of
identifying sets of parameters that define that model and help
to find the target in the search space. These algorithms
progressively modify their model after every iteration. In turn,
the possibility of finding a quality solution is increased. The
learning mechanism is part of Swarm intelligence, in which
the information will be shared among the particles
(components) so that the direction of the search will be
changed. More emphasis is put on the learning mechanism in
the recent past. In this phase, the focus is maintained to collect
the information to enhance the quality of the solution.

GRASP algorithm falls into the class of population-based
metaheuristics. The greedy function and stochastic model
clubbed together to improve the efficiency of the algorithm. In
addition to the GRASP, instances such as Semi-greedy
heuristics[4] prove that rather than complex algorithms,
simple algorithms also can give promising results.

In this paper, the boundaries of GRASP are extended by
adding a learning mechanism [5]. A few examples of such
methods are the "Dynamic Convexized method" [6] and
"GRASP with Path relinking" [7]. These two algorithms show
instances of intensified foraging behavior in the solution
space. A significant level of improvement was shown with
these methods.

The majority of the existing hybridized methods focus on
the best quality solutions found so far to enhance the quality
of the solution. However, algorithms like ACO use the
elements of high-quality solutions with probability. The cross-
entropy method (CE) [8] is akin to the concept in which the
solutions are constructed based on the frequency of the
elements from high-quality solutions. In the proposed
algorithm, the focus is on the best elements of the finest
solutions. The existing GRASP will be added with the theory
of fixed set search to learn and select elements that direct
towards the solution. Based on the prevalence of the elements
which are part of high-quality solutions, a new solution is
constructed.

II. RELATED WORK

Scheduling started way back in Johnson's proposed work
[9] to use the machinery efficiently as part of manufacturing.
Scheduling had taken new directions with the invention of
operating systems in computers. However, scheduling
methods which have been part of the operating system are not
suitable for the Cloud.

The Grid computing algorithms were tailor-made to suit
Cloud computing. Batch and online mode heuristic [10]
algorithms are two types of requirements for scheduling in the
Cloud. Min-Min, Max-min, Round robin, and FCFS are part

of batch mode. Most-fit task scheduling falls into online
scheduling.

A. Deterministic and Exhaustive Algorithms

Online mode heuristic algorithms (OMHA) and batch
mode heuristic algorithms (BMHA) [10] are two categories of
scheduling algorithms in the Cloud. "First Come First Serve
(FCFS), Round Robin(RR), Min- Min algorithms, and Max-
Min algorithms come under BMHA. Most Fit Task
Scheduling(MFTS) algorithms come under OHMA, in which
schedule will be done when the job is received" [11]. First
come, first serve, Shortest time remaining job, Priority
scheduling, and Round-robin are not optimal for the Cloud.

The deterministic and exhaustive algorithms are two
methods for scheduling algorithms. Both these methods are
not suitable for large-scale environments like clouds. It is
evident that finding the optimal solution within the
polynomial-time for such NP-hard problems is not possible.
The metaheuristic algorithms [12] could find the solutions
within a short time by compromising the optimality.
Simulated annealing(SA), Genetic algorithm (GA), Ant
colony optimization, Particle swarm optimization (PSO) are a
few such metaheuristic algorithms. Analytical Hierarchical
processing was applied to prioritize the tasks in [13], which
proved that there is some improvement in the makespan

B. Metaheuristic Scheduling Algorithms

The term "metaheuristic" was coined by Fred Glover in
1986 [14]. It indicates a heuristic with a non-problem-specific
approach, and it is a combination of exploration and
exploitation.

Applying metaheuristic algorithms for scheduling in the
Cloud has become a common practice because of its
efficiency. One among many such algorithms is ant colony
optimization. It proved a significant improvement in the time
complexity for optimization problems. It also proved that a
near-optimal solution could be achieved by iteration after
iteration. One such algorithm is proposed and applied by M. A
Tawfeek et al. [15]. They compared with FCFS and round-
robin algorithms. Since then, many researchers have shown
some improvement by either hybridization or adding extra
features.

Moon et al. [16] discuss ant colony optimization-based
task scheduling. They claim that the global optimization
problem was solved with slave ants by avoiding long paths
where pheromone gets accumulated. Z. Chen et al. [17], used
multiple populations in ACO to solve two objectives in the
Cloud. They dealt with a new pheromone update by using
non-dominated solutions from the global archive to guide a
complementary heuristic to avoid the single-objective
optimization.

In [18], the authors proposed an algorithm in which the
greedy strategy is combined with the GA algorithm. They
show that their method shows better results in task scheduling.
The Differential algorithm in [19] was considered as one of
the simple algorithms to search for the optimal solutions in the
search space. To derive potential off-springs, better
individuals were applied with the Taguchi method. In [20], the
moth search algorithm and differential algorithms were

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 11, 2021

494 | P a g e

www.ijacsa.thesai.org

hybridized. In the presence of Levy flights, they used a
differential evolutionary algorithm to enhance the exploitation
potential and used phototaxis for explorations. In [21], the
authors integrate project scheduling along with the workflow
scheduling problem. Two artificial bee colony algorithms
proposed by them help to solve the workflow scheduling.
They claim that their method is practically applicable for
complicated workflow scheduling problems. In [22], the
researchers discuss the provision of resources with QoS such
as makespan, cost, and task migration reduction. They show
that their method achieves better results with their objectives
with improved efficient artificial bee colony. In [23], by using
whale optimization, they proposed a W-scheduler. Multi-
objectives were proposed and compared with PBACO,
SLPSOSA, and SPSO-SA. Agarwal et.al. [24], discusses the
application of genetic algorithms. They discuss mainly the
distribution of the load among the virtual machines. They
compare it with FCFS and prove that their method
outperforms in terms of QoS.

C. Maintaining the Integrity of the Specifications

The initial stages of the metaheuristic algorithm exhibit
divergence, which covers a large search space, and decreases
as the solution is near-optimal. Premature and slow
convergence[12] are the problems with existing metaheuristic
algorithms. The probability of achieving an optimal solution
with high diversity is maximum. This high diversity suffers
from slow convergence. Contrary to this, the convergence
might be fast with a less accurate solution if divergence is less.
To enhance the efficiency of the metaheuristic algorithm, it
has become a general practice to add two or more
metaheuristic algorithms to form a new hybrid algorithm.

Generally, three kinds of combinations [12] are used to
hybridize the algorithms. The first type is a mix of population-
driven and single solution-based algorithms. Combining two
population-based algorithms is the second type, and the
combination of metaheuristic and heuristic algorithms is the
third type.

In [25] and [26], the authors fused the Genetic algorithm
with the Particle swarm optimization algorithm (HGPSO) and
the Genetic algorithm with Ant colony optimization (HGA-
ACO), respectively. In the former algorithm, the initial
population is generated by GA, and the individuals with good
fitness are selected as candidates for PSO. In the latter, the
efficient pheromone for ant colony optimization is initialized
using a genetic algorithm. The ACO is used to improve GA
solutions for crossover GA action. The findings of the
experiments demonstrate that the suggested system performs
well in terms of mission allocation and maintaining service
efficiency parameters.

Two-hybrid metaheuristic algorithms have been
introduced [27] by Ben Alla, H. et al. PSO, which is
hybridized with fuzzy logic, is the first proposed algorithm.
Simulated annealing is combined with PSO in the second
algorithm. They use Dynamic dispatch queues for these
algorithms. Discrete PSO has been combined [28] with a local
search in which the authors use hill climbing for the avoidance
of local optima. They claim that their algorithm has shown
better performance in the minimization of makespan. In [29-

32], PSO and fruit fly algorithms (FOA) were merged. The
essential parameters, position, and velocity of PSO have been
redefined. With the help of a fruit fly smell operator, the issue
of prematurity has been resolved.

III. PROPOSED WORK: IMPROVED GRASP ALGORITHM

Fixed set search and GRASP are combined to make an
improvement in the performance of the algorithm to allocate
jobs to VMs.

A. General Procedure for GRASP

As GRASP is an iterative process [3], each iteration
consists of the construction phase and a local search phase. A
feasible solution is built iteratively, one element at a time in
the development process. The choice of the next element to be
added is decided at each construction iteration by ordering all
the elements in a candidate list with respect to a greedy
function. The pseudocode for GRASP is presented in Fig. 1
with algorithm 1.

The advantage of choosing each element is calculated. The
heuristic is adaptive because, during each iteration of the
construction process, the benefit associated with each element
is modified to accommodate the improvements made by the
previous element's selection.

Algorithm 1. Pseudocode – GRASP

while GRASP Stop Criteria not Satisfied do

 create solution Sol using greedy random method

 local search (Sol)

 update if Sol is the new best

end while

Fig. 1. Pseudo Code for GRASP.

The "Restricted candidate list (RCL)" [3] is labeled by
considering the list of best candidates. This technique makes it
possible to obtain new solutions in every iteration of GRASP
without compromising the power of adaptive greedy
processes.

The procedure for creating the initial population is
presented in algorithm 2, Fig. 2, J is a set of n jobs represented
with J1, J2...Jn. In this discussion, tasks and jobs are considered
the same for simplicity. VM is a set of virtual machines
denoted with VM1, VM2, VM3…VMn. The greedy adaptive
random search procedure is applied to generate an initial
population Pop. This procedure is presented in Fig. 2 in
algorithm 2.

Algorithm 2: Generate the initial population with GRASP

1. J={J1, J2, J3…...Jn} is the set of jobs

2. VM= {VM1, VM2,VM3….VMn}

3. Pop ={ }// null

4. while not completed, do

5. Pop= Pop Ս Apply GRASP and allocate jobs to VMs

6. calculate the overall completion time

7. end while

8. Rmbest= AGRASP(Pop,n)

9. end.

Fig. 2. Algorithm to Generate Initial Population and RCL.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 11, 2021

495 | P a g e

www.ijacsa.thesai.org

The set of solutions generated by GRASP will be sorted
according to the overall completion time. RCL is helpful in
reducing the search space. Top 'm' best solutions considered,
and in the present case, RCL is stored in the Rmbest. This
procedure is presented in Fig. 3 in algorithm 3.

Algorithm 3: AGRASP

1. Algorithm(Pop,n)

2. Sort the jobs in increasing order of execution time

3. temp=Select top 'm' elements from the sorted list of jobs

4. return(temp)

5. end

Fig. 3. AGRASP for Best Solutions.

The solution created by GRASP may not be locally
optimal. It adds benefits by applying local search. Iteratively,
a local search algorithm operates by successively substituting
the incumbent solution with a more robust solution in the
neighborhood.

The right choice of the neighborhood structure with good
neighborhood search techniques and a better initial solution
leads to a thriving local search. Exponential time may be
required for such a local optimization procedure as it starts
arbitrarily. However, efficiency improves significantly with
the best initial solution. As it is known that the initial
population is generated with greedy random selection in the
GRASP algorithm, the algorithm may not be optimal. But
with the help of local search like, 2-opt, or 3-opt there can be
improvements. The procedure for the local search is shown in
the following algorithm 4 in Fig. 4.

Algorithm 4:Procedure for the Local search

1. Local search(LS(RCL))

2. Swap two randomly selected allocations.

3. Calculate the overall completion time.

4. If the newly calculated completion time is less than the best

5. best= new best

6. end

Fig. 4. Algorithm for Local- Search.

B. Fixed Set Search (F-GRASP)

GRASP algorithm does not incorporate any learning in its
iterations [5]. The idea of the addition of "learning" called
fixed set search(FSS) was proposed in [5]. This added feature
will not affect the simplicity of the GRASP algorithm in both
calculations and complexity. This learning is used in this
paper to address the scheduling in the Cloud.

To make fixed set search more efficient, two rules are
used. First, the solution space can be minimized by fixing
certain sections of the solution. Second if a large number of
good solutions are considered, there might be some
similarities among them. A fixed set is defined as the set
created by these standard components. It is possible to
discover a near-optimal solution by "filling the gap."

FS represents a fixed set. The set consists of the elements
which help to generate the best solutions. The following
requirements should be satisfied by the proposed method.

First, the engendered fixed set FS should consist of elements
from the best solutions. Second, it should be able to generate
random fixed sets. In turn, these sets should help to generate
high-quality solutions. Third, feasible solutions should be
generated from fixed set FS. Fourth, the capability to monitor
the number of elements in the fixed set generated should be
possible.

The random selection of high-quality solutions can achieve
the first and second requirements. Select k random solutions
from the set Pop and store in a set Rmbest = {R1, R2, R3…Rk}.
The set of edges Ed={ed11, ed12,..ed1j, ed21, ed2j…edi1, edi2..
edij}, iϵ| J |, j ϵ | VM |, denotes the solution. The representation
edij is used to indicate that job 'i' is delegated to VM ' j.' A cost
function C(edi,j,Rmbest) equal to '1' if edi,j ϵ Rmbest and '0'
otherwise. If job 3 is allocated to VM 4, for example, and is
present in R1, R2, and R4. The cost function gets calculated as
follows.

T(ed3,4,{R1,R2,R3,R4}) = C(ed3,4,R1) + C(ed3,4,R2) + C(ed3,4,R3)

 + C(ed3,4,R4).

The count is 3.

 ∑
 (1)

The size of the FS has to be adaptable. It will be fixed to a
value, and changes made as required. To simplify, Eq. (2) is
used.

 [] | | ⌊
| |

 ⌋ 'i' is the iteration number (2)

The fixed set size is initialized to maxsize and changes
after each iteration. If the number of jobs is 5, then the size of
the fixed set can be considered as 3. This indicates that three
assignments from the fixed set with the highest count for
edges will be considered.

The notation F-GRASP is considered for fixed set search
GRASP. Fig. 5 explains the procedure for finding the best
allocation with F-GRASP. The notation Popn, Rmbest represent
the initial population and RCL, respectively.

Algorithm 5. Pseudo-code for the fixed set search

1. Popn represents initial population using GRASP with n elements

2. Rmbest ={R1,R2,R3…Rk} where Ri ϵ Popn, i ϵ N,1 ≤ i ≤ k

3. Count= //find the frequency of each edge with Eq. (1)

4. Set FS={ed1(jobi,vmk),ed2(jobi,vmk,…edmaxsize(jobi,vmk }

5. Allocate the jobs to VMs according to FS.

6. Allocate the remaining jobs according to GRASP

7. while stopping criteria not reached do

8. Apply local search to S

9. end while

Fig. 5. Algorithm F-GRASP.

The set FS is used to store the edges with the highest
allocation. By considering the fixed set with the highest count,
an initial allocation in the solution space is done. The
remaining allocation is done with the GRASP. By this, it
reduces the number of iterations. After fixing the allocation,
the total completion time will be calculated. The swap in the
allocation of the jobs is done till there is no improvement in

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 11, 2021

496 | P a g e

www.ijacsa.thesai.org

the makespan. The same is explained with an example in
section 4.

Table I is considered for the execution times of each job
on every VM. J1, J2, J3, J4, and J5 are the given jobs. VM1,
VM2, VM3, VM4, and VM5 are the VMs available for
allocation. The challenge is to allocate the jobs to VMs with
minimum makespan by the scheduler.

Table II consists of the initial population represented by
Popn. For example, the representation J1VM1, J5VM2,
J1VM3, J3VM4, J4VM5 considered as one of the
allocations.

For each allocation, fitness (total execution time) is
calculated and sorted in ascending order of fitness function.
Table III holds these values. Top 'm' best allocations
considering fitness function are selected.

C. Worked Out Example

Table I is considered for the execution times of each job
on every VM. J1, J2, J3, J4, and J5 are the given jobs. VM1,
VM2, VM3, VM4, and VM5 are the VMs available for
allocation. The challenge is to allocate the jobs to VMs with
minimum makespan by the scheduler.

Table II consists of the initial population represented by
Popn. For example, the representation J1VM1, J5VM2,
J1VM3, J3VM4, J4VM5 considered as one of the
allocations.

For each allocation, fitness (total execution time) is
calculated and sorted in ascending order of fitness function.
Table III holds these values. Top 'm' best allocations
considering fitness function are selected for allocation and
presented in Table IV. This list is considered as
RCL(Restricted Candidate List). Rmbest is the notation used for
RCL. The allocation will be done randomly. As an example,
an allocation of J3-J5-J4-J1-J2 is considered. The execution time
of J3 on VM1 is 11, J5 on VM2 is 10, J4 on VM3 is 14, J1 on
VM4 is 9, J2 on VM5 is 9. The overall completion time
(11+10+14+9+9) is 53.

By applying a local search, there can be an improvement.
However, in the proposed method, to reduce the number of
swaps as part of 2-opt, a fixed set is introduced.

Equ. (2) calculates the size of the fixed set—the number of
VMs=5. Hence the maxsize=3. From Table IV, allocation with
minimum completion time is J3 VM1, J5VM2 , J4VM3,
J1VM4, J2VM5 .

Frequency of the allocation is counted with variable
Count. Count(J3,VM1) = 1, Count(J5,VM2)= 2,
Count(J4,VM3)= 1, Count (J1,VM4) = 1, Count(J2,VM5) =
4.From the values, it is evident that allocation of J5 toVM2 has
a count as 2, and J2 to VM5 as 4. As the remaining counts are
not considerable, the fixed set holds the two allocations. The
fixed set is FS={(J5,VM2), (J2,M5)}, therefore the new
allocation is

{ J5VM2, J2M5}

TABLE I. EXECUTION TIME OF JOBS ON EACH VM

Execution times of a job on a Virtual machine

 VM1 VM2 VM3 VM4 VM5

J1 13 10 18 9 13

J2 19 18 15 11 9

J3 11 15 12 10 18

J4 11 15 14 11 19

J5 10 10 13 11 14

TABLE II. INITIAL POPULATION

Initial Population Popn

VM1 VM2 VM3 VM4 VM5

J2 J5 J1 J3 J4

J3 J4 J5 J2 J1

J4 J5 J1 J3 J2

J1 J2 J3 J5 J4

J4 J3 J1 J2 J5

J1 J4 J3 J5 J2

J3 J5 J4 J1 J2

J5 J3 J2 J4 J1

J1 J3 J5 J4 J2

J4 J2 J1 J5 J3

J1 J2 J5 J3 J4

J4 J5 J3 J1 J2

J4 J2 J5 J3 J1

J2 J5 J4 J3 J1

J2 J4 J3 J5 J1

TABLE III. SORTED LIST OF VMS

Sorted list of allocation of jobs to VMs Popn
Total execution

time

J3 J5 J4 J1 J2 53

J4 J5 J1 J3 J2 58

J 1 J4 J3 J5 J2 60

 J1 J3 J5 J4 J2 61

 J3 J4 J5 J2 J1 63

 J5 J3 J2 J4 J1 64

J4 J2 J5 J3 J1 65

J2 J5 J4 J3 J1 66

J4 J3 J1 J2 J5 69

 J2 J4 J3 J5 J1 70

 J1 J2 J3 J5 J4 73

 J1 J2 J5 J3 J4 73

 J2 J5 J1 J3 J4 76

 J4 J2 J1 J5 J3 76

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 11, 2021

497 | P a g e

www.ijacsa.thesai.org

TABLE IV. SELECTION OF BEST CANDIDATES

Rmbest= Best Candidates selected from Popn

J3 J5 J4 J1 J2 53

J4 J5 J1 J3 J2 58

J1 J4 J3 J5 J2 60

J1 J3 J5 J4 J2 61

J3 J4 J5 J2 J1 63

The greedy random method can be applied to the
remaining. For VM1 the jobs J1, J3, and J4 are the choices. As
J3 and J4 are the same, VM1 decisions cannot be taken. Move
on to the next VM, i.e., on to VM3. J3's execution time is
minimum on VM3. Based on this, J3 is allocated to VM3. VM4
is left with J1 and J4. Here, J1 having less execution time,
hence assigned to VM4. VM1 will be allocated with J4. VM1
can be allocated either with J3 or J4 as they both have equal
values. Here, J3 is allocated to VM3. And VM1 is left with J4
and is allocated. The overall completion time is 51, which is
the newly updated value. The best solution is shown in
Table V.

TABLE V. FINAL ALLOCATION

VM1 VM2 VM3 VM4 VM5 Completion time

J4 J5 J3 J1 J2 51

IV. RESULT

The proposed algorithm is implemented in MATLAB
R2020a. Computations are performed on a PC with Intel
core™ i7 CPU@1.80-GHz with 8 GB of RAM.The
comparison is done among three algorithms. The Genetic
algorithm(GA), Fixed set search-GRASP from now
considered as (F-GRASP), GRASP are chosen for
comparison. The overall completion (makespan) time is
calculated. The allocation with minimum overall completion
time is considered as the best allocation. However, as the
scheduling is NP-complete, the near-optimal allocation
changes in each run. With 10 jobs, and in 100 iterations, the
best makespan with the algorithms GA=140, F-GRASP=148,
GRASP=160, with 200 iterations GA=134, F-GRASP=132,
GRASP=133, 300 iterations GA=133, F-GRASP=130,
GRASP=135, 400 iterations GA=133, F-GRASP=130,
GRASP=132, and after 500 iterations GA=132 F-
GRASP=129 GRASP=131, GA=132, F-GRASP= 130
GRASP=130. The results show that the proposed algorithm is
equally competing with existing metaheuristic algorithms like
the Genetic algorithm and GRASP. In some instances, it is
showing better results than the algorithms with which it has
been compared.

The usage of fixed set search reduces the search space.
Thus it converges with the near-optimal solution faster than
the other two algorithms. Fig. 6. represents the number of
iterations on the X coordinate and best makespan on the Y
coordinate. F-GRASP shows promising results with the
Genetic algorithm and GRASP.

Fig. 6. Comparison of Makespan of F-GRASP with GA and GRASP.

V. CONCLUSION AND FUTURE WORK

This paper discusses the limitations of the GRASP
algorithm. Learning is added to improve the efficiency of the
algorithm. With the inclusion of a fixed set search, the
learning is accomplished. The algorithm's search space
reduces by accumulating the elements of high-quality
solutions. The algorithm starts with a greedy random
approach, and each iteration shows some improvement and
finally reaches an optimal solution. The algorithm shows
remarkable improvement in performance. While the addition
of fixed set search and the 2-Opt algorithm strengthens the
algorithm significantly, there is still space to test with 3-Opt or
4-Opt algorithms. The proposed algorithm is evaluated using
MATLAB. The time complexity is O(2

n
 n

2
) and space

complexity is O(n
2
). Alternative methods can be explored to

reduce the time complexity. The open-source cloud platforms
such as Open stack or Cloud stack by interested researchers
with the proposed algorithm.

REFERENCES

[1] Buyya, R., Yeo, C. S., Venugopal, S., Broberg, J., & Brandic, I. (2009).
Cloud computing and emerging IT platforms: Vision, hype, and reality
for delivering computing as the 5th utility. Future Generation computer
systems, 25(6), 599-616.

[2] Y. Duan, G. Fu, N. Zhou, X. Sun, N. C. Narendra and B. Hu,
"Everything as a Service (XaaS) on the Cloud: Origins, Current and
Future Trends," 2015 IEEE 8th International Conference on Cloud
Computing, New York, NY, 2015, pp. 621-628, doi: 10.1109/CLOUD.
2015.88.

[3] Feo, T.A., Resende, MGC Greedy Randomized Adaptive Search
Procedures. JGlobOptim 6, 109–133(1995). https://doi.org/10.1007/
BF01096763.

[4] J.P. Hart and A.W. Shogan. Semi-greedy heuristics: An empirical study.
Operations Research Letters, 6:107–114, 1987.

[5] Jovanovic R., Tuba M., Voß S. (2019) Fixed Set Search Applied to the
Traveling Salesman Problem. In: Blesa Aguilera M., Blum C., Gambini
Santos H., Pinacho-Davidson P., Godoy del Campo J. (eds) Hybrid
Metaheuristics. HM 2019. Lecture Notes in Computer Science, vol
11299. Springer, Cham. https://doi.org/10.1007/978-3-030-05983-5_5.

[6] Zhu, M., Chen, J.: Computational comparison of GRASP and DCTSP
methods for the Traveling Salesman Problem, pp. 1044–1048 (2017).

[7] Festa, P., Resende, MGC: Hybridizations of GRASP with path-
relinking.Talbi, E.G. (ed.) Hybrid Metaheuristics. Studies in
Computational Intelligence,vol. 434, pp. 135–155. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-30671-6 5.

[8] De Boer, P.T., Kroese, D.P., Mannor, S., Rubinstein, R.Y.: A tutorial on
the cross entropy method. Ann. Oper. Res. 134(1), 19–67 (2005).

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 11, 2021

498 | P a g e

www.ijacsa.thesai.org

[9] S. M. Johnson, "Optimal two- and three-stage production schedules with
setup times included," Naval Res. Logistics Quart., vol. 1, no. 1,
 pp. 61–68, 1954.

[10] S. Dubey, V. Jain and S. Shrivastava, "An innovative approach for
scheduling of tasks in cloud environment," 2013 Fourth International
Conference on Computing, Communications and Networking
Technologies (ICCCNT), Tiruchengode, 2013, pp. 1-8, doi:
10.1109/ICCCNT.2013.6726727.

[11] E. Madhukar and T. Ragunathan, "Dynamic and Static Characteristics
Based Algorithm to Allocate VMs to Jobs in the Cloud," in 2016
International Conference on Information Technology (ICIT),
Bhubaneswar, 2016 pp. 81-86.doi: 10.1109/ICIT.2016.028.

[12] Metaheuristic Scheduling for Cloud: A Survey Chun-Wei Tsai and Joel
J. P. C. Rodrigues Senior Member, IEEE.

[13] A. Makwe and P. Kanungo, "Scheduling in cloud computing
environment using analytic hierarchy process model," 2015 International
Conference on Computer, Communication and Control (IC4), Indore,
2015, pp. 1-4, doi: 10.1109/IC4.2015.7375723.

[14] Mohamed Abdel-Basset, Laila Abdel-Fatah, Arun Kumar Sangaiah,
Chapter 10 - Metaheuristic Algorithms: A Comprehensive Review,
Editor(s): Arun Kumar Sangaiah, Michael Sheng, Zhiyong Zhang, In
Intelligent Data-Centric Systems, Computational Intelligence for
Multimedia Big Data on the Cloud with Engineering Applications,
Academic Press, 2018.

[15] M. A. Tawfeek, A. El-Sisi, A. E. Keshk, and F. A. Torkey, "Cloud task
scheduling based on ant colony optimization," 2013 8th International
Conference on Computer Engineering & Systems (ICCES), Cairo, 2013,
pp. 64-69, doi: 10.1109/ICCES.2013.6707172.

[16] YoungJu Moon, HeonChang Yu, Joon_Min Gil & JongBeom Lim. A
slave ants based ant colony optimization algorithm for task scheduling in
cloud computing environments. Hum. Cent. Comput. Inf. Sci. 7, 28
(2017). https://doi.org/10.1186/s13673-017-0109-2.

[17] Z. Chen et al., "Multi-objective Cloud Workflow Scheduling: A
Multiple Populations Ant Colony System Approach," in IEEE
Transactions on Cybernetics, vol. 49, no. 8, pp. 2912-2926, Aug. 2019,
doi: 10.1109/TCYB.2018.2832640.

[18] Zhou, Z., Li, F., Zhu, H. et al. An improved genetic algorithm using
greedy strategy toward task scheduling optimization in cloud
environments. Neural Comput & Applic 32, 1531–1541 (2020).
https://doi.org/10.1007/s00521-019-04119-7.

[19] Jinn-Tsong Tsai, Jia-Cen Fang, Jyh-Horng Chou " Optimized task
scheduling and resource allocation on cloud computing environment
using improved differential evolution algorithm "
https://doi.org/10.1016/j.cor.2013.06.012.

[20] M.A. Elaziz, S. Xiong, K.P.N. Jayasena, et al., Task scheduling in cloud
computing based on hybrid moth search algorithm and differential
evolution, Knowledge-Based Systems (2019),
https://doi.org/10.1016/j.knosys.2019.01.023.

[21] Y. Liang, A. H. Chen and Y. Nien, "Artificial Bee Colony for workflow
scheduling," 2014 IEEE Congress on Evolutionary Computation (CEC),
Beijing, 2014, pp. 558-564, doi: 10.1109/CEC.2014.6900537.

[22] Thanka, MR, Uma Maheswari, P. & Edwin, E.B. An improved efficient:
Artificial Bee Colony algorithm for security and QoS aware scheduling
in cloud computing environment. Cluster Comput 22, 10905–10913
(2019). https://doi.org/10.1007/s10586-017-1223-7.

[23] Sreenu, K., Sreelatha, M. W-Scheduler: whale optimization for task
scheduling in cloud computing. Cluster Comput 22, 1087–1098 (2019).
https://doi.org/10.1007/s10586-017-1055-5.

[24] Singh, P., Dutta, M. & Aggarwal, N. A review of task scheduling based
on meta-heuristics approach in cloud computing. Knowl Inf Syst 52, 1–
51 (2017). https://doi.org/10.1007/s10115-017-1044-2.

[25] Senthil Kumar, A.M., Venkatesan, M. Task scheduling in a cloud
computing environment using HGPSO algorithm. Cluster Comput 22,
2179–2185 (2019). https://doi.org/10.1007/s10586-018-2515-2.

[26] Senthil Kumar, A.M., Venkatesan, M. Multi-Objective Task Scheduling
Using Hybrid Genetic-Ant Colony Optimization Algorithm in Cloud
Environment. Wireless Pers Commun 107, 1835–1848 (2019).
https://doi.org/10.1007/s11277-019-06360-8.

[27] Ben Alla, H., Ben Alla, S., Touhafi, A. et al. A novel task scheduling
approach based on dynamic queues and hybrid meta-heuristic algorithms
for cloud computing environment. Cluster Comput 21, 1797–1820
(2018). https://doi.org/10.1007/s10586-018-2811-x.

[28] Mirsaeid Hosseini Shirvani, A hybrid meta-heuristic algorithm for
scientific workflow scheduling in heterogeneous distributed computing
systems, Engineering Applications of Artificial Intelligence, Volume 90,
2020, 103501, ISSN 0952-1976, https://doi.org/10.1016/j.engappai.
2020.103501.

[29] Bhushan, S. B., & Reddy, P. C. (2018). A Hybrid Meta-Heuristic
Approach for QoS-Aware Cloud Service Composition. International
Journal of Web Services Research (IJWSR), 15(2), 1-20.
doi:10.4018/IJWSR.2018040101.

[30] Ayaluri MR, K. SR, Konda SR, Chidirala SR. 2021. Efficient
steganalysis using convolutional auto encoder network to ensure original
image quality. PeerJ Computer Science 7:e356
https://doi.org/10.7717/peerj-cs.356.

[31] A. M. Reddy, V. V. Krishna, L. Sumalatha and S. K. Niranjan, "Facial
recognition based on straight angle fuzzy texture unit matrix," 2017
International Conference on Big Data Analytics and Computational
Intelligence (ICBDAC), Chirala, 2017, pp. 366-372, doi:
10.1109/ICBDACI.2017.8070865.

[32] Ilaiah Kavati, A. Mallikarjuna Reddy, E. Suresh Babu, K. Sudheer
Reddy, Ramalinga Swamy Cheruku, Design of a fingerprint template
protection scheme using elliptical structures, ICT Express, 2021, ISSN
2405-9595,https://doi.org/10.1016/j.icte.2021.04.001.

https://hcis-journal.springeropen.com/articles/10.1186/s13673-017-0109-2#auth-JongBeom-Lim
https://doi.org/10.1016/j.cor.2013.06.012
https://doi.org/10.7717/peerj-cs.356

