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Abstract—The ECG signal, like all signals obtained when
instrumenting a data acquisition system, is affected by noises
of physiological and technical sources such as Electromyogram
(EMG) and power line interferences, which can deteriorate its
morphology. To overcome this issue, it’s subjected to apply a
preprocessing step to remove these noises. Filtring techniques
are complex computations becoming more common in medical
applications, which must be completed in real-time. As a result,
these applications are geared at integrating high-performance
embedded architectures. This paper presents an FPGA (Field
Programmable Gate Array) embedded architecture designed for
an ECG denoising hybrid technique based on the Discrete Wavelet
transform (DWT) and the Adaptive Dual Threshold Filter
(ADTF), dedicated to handle with noises affecting ECG signals.
The architecture was designed following a hardware-software
codesign using a high-level description language and synthetized
to be implemented on different FPGAs due to the structural
description flexibility. The global architecture was divided into
a set of functional blocks to allow parallel processing of ECG
data. The simulation results confirm the high performance of the
system in noise reduction without affecting the morphology of the
signal. The process takes 0.3 ms with an acquisition frequency of
360 Hz. The whole architecture requires a small area in different
FPGAs in terms of resources utilization. It uses less than 1% of
the total registers for all FPGA devices which represents a total
of 292 registers for Cyclone III LS, Cyclone IV GX, Cyclone IV
E, and Arria II GX; and a total of 329 registers for Cyclone V.
The logic elements occupancy varies between 3% using Cyclone
V and 60% using Cyclone IV GX freeing up space for other
parallel processing tasks.
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I. INTRODUCTION

The ECG or electrocardiogram is an electrophysiological
signal whose trace describes the heart’s electrical activity
captured by electrodes puted on the surface of the body. This
signal is currently used for the prevention and detection of
cardiovascular diseases [1], [2]. Intelligent diagnostic systems
have emerged to better use ECG data in large quantities
whose analysis is difficult manually [3]. These systems make
it possible to improve the quality of the signal (noise filtering),
the enhancement of relevant information, the extraction of
information that is not visible by direct visual analysis, as
well as to propose a diagnosis that can provide sufficient help
to doctors to make the right decisions [4]. Noise degrades the

precision and accuracy of the analysis. Signal denoising is then
highly desirable and essential.

For this reason, numerous methods are utilized like Digital
Filters (FIR/IIR) [5], [6], Empirical Mode Decomposition
(EMD) and Ensemble EMD (EEMD) based methods [7], [8],
Dual-Tree Wavelet Transform (DT-WT) [9], Discrete Wavelet
Transform (DWT) [10], [11], [12], and Adaptive Filtering [13],
[14], [15].

Digital filters are used for denoising by selecting the useful
information frequency band or the noisy frequency bands[16].
Thus, high reduction of noise increases the order of the filter
a lot, which can increase the complexity and the processing
time. EMD methods disintegrate the noisy signal into IMFs
(Intrinsic Mode Functions) and eliminate the noisy ones [8],
which can destroy the signal. Wavelet methods put in view
time and frequency information and decompose the signal into
details and approximations [17]. Adaptive filtering can be used
in several cases, as ADTF [14], which is performant in high-
frequency noise reduction.

The study we presente in this paper concerns the denoising
of ECG signals using an algorithm based on the DWT and the
ADTF. The hybridization of the tow algorithms was published
by Jenkal et al. in [11], this technique aims to combine
the advantages of both ADTF and DWT methods to deal
with deferent noises, especially high-frequency noises, EMG
(Electromyogram) noises, and power line interferences.

The results of this technique were evaluated using Matlab
and compared to others methods in [11] and it offers high
performances in terms of Mean Square Error (MSE), Percent
Root mean square Difference (PRD), Signal-to-Noise Ratio
Improvement (SNRimp), and Signal-to-Noise Ratio Output
(SNRout).

Analyzing ECG signals in large quantities using this tech-
nique requires complex calculations with a need for rapid
and real-time processing, which pushes us to move towards
hardware implementation on high-performance embedded ar-
chitectures. FPGA (Field Programmable Gate Array) seems
to be good choise for high performance and low power [18];
which are essential needs to applications like signal processing,
especially cardiac signals. In addition, low-cost FPGAs can be
used for the implementation, as well the system can be moved
anywhere.
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The approach presented in this article is an original method
of our research team published for the first time in [11], vali-
dated under Matlab in terms of filtering performance of ECG
signals; the goal of this work is the on-board implementation
of this method to put it into practice for the supervision of
patient cardiac data.

For an FPGA implementation, the two filters, ADTF and
DWT, are designed using the VHDL (VHSIC Hardware De-
scription Language) under the Quartus II tool and the Mod-
elsim simulation environment. The algorithm proves the high
performance in noise reduction, maintaining the morphology
and essential features of the original signal. The simulation
results shows that the system has a processing time of 0.3
ms operating at 50 KHz, which respects largely the real-time
constraint. The given architecture can be implementable in
low-cost FPGAs families because of the modest area that it
occupies, and gives possibility to add other blocks for more
processing stages as QRS and abnormalities detection. Thus
the global architecture uses less than 1% of the total registers
for 5 FPGA devices: Cyclone IV Gx, Cyclone IV E,Cyclone III
LS, Cyclone V, and Arria II Gx. The logic elements occupancy
varies between 3% using Cyclone V and 60% using Cyclone
IV GX. The total used pins are 28 for the whole architecture,
representing 9% for Cyclone IV E and Cyclone III LS, 10%
for Cyclone V, 16% for Arria II GX, and 35% for Cyclone IV
GX.

The rest of this paper is organized as follows:

The first section describes the ECG signal with an overview
of related work.

The second section presents the hybrid technique based
DWT and ADTF algorithms.

The third section depicts the VHDL implementation of the
whole algorithm, and a discussion of the given results.

Finally, a conclusion and perspectives are presented in the
last section.

II. ECG SIGNAL DENOISING OVERVIEW

The cardiovascular system comprises the heart and the vas-
cular system, where the main function is to ensure an adequate
continuous blood flow with sufficient pressure to the organs
and tissues to meet energy needs and cell renewal. Diagnosing
his condition appears to be a vital task for the prevention
of cardiovascular disease [19]. The electrocardiogram (ECG)
signal remains one of the predominant and most widely used
tools for this purpose.

The ECG is the recording of the heart’s electrical activity
moving in time and corresponding to the depolarization and
repolarization of the heart muscle [20]. Fig. 1 represents the
recording of the cardiac cycle, where the P wave reflects
atrial depolarization, the QRS complex visualize the ventric-
ular depolarization, and the T wave represents the ventricular
repolarization.

Nowadays, diagnosis is done in an automatic manner where
an automated ECG processing system usually consists of
four successive stages [21] as follows: signal preprocessing,
waves detection, features extraction, and finally, abnormalities
detection and classification.

The signal preprocessing (or denoising) step essentially
eliminates the different noises that affect the ECG signal during
its acquisition. These noises are two types: physiological
noises including muscle noise (EMG), and technical noises
incorporating power line interference [22]. Due to its low-
frequency band, ECG is too sensitive to these noises. Several
techniques have been proposed to deal with this problem, such
EMD or methods using banks of filters, wavelet transform, and
adaptive filtring.

Infinite Impulse Response (IIR) and Finite Impulse Re-
sponse (FIR) filters are digital filters used for ECG denoising.
The denoising operation is based on frequency bands selection
related to useful information in the signal and the noise
frequency bands [16]. For excellent denoising, the number
of needed coefficients increases a lot which results in a high
computational and increases the delay.

Fig. 1. Successive Stages of Depolarization/repolarization of the Heart
Resulting Different Waves P, QRS, and T.

EMD methods are also very used to denoise ECG signals
where the signal is disintegrated into a set of IMFs [23], [8].
The filtering is done by eliminating the noisy IMFs that can
affect useful information in the signal. To overcome this issue,
the mode-mixing is removed using Ensemble EMD.

Wavelet methods highlight time and frequency information
simultaneously [17], where the signal is decomposed into
different resolutions to give details and approximations, then
thresholding techniques are used to denoise the signal.

Adaptive filtering proves the good performance for ECG
denoising in some cases, ADTF as an example, is a good
solution for high-frequency noise reduction [14], [4], [24]. The
main advantage of this method is the low complexity compared
to other methods like EMD and DWT. The ADTF complexity
has a linear form depending on the signal size only, when the
EMD and DWT also have a linear complexity but depending
on different parameters.

Some techniques can gather two or more methods to benefit
from their advantages together. The ADTF is reunited to DWT
in [11], the next section details more this technique.

III. MATHEMATICAL STUDY OF THE ALGORITHM

A. ADTF Algorithm

The ADTF algorithm calculates, in the first step, three
parameters: the average of the chosen window (µ), the lower
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and higher thresholds (Lt and Ht, respectively). Following the
equations:

µ = 1/W

n+W∑
i=n

Input(i) (1)

Lt = µ− [(µ−Min) ∗ α] (2)

Ht = µ+ [(Max− µ) ∗ α] (3)

Where W is the window length, Input(i) is the input ECG
signal, Min and Max are the minimum and maximum values
of the window samples. While α is the thresholding coefficient
with 0 < α < 1.
The value of α varies to adjust the thresholding operation
according to the noise concentration in the signal [14]; in case
of a high concentration of noise, lower values of α are favored;
otherwise, higher values can be tolerated.

B. DWT Algorithm

In diffrent signal processing applications, the transforma-
tion of signals into frequency domaine is very important. To
obtain the frequency spectrum of a signal, Fourier transform
is the most used. Biological signals, like ECG, have different
temporal and frequency characteristics. For example, they
are not stationary, and it is precisely in their characteristics
(statistical, frequency, temporal, spatial) that reside most of
the information they contain. A transformation that provides
information on the frequency content while preserving the
location to have a time-frequency representation is essential
to analyze them.

The discrete wavelet transform studies the signal in various
frequency bands with different resolutions by decomposition
into a rough estimate and more precise information through
two functions, called scale function and wavelet function,
which are associated with the low pass and the high pass
filters, respectively. The high pass filter provides the wavelet
coefficients or details noted D, the low pass filter provides the
approximation coefficients noted A. This approximation is, in
turn, decomposed by a second pair of filters, the process is
explained in Fig. 2.

Fig. 2. Signal Decomposition using DWT.

The signal decomposition corresponds to the convolution
of the signal (x (n)) with the impulse response of the low pass
and high pass processing filters h and g as presented in Fig.
3.
(4) and (5) are the equations of these filters for one decompo-
sition level.

A[k] =
∑

x[n] ∗ h(2k − n) (4)

D[k] =
∑

x[n] ∗ g(2k − n) (5)

Where A[k] is the approximation given by the low-pass
filter, D[k] is the detail given by the high-pass filter, x[n] is
the discretized form of the original signal, h[n] and g[n] are,
respectively, the half-band of the low-pass and high-pass filters.

Fig. 3. DWT Decomposition.

Generally, the mother wavelet is chosen based on the
closeness between the wavelet and the processed signal. For
ECG signal we opted to use the Daubechies as mother wavelet
because of the similarity between them especially Db4 wavelet
as it can be seen in fig. 4.

Fig. 4. Daubechie 4 Wavelet.

Signal denoising using DWT consists of the following three
steps:

The wavelet transform of the observed signal, which
consists of the decomposition of the signal into details and
approximations.

The thresholding of the coefficients resulting from the
decomposition or elimination of details containing noise.
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The inverse wavelet of the modified coefficients to restore
useful information that has effectively undergone the denoising
operation.

To obtain a perfect reconstruction, the analysis and syn-
thesis filters satisfy the condition presented in (6), where h (z)
and h ’(z) are, respectively, the analysis and the synthesis low
pass filters, g (z) and g ’(z) are the analysis and the synthesis
high pass filters respectively.

h(−z).h
′
(z) + g(−z).g

′
(z) = 0 (6)

In [10] and [25], the performance of DWT in ECG signal
processing is presented, especially in the baseline wander noise
removing, the architecture is implemented in a low-cost FPGA
as the Xilinx ARTIX 7.

C. Hybrid Technique

The hybrid technique is a marriage between ADTF and
DWT; this combination permits to reduce, successively, the
noise from ECG signal. The whole process is described in
Fig. 5, where the ECG signal is subjected to two stages of
noise reduction:

The first step of this method is the application of the ADTF
in the noisy signal; the chosen window is 10 samples, the α
coefficient is equal to 0.1(10%), Table I shows the influence
of α coefficient in the denoising in terms of signal-to-noise
ratio improvement (SNRimp) with Gaussian noise of 10 dB as
confirmed in [11].

TABLE I. α COEFICENT INFLUENCE IN THE ADTF DENOISING

α values 5% 10% 15% 20%
101 MIT-BIH 6.82 8.69 7.54 7.16 SNRimp
115 MIT-BIH 8.72 9.20 8.92 8.60

The second step is the DWT application on the corrected
signal by the first step, where the signal is decomposed into
many frequency bands. The wavelet mother used in this case is
debauchies dB4; the coefficients of this wavelet are the closest
to the ECG signal in terms of similarity, as it can be shown in
Fig. 4. After decomposition, the details D1 and D2 concentrate
an important quantity of noise, so we opted to eliminate these
details. Then, the inverse DWT is applied to have the denoised
signal.

Fig. 5. The Algorithm Block Diagram.

Fig. 6 shows clearly the contribution of this combination of
the two methods compared to the application of DWT alone.

The simulation is done using the signal 100 of the MIT-BIH
database[26], with an additive Gaussian noise of 5 dB. (a)
represents the noisy signal, (b) the corrected signal using the
DWT, and (c) shows the corrected signal using the hybrid
method ( ADTF+DWT).

Fig. 7 presents the comparison of the denoising results
between the ADTF technique only and the hybrid technique,
which combines the ADTF with the DWT, on some signals
from the MIT-BIH Physionet database with 5 dB of Wight
Gaussian Noise.

The fusion of the two techniques provides better results, in
terms of PRD, especially for a high density of noise. Taking,
for example, the case of the signal 100 from the MIT-BIH
database correlated with Gaussian noise of 5 dB, the filtering
result using only the ADTF gives a value of the PRD of 24.55
while the hybrid method provides 18.26. The same for signal
103, the parameter PRD is equal to 25.23 with the ADTF and
19.61 with the hybrid method.

The following part dissects the results of this technique
dedicated to implementation on an FPGA, where a detailed
description of the hardware architecture is presented, with the
simulation results and the report on the use of the hardware
resources of different FPGA families.

IV. RESULTS AND DISCUSSION

A. Hardware Architecture

As the implementation target is FPGA in this work, we
opted for the VHDL to describe the algorithm’s behavior
and architecture. Quartus II software is used for synthesis.
Quartus II synthesis tool transform the code design into a
synthesizable Register Transfer Level (RTL) with gate-level
netlist. Modelsim ALTERA tool is used for simulation to verify
the good behavior of the designed architecture.

VHDL is a hardware description language used to describe
the behavioral o the studied algorithm; then, the functional
VHDL description can be converted into a logic gate schema
that can be implemented in FPGA boards [18]. The proposed
architecture is dedicated to being implemented on different
FPGA targets, so it is based on a structural description
separated on a set of blocks. The various blocks describe
the ADTF/DWT modules separately to make it possible to
process the modules simultaneously, which permits reducing
the processing time.

The architecture of the proposed method is composed by
two main blocks, the first for the ADTF denoising stage and
the second for the DWT denoising stage, Fig. 8 shows the RTL
schema of the global architecture.

The ADTF block incorporates three functional blocks: the
ADTF-LOAD (FB1), a shift register to prepare the signal
window for the second functional block, ADTF-TREATMENT
(FB2), the latter calculates the necessary parameters for
the ADTF process. The third functional block, ADTF-TEST
(FB3), applies the thresholding operation to the median value
of the window.

The output of the first block goes through the second block,
where a window of eight elements is prepared by the DATA-
LOAD functional block (FB4); then DWT, details elimination,
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Fig. 6. Comparison of the Denoising Techniques Applied to the Signal 100 of the MIT-BIH Database, with a High Level of White Gaussian Noise (5dB): (a)
is the Noisy Signal, (b) is the Filtred Signal using DWT and (c) is the Filtred Signal using the Hybrid Technique.

Fig. 7. PRD Comparison of Denoising Results using the ADTF and the Hybride Techniques.

and inverse DWT are applied on this part of the signal by the
DWT-IDW functional block (FB5).
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Fig. 8. Hardware Architecture of the Hybrid Technique.

The purpose of FB1 (Fig. 9) is to prepare the window for
the functional blocks; it receives the input ECG signal with a
frequency of 360Hz (the MIT BIH database) and gives a
window of 10 samples in the output based on a shift register.
This permits the online processing of cardiac signals.

Fig. 9. The ADTF Load Functional Block: FB1.

The FB2 (Fig. 10) computes the average, the maximum,
and the minimum of the window received from FB1. The
result of the average computation is coded in 30 bits, and its
minimized, for resources optimization, to 16 bits: 11 bits for
the integer part and the rest 5 bits for the fractional fixed-point
part. The maximum and minimum are coded in 11 bits, and
they are calculated using loop tests.

Fig. 10. The ADTF Treatment Functional Block: FB2.

The FB3 (Fig. 11) aims to apply the denoising operation by
calculating the Higher and Lower threshold (Ht and Lt) using
the parameters received from FB2. To compute the Ht and
the Lt, the α coefficient is used as mentioned in the equations
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(2,3). A register of 11 bits is reserved to memorize the α value
where α = 0.1, so one bit for the integer part to represent the
zero and 10 bits to represent the fractional part.

For the correction stage, the median value of the selected
window is compared to the integer part of the two thresholds.
Then the assignment of the results to the output of the module.
The output can take one of the tree values: it can be the same
as the median value if this last is in the margin between the
Ht and the Lt, or it takes the Ht or the Lt, respectively if it
exceeds the Ht or it is less than the Lt.

The output size is coded in 16 bits, 11 bits for the integer
part, and 5 bits for the fractional part. If the median value is
affected to the output, which is coded in 11 bits, five zeros are
added to the fractional fixed-point part.

Fig. 11. The ADTF Test Functional Block: FB3.

The output of the ADTF denoising block is the input of
the second block, which concerns the DWT denoising where
FB4 (Fig. 12) consists of loading eight samples of the signal,
which will be a part of the signal to which the DWT is applied.
This size is imposed by the number of coefficients of the
mother wavelet dB4, which are eight. The output, therefore, is
a window of eight elements coded in 16 bits.

Fig. 12. The Load Data Functional Block: FB4.

The FB5 (Fig. 13) is the main functional block of the
second block, where the wavelet transform is applied to the
eight elements. The signal is decomposed into two levels
to extract details from levels 1 and 2; then, the denoising

process eliminates the extracted details. The input FB5 is
eight elements from the previous FB4, coded in 16 bits. The
output represents the result of the decomposition, denoising,
and reconstruction operations, which is resized to 16 bits: 11
bits for the integer part and 5 bits for the fractional part.

Fig. 13. The DWT-IDWT Functional Block: FB5.

B. Simulation Results

MIT-BIH Arrhythmia of Physionet [26], an International
database, is used to test the functioning of the VHDL archi-
tecture; It contains 48 records of a half-hour. These signals are
sampled with a frequency of 360 Hz and a 11-bits resolution.
For the test, White Gaussian Noise (WGN) with SNR levels
of 5dB, 10dB and 20dB are correlated to the original signals
before the denoising process.

The simulation is done in Modelsin ALTERA software in
order to evaluate the good behavior of the VHDL architecture
of the hybrid technique. Fig. 14 shows the simulation results
of the hybrid technique applied to signal 100 of the MIT-BIH
database to which we added a White Gaussian Noise of 20
dB. The simulation results demonstrate the high performance
of the algorithm in noise reduction without distortion of the
original signal, and therefore conservation of its morphology
as is clearly shown in Fig. 14

Once the architecture is synthesized, the implementation
is the next step after timing verification. In Fig. 15, timing
Simulation of Hybrid-top-level-module of the architecture is
visualized. As it can be seen, the system response in 0.3 ms
using a processing clk of 50Khz which largely responds to the
real-time constraint, with an acquisition frequency of 360 Hz.

C. Hardware Resources Consumption and Discussion

Table II details the resources utilization for the imple-
mentation of the hybrid technique on FPGA INTEL-ALTERA
boards. It shows a comparison between different boards in
terms of total logic elements, used registers, number of pins,
used embedded multipliers, and DSP blocks.
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Fig. 14. Simulation Result of the Denoising Applied to the Signal 100 of the MIT-BIH Database.

Fig. 15. Timing Simulation of Hybrid-top-level-Module.

TABLE II. HARDWARE RESOURCES UTILIZATION OF THE IMPLEMENTATION ON DIFFERENT FPGAS OF INTEL-ALTERA

Cyclone IV GX Cyclone IV E Cyclone III LS Arria II GX Cyclone V

Total logic elements 17538
(60%)

17513
(44%)

17500
(25%) 46% 1623

(3%)

Total registers 292
(< 1%)

292
(< 1%)

292
(< 1%)

292
(< 1%) 329

Total pins 28
(35%)

28
(9%)

28
(9%)

28
(16%)

28
(10%)

Total memory bits 0% 0% 0% 0% 0%

DSP blocks - - - 4
(2%)

127
(81%)

Embedded multiplier 9-bit elements 8
(5%)

8
(3%)

8
(2%) - -

The used devices in the comparison are classified in the
range of low-cost and low-power technologies, so the archi-
tecture of the hybrid technique does not need expensive FPGA
boards to ensure high performance. The study is done for
Cyclone III, Cyclone IV, Cyclone V, and Arria II families.

The hybrid architecture uses less than 1% of the total
registers for all FPGA devices which is a total of 292 for
Cyclone IV GX, Cyclone III LS, Cyclone IV E, and Arria II
GX; and a total of 329 for Cyclone V as it can be shown
in Fig. 16. The logic elements occupancy varies between 3%
using Cyclone V and 60% using Cyclone IV GX as it can be
seen in Fig. 17. The global architecture uses a total of 28 pins,

11 pins for the input signal, which is coded in 11 bits, 16 pins
for the output or corrected signal, and one pin for the clock
with a percentage of 9% for Cyclone IV E and Cyclone III
LS, 10% for Cyclone V, 16% for Arria II GX, and 35% for
Cyclone IV GX as montioned in fig.18 .

DSP blocks are available only in the Cyclone V and
Arria II technologies; these blocks contain optimized units for
some arithmetic operations, multiplication, for example, so the
architecture uses 4 DSP blocks in the case of Arria II GX,
which represents 2% of the total blocks, and 127 DSP blocks
using Cyclone V which is an 81% of the available DSP blocks
for this device. The other devices use the embedded multiplier
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9-bit elements in place of DSP blocks to optimize multipli-
cations, so the architecture needs eight embedded multiplier
9-bit, which is 5% for the Cyclone IV GX, 3% for Cyclone
IV E, and 2% for Cyclone III LS as shown in Fig. 19. While
there is no need for memory blocks in the architecture.

Fig. 16. Total Registers used by the Architecture in Different FPGA
Families.

Fig. 17. Total Logic Elements used by the Architecture in Different FPGA
Families.

Fig. 18. .Total Pins used by the Architecture in Different FPGA Families.

Fig. 19. Embedded Multiplier 9-bit Elements used by the Architecture in
Different FPGA families.

V. CONCLUSION

In this paper, a hardware architecture of a hybrid technique-
based ECG signals denoising is presented to satisfy the exi-
gency of medical applications as ECG monitoring in terms of
real-time processing, low power consumption, and portability.
The algorithm is firstly evaluated in Matlab for validation; then,
a VHDL description is presented for FPGA implementation
purposes. The given architecture is adequate to be imple-
mentable on low-cost FPGA families because of the small area
it requires and the possibility it gives to add other blocks for
more processing tasks such as QRS and abnormalities detec-
tion. The simulation results show that the system’s response
takes 0.3 ms, responding to the real time processing constraint
imposed by an acquisition period of 2.77 ms.

This study opens the way to design a global architecture
permitting the extraction of necessary characteristics for the
heart rate computation and heart diseases detection afterward;
in order to put in practice a system allowing real-time moni-
toring of patients cardiac state.
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ABBREVIATIONS
ADTF: Adaptive Dual Threshold Filter
Ht: Higher Threshold
Db4: Daubechie 4
IIR: Infinite Impulse Response
DT-WT: Dual-tree Wavelet Transform
IMF: Intrinsic Mode Functions
DWT: Discrete Wavelet Transform
Lt: Lower Threshold
DWT-IDWT: DWT-Inverse DWT
MSE: Mean Square Errors
ECG: Electrocardiogram
PRD: Percentage Root-mean-square Difference parameter
EMD: Empirical Mode Decomposition
RTL: Register Transfert Level
EEMD: Ensemble EMD
SNRimp: Signal to Noise Ratio Improvement
EMG: Electromyogram
VHDL: VHSIC Hardware Description Language
FIR: Finite Impulse Response
WGN: White Gaussian Noise
FPGA: Field Programmable Gate Array
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