
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 11, 2021

594 | P a g e

www.ijacsa.thesai.org

EC-Elastic an Explicit Congestion Control

Mechanism for Named Data Networking

Asmaa EL-BAKKOUCHI
1
, Mohammed EL GHAZI

2

Anas BOUAYAD
3
, Mohammed FATTAH

4
, Moulhime EL BEKKALI

5

Artificial Intelligence, Data Sciences and Emerging Systems Laboratory

Sidi Mohamed Ben Abdellah University, Fez, Morocco
1, 2, 3, 5

IMAGE Laboratory, Moulay Ismail University, Meknes, Morocco
4

Abstract—In recent years, Named Data Networking (NDN)

has attracted researchers’ attention as a new internet

architecture. NDN changes the internet communication

paradigm from a host-to-host IP model to a name-based model.

Thus, NDN permits the retrieval of requested content by name,

from different sources and via multiple paths, and the use of

caching in intermediate routers. These features transform the

transport control model from sender to receiver and make

traditional end-to-end congestion control mechanisms

incompatible with NDN architecture. To deal with this problem,

a reliable congestion control mechanism becomes necessary for a

successful deployment of NDN. This paper presents a new hybrid

congestion control mechanism for NDN, EC-Elastic (Explicit

Congestion Elastic), which adopts the basic concept of Elastic-

TCP to control the sending rates of the interest packets at the

consumer nodes. In the intermediate nodes, a queue has been

associated with the Controlled Delay-Active Queue Management

CoDel-AQM to measure the packet sojourn time and notify the

consumer to decrease its interest packet sending rate when it

receives an explicit congestion signal. EC-Elastic was

implemented in ndnSIM and evaluated with Agile-SD, CUBIC,

and STCP in different scenarios. Simulation results show that

EC-Elastic provides a significant improvement in bandwidth

utilization while maintaining lower delay and packet loss rates.

Keywords—NDN; named data networking; congestion control;

explicit congestion control; TCP-elastic

I. INTRODUCTION

The use of the internet has grown exponentially from point-
to-point communications to the distribution of information
everywhere. This growth has increased the number of internet
users where these users are more interested in getting data in a
short period of time than the location of that data. To facilitate
connectivity between these users, high-speed and long-distance
networks have been widely employed in many countries [1]
[2]. However, this evolution poses some problems, namely, the
current Transmission Control Protocol/Internet Protocol
TCP/IP internet architecture and its variants have seen poor
performance [3], and cannot cope with this growth, as they are
designed for end-to-end communications. The use of high
speed and long distance networks requires consideration of two
major problems that are often encountered in this type of
environment and that affect network performance negatively.
The first problem concerns the use of large buffer regimes and
long distances which leads to very long RTTs while the second
problem concerns the need to increase the congestion window

(cwnd) as much as possible to maximize the use of available
bandwidth.

The first problem concerning the current TCP/IP internet
architecture has motivated the researchers to explore new
architectures for the future internet [4]. Information-Centric
Networking (ICN) [5] has been proposed as a new content-
centric internet architecture to replace the current host-centric
internet architecture. ICN has proposed several architectures
that are all based on the content name rather than the IP
address. Among these architectures, Named Data Networking
(NDN) [6], an important research topic that has quickly
encountered considerable interest from researchers. NDN uses
hierarchical names to exchange two types of packets (interest
packets and data packets [6]) between consumers and content
producers. A consumer requests content via an interest packet,
and then any node that has the requested data sends it through a
data packet. These data packets follow the reverse path of
interest packets. Each NDN node has three components,
namely Content Store (CS), Pending Interest Table (PIT) and
Forwarding Information Base (FIB) as shown in Fig. 1.
Content Store (CS) : works as a content cache [7]. When CS
receives data packets, it can store them temporarily in a cache
and use them again in case of a request for the same data [8].
Pending Interest Table (PIT): The PIT contains interests that
have been transmitted upstream but have not yet been satisfied
[7]. It also contains the incoming interface list from which the
interest packet for that name was received and the outgoing
interface list from which the interest packet was sent [8].
Forwarding Information Base (FIB) : This is a database that
contains prefix names for identifying the location of content
producers, and an interfaces list for determining which
interface is needed to forward the interest packet [8].

The NDN architecture has new features such as
connectionless, one-interest-one-data, caching, multipath and
multi-source. However, these features complicate network
congestion control, because the existing TCP/IP solutions
cannot be applied directly in NDN, which made congestion
control an active research topic to be studied. The different
characteristics between the two architectures (NDN and
TCP/IP) mainly lie in:

 In NDN, communication is receiver-based and
connectionless, whereas in TCP/IP it is connection-
oriented between two end points.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 11, 2021

595 | P a g e

www.ijacsa.thesai.org

 NDN uses a One-Interest-One-Data transport mode, the
consumer is responsible for retransmitting the interest
packet if the desired data is not received. There are no
duplicate data acknowledgement (ACKs) as in TCP/IP.

 NDN uses caching in intermediate nodes to satisfy
requests from all consumers rather than a single
content source used by TCP/IP.

 The use of caching in NDN nodes allows desired data
to be fetched from several sources and over several
paths, which complicates the use of RTO
(Retransmission Time Out) in NDN congestion control
as it is intended for single-source TCP/IP
communication [9].

These challenges have motivated the research community
to design and develop new mechanisms for NDN networks that
are able to avoid congestion, increase the use of available
bandwidth while maintaining fast delivery time. However, the
majority of existing mechanisms in NDN are based on the
AIMD mechanism which can prevent full utilization of the
available bandwidth due to the huge bandwidth-delay product
(BDP: Bandwidth-Delay Product refers to the maximum
quantity of data that can be sent over a link or network) in
high-speed and long-distance networks, making it a waste of
network resources [1] because AIMD takes a long time to
reach the maximum capacity of the network links, which leads
to underutilization of the bandwidth. Moreover, in case of
congestion, AIMD divides the congestion window by 2, which
requires more time to reach the maximum throughput again
and consequently, the link performance is degraded.

To address the second problem concerning large buffer
regimes and very long RTTs, this paper proposes a new hybrid
congestion control mechanism for NDN named Explicit
Congestion Elastic (EC-Elastic), which adapts the basic idea of
Elastic-TCP [1] to control the sending rate of interest packets at
the consumer nodes. EC-Elastic uses the Window-correlated
Weighting Function WWF that aims to improve the bandwidth
utilization of the network. In intermediate routers, EC-Elastic
uses a CoDel-AQM queue for each prefix on each interface to
measure packet sojourn time. This algorithm allows routers,
which have a large buffer, to absorb traffic bursts and to reduce
its queues through detecting congestion before the buffer is full
[10] then explicitly signals congestion to inform consumers to
reduce their traffic rate.

Fig. 1. Forwarding Process at NDN Node.

The rest of the paper is organized as follows: Section II
presents the related work while Section III presents the
principle of congestion control. Section IV details the proposed
"EC-Elastic" mechanism and Section V evaluates the
performance of this mechanism, it presents the topologies and
measurements used as well as the results and discussion.
Finally, Section VI concludes the paper.

II. RELATED WORK

In the literature, several congestion control mechanisms
have been proposed for NDN networks. According to [11],
these mechanisms can be classified into three categories:
Receiver-based method: which is characterized by detecting
congestion and controlling the sending rate of interest packets
only at the consumer nodes [7]. Hop-by-hop method: which is
characterized by detecting congestion and controlling the
sending rate of interest packets at each intermediate node [12].
Hybrid method: which is characterized by detecting and
controlling congestion at both receiver nodes and intermediate
nodes [7] [12].

In NDN, the majority of congestion control mechanisms
are inherited from TCP's window-based mechanisms, and most
of them adjust the size of their congestion window based on the
Additive Increase Multiplicative Decrease (AIMD) mechanism
that increases the congestion window by Additive Increase
(AI) and decreases the congestion window by Multiplicative
Decrease (MD). Specifically, the authors of [13] propose ICP
(Interest Control Protocol) a receiver-based congestion control
mechanism that detects congestion by measuring the delay and
timer expirations and adjusts the congestion window size by
AIMD mechanism. The authors of [14] propose ICTP
(Information Centric Transport Protocol) which also detects
congestion by RTO Timeout and adjusts the congestion
window size by AIMD mechanism. These two mechanisms did
not consider the case of multiple source scenarios. To solve
this problem, the authors of [15] propose a mechanism named
ConTug that detects congestion using an RTO value for each
content source and then adjusts the size of congestion window
by AIMD mechanism. However, the authors of [16] propose
CCTCP (Content Centric TCP) which instead of using a single
RTO value for each content source, it uses a separate RTO
value for each data source and then adjusts the congestion
window size by AIMD mechanism. On the other hand, the
authors of [17] propose predictive which maintains an RTO
value for each Content Store to detect congestion and then uses
the AIMD mechanism to adjust the congestion window size. In
[18], the authors propose a Hop-by-hop Receiver-driven
Interest Control Protocol (HR-ICP), which at the router level
detects congestion using a virtual queue and then depending on
the state of this queue, the consumer nodes use the AIMD
mechanism to adjust the congestion window size. Other
authors proposed CVUnion in [19] which detects congestion at
intermediate nodes through the calculation of the average
queue length of the interest packets, then once the consumer
receives the feedback, it adjusts its congestion window size by
the AIMD mechanism. In [20], the authors propose CHoPCoP
(Chunk-switched Hop Pull Control Protocol) which detects
congestion at intermediate nodes by monitoring the queue size
of outgoing data packets, and then, based on the queue size, an
explicit congestion notification is sent to the consumer to

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 11, 2021

596 | P a g e

www.ijacsa.thesai.org

adjust the congestion window size through the AIMD
mechanism. The authors of [21] propose Stateful Forwarding
which detects congestion by calculating the limit rate of
interest packets. Stateful Forwarding generates a Negative-
ACKnowledgment NACK packet that will be sent on
downstream when congestion is detected. Once the
downstream router receives this NACK packet, and depending
on the received link state, it uses the AIMD mechanism to
adjust the size of the congestion window. However, the authors
of [22] [23] detected problems with the use of NACK, namely
the delay in transmitting the NACK between two routers,
which results in an excessive reduction in the sending rate of
interest packets. Therefore, the authors propose to use three
states for each interface which are, normal, congestion and
check, and depending on the state of the network, the AIMD
mechanism is used to adjust the congestion window size. Other
authors propose to combine the multipath forwarding strategy
with congestion control as in [24] where the authors deployed
the forwarding strategy at the intermediate routers and the
AIMD mechanism at the consumer nodes. In [25], the authors
propose Standbyme which controls congestion in three steps:
Accurate Local Congestion detection, Hob-by-hop congestion
notification and Multipath strategy congestion avoidance and
adjusts the congestion window size with AIMD mechanism.

In the congestion avoidance phase, AIMD increases the
congestion window by 1/cwnd. In the case of short distance,
cwnd is small, so the congestion window increase will be rapid
and reasonable. However, in the case of long distance, cwnd is
large and therefore the congestion window increase will be
slow. In addition, in the case of congestion, AIMD uses a
Multiplicative Decrease which divides the congestion window
by 2 and moves to the next phase, where the congestion
window will be increased by Additive Increase to reach again
the cwnd maximum. In the case of short distance where the
RTTs are small, this method provides acceptable throughput
and reasonable bandwidth utilization. However, in the case of
long distance where the RTTs are very large, this method takes
too much time to reach again the maximal cwnd which results
in low throughput and bandwidth utilization and consequently
degrades the link performance.

To address these issues, this paper proposes EC-Elastic, a
Hybrid congestion control mechanism to avoid congestion,
increase bandwidth utilization on long delays and high-BDP
networks and achieve efficient data delivery. EC-Elastic adapts
the basic idea of Elastic-TCP [8] to control the rate at which
the interest packets are sent to consumer nodes. EC-Elastic
controls congestion in three phases; congestion detection at
intermediate routers using CoDel-AQM, then explicitly
signaling congestion to inform consumers to reduce their
traffic rate, and finally adjusting the congestion window based
on the type of packet received by consumers.

III. PRINCIPLE OF CONGESTION CONTROL

To support high-speed applications (e.g., large-scale data
transfer) and low-latency applications in NDN networks, we
need a congestion control mechanism. This mechanism should
contain the following steps: "Congestion detection",
"Congestion signaling" and "Congestion window size
adjustment". The description of each step is described above:

A. Congestion Detection

Data transfer can saturate queues, which degrades quality
of service in the network. The deployment of an AQM strategy
is necessary. In the literature, many AQM algorithms have
been proposed such as Drop-Tail [26]., RED (Random Early
Detection) [27], CoDel [28] or PIE (Proportional Integral
controller Enhanced) [29]. The basic idea behind these
algorithms is that the current queue length is not an indication
of congestion as it can be caused by bursty traffic [30].

Drop-Tail [26] was proposed as the first algorithm to solve
queue management problems. This algorithm works as follows:
Each queue's length is fixed at a maximum value known as the
maximum packet length, and user's incoming packets will be
stored in this queue. When the length of the queue hits the
maximum limit, the incoming packets will be dropped. Then,
when the packets are removed from the queue and its length
decreases, the incoming packets will be stored in the queue
again. This method can fill up the queue quickly, resulting in a
high loss rate for applications; the Drop-Tail queue increases
delay since it can be full for a long period of time [26].

RED [27] is an algorithm that relies on the average queue
length to drop packets, i.e., as the queue length increases, the
probability of packet drop increases and vice versa. RED
works according to two principles: the estimation of the queue
length and the packet drop decision and uses two thresholds for
this purpose. When the average queue length is lower than the
minimum threshold, all incoming packets will be accepted.
Otherwise, when the average queue length is higher than the
maximum threshold, all incoming packets will be dropped.
Finally, in the case of an average queue length between the two
thresholds, the incoming packets will be marked by Pi
probability. This probability is directly proportional to the
bandwidth of the connection to the router. One of the problems
with this algorithm is that it only works well when there is
enough buffer space and it is properly parameterized. Thus, it
requires a variety of parameters to cope with different types of
congestion.

CoDel [28] is an algorithm that has been proposed to
manage the queue by calculating the sojourn time of packets in
the queue. Based on this packet sojourn time, CoDel decides if
the packet should be dropped or not. CoDel works as follows:
It calculates the packet sojourn time (the time spent by every
packet in the queue) and compares it to the threshold which is
by default 5ms. If the minimum sojourn time is less than this
threshold, the packet will be transmitted, otherwise if the
sojourn time is greater than this threshold, the packet will be
dropped. When the algorithm enters into the drop state, it starts
sending congestion signals and drops packets that have a low
and linearly increasing rate. CoDel starts the drop with the
packet that is at the top of the queue and reduces the time
interval of the next drop by a certain value. The packet drop
increases if the sojourn time remains above the threshold. This
algorithm can handle bursty traffic without causing packet loss.
This algorithm is considered as a better predictor of congestion
[30]. In EC-Elastic, we adopt the same congestion detection
method as CoDel.

PIE [29] is an algorithm that controls the average latency of
the queue to a target value. The PIE algorithm consists of three

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 11, 2021

597 | P a g e

www.ijacsa.thesai.org

components: a) Random dropping at enqueuing; calculates the
dropping probability p. Based on this probability, the packets
will be dropped randomly. The timestamp is not mandatory in
this step. b) Latency based drop probability update; the
calculation of drop probability uses the current estimate of the
latency and the direction in which the latency is moving.
Alternatively, the direction can be measured by subtracting the
current delay from the old delay. There are two parameters
used by PIE; (α) to determine the effect of the current latency
on the fall probability and (β) to indicate the amount of
additional adjustment based on increasing or decreasing
latency. The probability of falling becomes stable at the point
where the difference between the current and old latency is
zero and the latency value equals the reference delay. The final
balance between latency delay and latency jitter is determined
by the relative weight between α and β. c) Dequeuing rate
estimation; in a network, the queuing rate varies with the
fluctuation of link capacity or queues that share the same link.

B. Congestion Signaling

After detecting congestion, the information of congestion
should be transferred to the consumers and intermediate routers
to react quickly to the congestion problem by decreasing the
sending rate of interest packets. In NDN, several methods have
been proposed to signal congestion to consumers and
intermediate routers in order to regulate the sending rate of
interest packets:

 Explicit congestion notification, which explicitly
returns congestion level information in a NACK packet
[22].

 Tagging data packets in the downstream direction,
which allows downstream routers and consumers to
reduce the sending rate of interest packets, thereby
reducing congestion.

 The addition of congestion information in the
Congestion Information Bits (CIB) to data packets.
Adding a congestion tag to the data packet and sending
it to the consumers [31].

 Random Early Marker algorithm REM [20], which
explicitly marks data packets to signal the congestion
state to downstream nodes.

C. Congestion Window Size Adjustment

The congestion window "cwnd" is used in all congestion
control algorithms. It is used to control the quantity of sending
packets between consumer and producer to avoid congestion.
Despite this, congestion is not really avoidable, because the
consumer always tries to maximize the available bandwidth by
increasing its cwnd window, which could congest the network.

The congestion window adjustment of EC-Elastic borrows
the basic idea of Elastic-TCP [1], which aims to increase the
utilization of available bandwidth by using a Window
Correlated Weighting Function (WWF), that handles large
buffers, long delays and high-BDP networks [1].

IV. EC-ELASTIC DESIGN DETAIL

Avoiding congestion is a major concern of all network
architectures. In the following section, we present in detail our

proposal EC-Elastic, which controls congestion in three steps:
1) Congestion detection based on packet sojourn time using
CoDel. 2) Explicit congestion signaling. 3) Congestion window
adjustment at the consumer node.

A. Motivation

As mentioned earlier, NDN is a new paradigm that is
content-based rather than IP address-based. With this
paradigm, data transfer evolves from host-based point-to-point
transfer to more elaborate, efficient multipoint-to-multipoint
transfer that is better suited for the massive and intensive use of
content-based Internet. Thus, NDN adopts new features which
are mainly receiver-based and connectionless transport mode,
one-interest-one-data, multi-source, multi-path and caching.
These new features have made TCP/IP's traditional congestion
control mechanisms unable to act towards high performance in
the emerging NDN paradigm. We present below, the
limitations and motivations that led to our proposal:

 Congestion control in TCP/IP is based on delay and
loss only at data senders, while NDN controls
congestion at consumers and routers.

 The TCP/IP architecture uses end-to-end connected
mode to transfer data between two endpoints and uses
RTT (Round-Trip Time) and RTO (Retransmission
Time Out) values as indicators of network congestion.
These methods perform poorly in the NDN network,
they don't provide accurate information about
congestion levels because NDN is characterized by
multi-path and multi-source transfer, i.e., data can be
recovered from several sources and via several paths,
which leads to large variations in RTT measurements.

 The use of caching in intermediate nodes allows the
requested data to be retrieved directly from the
intermediate nodes without needing to go through the
producer. This technique minimizes data transmission
time (RTT) and satisfies the interest packet when
congestion losses occur on the producer route.

 In addition, NDN can aggregate interest packets
having the same name into a single PIT (Pending
Interest Table) entry and transmit the corresponding
data packet to all the aggregated faces [10]. The
recovery time of the interest packets that arrive after
the first one will be shorter.

 These new features (multi-source, multipath, caching
and PIT aggregation) can lead to short or long RTT
measurements, which increases the detection time of
packet losses (the case of long RTT) and consequently
also increases the time of reaction to congestion. EC-
Elastic avoids this problem by using explicit
congestion signaling to react quickly to network
congestion (see Section IV.3).

 If the cache is used, if it exhausts its data, the next
requests will be handled by another more distant. If the
route to the newer cache has a lower BDP and the
number of interest packets in transit is higher, the new
bottleneck queue may be overloaded before the
consumer can adjust its interest packet sending rate.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 11, 2021

598 | P a g e

www.ijacsa.thesai.org

Our mitigation of this problem is to use large buffers to
manage temporary traffic bursts through detecting and
signaling congestion using CoDel before that these
buffers reach their limit (see Section IV.2).

To avoid the waste of network resources that are very
expensive and important that can be caused by large buffers,
we need to extend the congestion window to a large number of
packets in order to fully utilize the available network
bandwidth. In case of a network with high BDP (the number of
interest packets in transit is higher), using RTT to increase the
congestion window is not reliable because in these networks
RTT is long which makes the increase of the congestion
window very slow. In this case, the network spends a long
period of time capturing the maximum link capacity, which
underutilizes the network bandwidth. To avoid this problem,
we propose to adopt the same Window-correlated Weighting
Function (WWF) that was proposed by [1] to increase
bandwidth utilization on TCP/IP high-BDP networks and try to
prove its effectiveness on NDN networks to avoid congestion
in the congestion avoidance phase and increase bandwidth
utilization of NDN networks (see Section IV.4).

B. Congestion Detection based on Packet Sojourn Time using

CoDel

In NDN networks, congestion detection based on packet
loss or RTT (Round-Trip Time) is not reliable as in the current
internet network TCP/IP because NDN is characterized by
"multi-source" and "multi-path" transfer. In addition, the use of
these features can increase bursty traffic that disrupts queue
length and thus the production of congestion. Therefore, to
absorb these bursty traffics, the buffer size must be larger than
usual [30]. Active queue management (AQM) systems have
been proposed to control the amount of data buffered to keep
space available to absorb bursts and reduce queue delay. CoDel
[28], as an AQM algorithm, is designed to control the queue by
calculating the sojourn time of packets in the queue. This
algorithm allows routers, which have a large buffer, to absorb
traffic bursts and to reduce its queues through detecting
congestion before the buffer is full [10]. In EC-Elastic, we
adopt the congestion detection method proposed by Codel.

The CoDel algorithm, presented below, calculates the
sojourn time of each packet in the queue "queuing delay" and
compares the minimum sojourn time over a given period of
time (default: 100ms) with a threshold, by default equal to
5ms. The first time the packet sojourn time exceeds the
threshold, the current time will be recorded as FirstAboveTime
and the packet sojourn time will be recorded as FirstSojourn. If
the minimum sojourn time over a period of time (default:
100ms) exceeds the threshold (default: 5ms), the outgoing link
in the queue is considered congested. The Codel code is
presented in Algorithm 1.

Algorithm 1 CoDel algorithm

1: Function CheckSojournTime(Packet, Now)

2: sojournTime  Now – Tag.GetTime

3: if sojournTime > Target then

4: OverTargetForInterval  False

5: if FirstAboveTime == 0 then

6: OverTargetForInterval  False

7: FirstAboveTime  Now

8: else
9: if Now > (FirstAboveTime + Interval) then

10: sojourn  Now

11: OverTargetForInterval  True

12: else

13: FirstAbiveTime == 0

14: OverTargetForInterval  False

15: end if

16: end if

17: end if
18: return OverTargetForInterval;

19: end function
20: Function DoDequeue(Packet, Now)

21: Now  CoDelGetTime()

22: OkToMark  CheckSojournTime(Packet,Now)

23: if OkToMark then

24: if Now > NextMarkingTime then

25: MarkNext  True

26: NextMarkingTime  Now

27: else
28: MarkedCount  0

29: end if

30: end if

31: end function

C. Explicit Congestion Signaling

We use the same congestion signaling method that CoDel
used, ECN marking (Explicit Congestion Notification) [32].
This signaling is done in the downstream direction by
explicitly marking the concerned packets to notify the
consumer of the link status, i.e., when a router detects
congestion on one of its outgoing links, it marks the data
packets and explicitly signals this state of congestion to the
consumer nodes to reduce their sending rate of interest packets.

ECN marking is done as follows: When congestion occurs,
the first packet is marked and the next packets are marked in a
marking interval that corresponds to the CoDel drop spacing;
This interval starts at "1.1 * the CoDel interval (100ms)" [33].
A congestion notification bit is used by ECN in the packet
headers to provide feedback on network congestion. This bit is
activated in the PIT entry of the packet when the packet
sojourn time exceeds the threshold. Depending on the data
packet received (Normal or Marked) at the consumer nodes,
the authors adapt the sending rate of interest packets. An
advantage of ECN marking is that consumers can be informed
of congestion quickly and thus react quickly to the congestion
problem.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 11, 2021

599 | P a g e

www.ijacsa.thesai.org

D. Congestion Window Adjustment

This section describes in detail the algorithm used to adjust
the congestion window of EC-Elastic, which is based on the
Elastic-TCP mechanism. The principal purpose of this
algorithm is to improve overall performance and bandwidth
utilization while avoiding packet loss. Algorithm 2 describes
the core functionality of EC-Elastic at the consumer node,
where the congestion window cwnd is increased when the
consumer receives a normal data packet and is decreased when
the consumer receives marked packets or Timeouts.

Algorithm 2 Consumer Elastic Algorithm

1: On data reception do

2: if no NACK received then

3: if slow start then

4: cwnd  cwnd + 1

5: else
6: RTTcurrent  (now – sendtime)

7: if RTTcurrent > RTTmax then

8: RTTmax  RTTcurrent

9: end if
10: if RTTcurrent < RTTmin then

11: RTTmin  RTTcurrent

12: end if

13:  √

14: cwnd  cwnd +

15: end if

16: else
17: if slow start then

18: cwnd  cwnd × β1

19: else
20: cwnd  cwnd × β2

21: end if
22: ssthresh  cwnd - 1

23: end if

1) Design of the consumer window adjustment algorithm:

The basic idea of algorithm 2 is to use the Window-correlated

Weighting Function WWF which was proposed in [1] and

aims to improve the bandwidth utilization. WWF is based on

the variation of RTT (Round Trip Time) according to the

following formula:

 √

 (1)

Where, RTTcurrent is the current RTT obtained from the last
ACK, RTTmax is the maximum RTT and cwnd is the current
congestion window. This function is used in the congestion
avoidance phase to increase the congestion window by

. However, in the slow start phase, EC-Elastic

increases its congestion window by cwnd+1.

Fig. 2. Throughput of EC-Elastic by Varying the Parameter β.

In case of congestion detection or timeouts, Elastic-TCP [1]
applies a multiplicative decrease that halves the cwnd after
each loss detection regardless of the phase in which the loss is
detected. In contrast, EC-Elastic uses two ways to decrease the
cwnd, after any congestion detection. This decrease varies
depending on the phase where the loss is detected. As shown in
Algorithm 2, if the loss is detected in the slow start phase, EC-
Elastic decreases its cwnd to cwnd*β1 of the last cwnd. If the
loss is detected in the congestion avoidance phase, EC-Elastic
decreases its cwnd to cwnd*β2 of the last cwnd and the
ssthresh (the threshold) is reduced to cwnd -1 after any
degradation to avoid switching to an undesirable slow start.
Since the loss that occurs in the slow start phase is more severe
than the loss that occurs in the congestion avoidance phase
[34], the value of β1 should therefore always be less than β2
(β1 and β2 are two parameters used for adjusting the size of the
congestion window, their values vary between 0 and 1).

Fig. 2 presents the simulation results we conducted on the
first scenario (Fig. 3 and Table II) in order to find the most
optimal values for choosing the coefficients β1 and β2. This
figure shows a comparison between using a multiplicative
decrease (as in Elastic-TCP which uses β=0.5 to decrease its
congestion window ", a multiplicative decrease is usually equal
to 1/2") and using two parameters β1 and β2 in both congestion
control phases. According to Fig. 2, with the increase of β1 and
β2, the throughput also increases and when β1= 0,9 / β2=0,95,
the throughput is almost the same as that of β1= 0,85 / β2=0,9
which indicates that the throughput does not change when the
value of β1 is greater than 0,85 and β2 is greater than 0,9. EC-
Elastic performs better in terms of link utilization with the use
of the two parameters β1 and β2 than the use of multiplicative
decrease. Based on the experimental result (Fig. 2), we set β1 =
0,85 and β2 = 0,9 in our algorithm.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 11, 2021

600 | P a g e

www.ijacsa.thesai.org

2) General behavior of EC-elastic: EC-Elastic uses a slow

start phase to increase the congestion window at consumer

nodes. Then, intermediate routers calculate the sojourn time of

each packet in the queue (using CoDel). If this sojourn time

exceeds a well-defined threshold, the router marks data

packets and sends them explicitly to the consumers to react to

this situation. At the consumer nodes, once the first marked

packet is received; EC-Elastic reduces its congestion window

cwnd by the factor β1 and enters into the congestion

avoidance phase which is characterized by using the Window-

Correlated Weighting Function (WWF). In this phase, EC-

Elastic increases its congestion window cwnd by WFF/cwnd

and decreases it by the factor β2 (by receiving a marked

packet). However, if a timeout is detected in any phase, EC-

Elastic resets its congestion window cwnd to the initial value.

The main objective of EC-Elastic in NDN is the same as that

of Elastic-TCP in TCP/IP network, to improve bandwidth

utilization in NDN networks, where RTTs are long, buffers

are very large, and packet losses are very frequent.

V. PERFORMANCE EVALUATION OF EC-ELASTIC

This work focuses on developing a new congestion control
mechanism named EC-Elastic that has the capability to
increase bandwidth utilization in high-speed NDN networks.
Using ndnSIM [35], based on NS-3 and designed specifically
for the numerical study of NDN networks, the performance of
EC-Elastic is evaluated and compared to three other congestion
control algorithms: Agile-SD [34] , CUBIC [36] and STCP
[37]. These algorithms have been implemented in NDN, in the
same scenarios as EC-Elastic.

A. Simulation Scenarios

1) Scenario 1: one consumer - one producer

Fig. 3 shows the first topology which contains a consumer,
a router and a producer.

Fig. 3. Simulation Topology 1.

TABLE I. PARAMETERS OF SIMULATION TOPOLOGY 2

Parameters Delay Bandwidth

Consumer - Router 10ms 100Mbps

Router - Producer 10ms 1Gbps

In this scenario, the link bandwidth from the consumer to
the router is fixed at 100 Mbps with a 10 ms delay while the
link bandwidth from the router to the producer is fixed at 1
Gbps with a 10 ms delay, as illustrated in Table I.

2) Scenario 2: Multiple consumers - multiple producers

In this second topology (Fig. 4), six consumer nodes are
connected to six producer nodes via a bottleneck link,
consisting of two routers (Router 1 and Router 2).

In this scenario, each link consumer-router is set to
100Mbps with different values of link delay between different
nodes in the studied topology (1ms, 10ms, 15ms, 20ms, 25ms
and 30ms). The link Router1-Router2 is set to 5Mbps with a
delay of 15ms. From Router 2 to producers 1/3/5, the link is set
to 20Mbps with delays of 10ms, 5ms and 1ms respectively and
from Router 2 to producers 2/4/6, the link is set to 10Mbps
with delays of 10ms, 5ms and 1ms respectively as presented in
Table II. In this scenario, the consumers request the same
content. The time for both simulations is set to 30 seconds.

Fig. 4. Simulation Topology 2.

TABLE II. PARAMETERS OF SIMULATION TOPOLOGY 2

Parameters Delay Bandwidth

Consumer1 - Router1 1ms 100Mbps

Consumer2 - Router1 10ms 100Mbps

Consumer3 - Router1 15ms 100Mbps

Consumer4 - Router1 20ms 100Mbps

Consumer5 - Router1 25ms 100Mbps

Consumer6 - Router1 30ms 100Mbps

Router1 - Router 2 15ms 50Mbps

Router2 - Producer1 10ms 20Mbps

Router2 – Producer2 10ms 10Mbps

Router2 – Producer3 5ms 20Mbps

Router2 – Producer4 5ms 10Mbps

Router2 – Producer5 1ms 20Mbps

Router2 – Producer6 1ms 10Mbps

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 11, 2021

601 | P a g e

www.ijacsa.thesai.org

B. Simulation Results

We evaluate the performance of EC-Elastic in both study
scenarios described above and are primarily interested in
throughput, packet loss rate, and delay. In this study, delay is
the time from sending an interest packet to receiving the
corresponding data packet. Similarly, throughput, measured in
bits per second, designates the number of successfully
transmitted data packets from source to destination and
changes with the amount of packets transmitted and the amount
of packets dropped in the network [38]. Packet loss rate,
designates the number of dropped packets per second and is
measured as the difference between the amount of packets sent
by a node and the amount of packets received by the same
node, over a given period of time. In order to have reliable
values, all simulations were repeated several times and the
results presented in the following are an average of the
obtained values.

1) Throughput measurement: Fig. 5 shows a comparison

of throughput between EC-Elastic and the three algorithms

(Agile-SD, CUBIC, and STCP) in the first study scenario, and

Fig. 6 shows a comparison of throughput between EC-Elastic

and the three algorithms (Agile-SD, CUBIC, and STCP) in the

second study scenario while, Table III shows the throughput

of both scenarios.

The objective of the first scenario (Fig. 5) is to study the
ability of these mechanisms to fully utilize the available
bandwidth. EC-Elastic outperforms the other mechanisms
because of its fast cwnd growth resulting from the use of the
Window-correlated Weighting Function WWF. It is clear that
EC-Elastic can fully utilize the bandwidth and is more stable
than Agile-SD, CUBIC and STCP algorithms. In the second
scenario (Fig. 6), increasing consumer and producer numbers
shows better performance, in terms of throughput, for EC-
Elastic than those obtained by the other three algorithms Agile-
SD, CUBIC and STCP. In addition, EC-Elastic has a more
stable throughput than the other three algorithms in both
scenarios.

EC-Elastic achieves the best and most stable throughput
performance compared to the other algorithms and this is due
to the use of the Window-correlated Weighting Function WWF
which aims to maximize the bandwidth usage of the network.
The result of this study is that EC-Elastic has the capability to
perceive and predict rapidly, deal with the variation of
bandwidth and adapt to NDN characteristics.

The necessity of the proposed mechanism was raised
because of the incapacity of the existing mechanisms to fully
utilize the available bandwidth on high speed networks where
RTTs are very long and large buffers are used.

TABLE III. THROUGHPUT OF SCENARIOS 1 AND 2

Algorithms EC-Elastic CUBIC Agile-SD STCP

Scenario 1 93,778 24,282 74,116 61,366

Scenario 2 113,62 37,26 108,96 88,37

Fig. 5. Throughput of Scenario 1.

Fig. 6. Throughput of Scenario 2.

2) Packet loss rate measurement: The main objective of

each congestion control mechanism is to maximize throughput

and minimize packet loss rate. Table IV shows the packet loss

rate in both scenarios. The results obtained from our numerical

study, show almost identical performance for the four

algorithms compared, with almost negligible packet loss rate

because the use of CoDel queueing reacts before the queue

reaches its limit and also reacts quickly to the congestion

problem by marking packets and notifying the consumer to

reduce their sending rate of interest packets. In addition,

explicit congestion marking reduces retransmissions, because

by notifying the consumer of the link status in case of

congestion, the packet received by the consumer also contains

the requested data.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 11, 2021

602 | P a g e

www.ijacsa.thesai.org

TABLE IV. PACKET LOSS RATE OF SCENARIOS 1 AND 2

Algorithms EC-Elastic CUBIC Agile-SD STCP

Scenario 1 0,001 0,032 0,055 0,032

Scenario 2 0 0 0 0

3) Delay measurement: Fig. 7 and 8 show the delay

measurement for Scenarios 1 and 2, respectively, and Table V

shows the delay measurement for both scenarios.

For the first scenario (Fig. 7), we observe that EC-Elastic,
Agile-SD, and Cubic show a lower delay measure than STCP
and this measure becomes almost the same for all the
mechanisms when we exceed 5s of the simulation. In the
second scenario (Fig. 8), we observe that EC-Elastic and
CUBIC have a lower average delay measure than that
measured by STCP and Agile-SD.

The exponential increase in delay between seconds 1 and 5
is due to all algorithms rapidly increasing their congestion
window at the end of the slow start phase to ensure full
utilization of the available bandwidth before switching to the
congestion avoidance phase, resulting in problems such as
packet loss, and thus increasing the delay between sending a
packet of interest and receiving its corresponding data packet.
As a result, our mechanism EC-Elastic ensures a reasonable
packet transmission delay.

Fig. 7. Delay Analysis of Scenario 1.

TABLE V. DELAY MEASUREMENT OF SCENARIOS 1 AND 2

Algorithms EC-Elastic CUBIC Agile-SD STCP

Scenario 1 0,04 0,062 0,04 0,04

Scenario 2 0,06 0,054 0,06 0,056

Fig. 8. Avg Delay Analysis of Scenario 2.

The numerical study performed in this work reveals that
our algorithm EC-Elastic seems to give better performance, in
terms of throughput, compared to those of Agile-SD, CUBIC
and STCP algorithms. Thus, our algorithm can continuously
fully utilize the bandwidth of the sources while keeping the
delay and packet loss rate lower.

VI. CONCLUSION

This paper proposes EC-Elastic, a hybrid congestion
control mechanism for NDN, to avoid congestion, increase
bandwidth utilization and achieve efficient data delivery. EC-
Elastic is based on the use of Window Correlated Weighting
Function (WWF) which aims to improve bandwidth utilization
in the network. At the intermediate routers, EC-Elastic uses
AQM-CoDel queue to measure the packet sojourn time and
explicitly signals congestion to inform the consumer to
decrease its sending rate of interest packets, and then at the
consumer nodes, EC-Elastic adopts the basic idea of Elastic-
TCP to control the sending rate of interest packets. The
conducted numerical study of the performance of EC-Elastic
compared to Agile-SD, CUBIC and STCP in terms of
throughput, packet loss rate, and delay shows that EC-Elastic
can significantly improve bandwidth utilization while
maintaining lower delay and packet loss rates. EC-Elastic can
be a promising solution to enhance bandwidth utilization on
high speed networks where RTTs are very long and large
buffers are used. As a future work, we plan to implement EC-
Elastic in the Internet of Health Things (IoHT) to evaluate its
performance in more complex scenarios where sensitive patient
data becomes a critical component of healthcare that requires
ensuring its timely delivery while avoiding congestion and data
loss.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 12, No. 11, 2021

603 | P a g e

www.ijacsa.thesai.org

REFERENCES

[1] Alrshah MA, Al-Maqri MA, Othman M. Elastic-TCP: Flexible
Congestion Control Algorithm to Adapt for High-BDP Networks. IEEE
Syst J. 2019;:1–11.

[2] Rhee I, Xu L, Ha S, Zimmermann A, Eggert L, Scheffengger R. CUBIC
for Fast Long-Distance Networks. 2019;1:105–12.

[3] Dong M, Li Q, Zarchy D, Godfrey PB, Schapira M. PCC: Re-
architecting congestion control for consistent high performance. Proc
12th USENIX Symp Networked Syst Des Implementation, NSDI 2015.
2015;:395–408.

[4] Khelifi H, Luo S, Nour B, Moungla H. LQCC: A Link Quality-based
Congestion Control Scheme in Named Data Networks. IEEE Wirel
Commun Netw Conf WCNC. 2019;2019-April:1–6.

[5] Ahlgren B, Dannewitz C, Imbrenda C, Kutscher D, Ohlman B. A survey
of information-centric networking. IEEE Commun Mag. 2012;50:26–36.
doi:10.1109/MCOM.2012.6231276.

[6] Zhang L, Estrin D, Burke J, Jacobson V, Thornton J, Diana K, et al.
Named Data Networking (NDN) Project Named Data Networking (
NDN) Project. 2010; May.

[7] El-bakkouchi A, Bouayad A, ELBekkali M. A hop-by-hop Congestion
Control Mechanisms in NDN Networks – A Survey. 2019 7th Mediterr
Congr Telecommun. 2019;:1–4.

[8] El-Bakkouchi A, Ghazi M El, Bouayad A, Fattah M, Bekkali M El,
Mazer S. Packet Loss and Delay Measurement Analysis of TCP
Variants in NDN Congestion Control. 2020 1st Int Conf Innov Res Appl
Sci Eng Technol IRASET 2020. 2020;:2–6.

[9] Ren Y, Li J, Shanshan Shi, Lingling Li, Guodong Wang. An explicit
congestion control algorithm for Named Data Networking. In: 2016
IEEE Conference on Computer Communications Workshops
(INFOCOM WKSHPS). IEEE; 2016. p. 294–9.
doi:10.1109/INFCOMW.2016.7562089.

[10] Schneider K, Yi C, Zhang B, Zhang L. A Practical Congestion Control
Scheme for Named Data Networking. doi:10.1145/2984356.2984369.

[11] Ren Y, Li J, Shi S, Li L, Wang G, Zhang B. Congestion control in
named data networking – A survey. Comput Commun. 2016;86:1–11.
doi:10.1016/j.comcom.2016.04.017.

[12] Mejri S, Touati H, Kamoun F. Hop-by-hop interest rate notification and
adjustment in named data networks. IEEE Wirel Commun Netw Conf
WCNC. 2018;2018-April:1–6.

[13] Carofiglio G, Gallo M, Muscariello L. ICP: Design and evaluation of an
Interest control protocol for content-centric networking. In: 2012
Proceedings IEEE INFOCOM Workshops. IEEE; 2012. p. 304–9.
doi:10.1109/INFCOMW.2012.6193510.

[14] Salsano S, Detti A, Cancellieri M, Pomposini M, Blefari-Melazzi N.
Transport-layer issues in information centric networks. ICN’12 - ACM
Proc Information-Centric Netw Work. 2012; August:19–24.

[15] Arianfar S, Nikander P, Eggert L, Wong W. ConTug: A Receiver-
Driven Transport Protocol for Content-Centric Networks.
http://users.piuha.net/blackhawk/contug/contug.pdf. Accessed 12 Mar
2018.

[16] Saino L, Cocora C, Pavlou G. CCTCP: A Scalable Receiver-driven
Congestion Control Protocol for Content Centric Networking.
https://pdfs.semanticscholar.org/c539/1eb884f234a40ffcff8a7ad2a8989e
e13b79.pdf. Accessed 11 Mar 2018.

[17] Braun S, Monti M, Sifalakis M, Tschudin C. An Empirical Study of
Receiver-Based AIMD Flow-Control Strategies for CCN. In: 2013 22nd
International Conference on Computer Communication and Networks
(ICCCN). IEEE; 2013. p. 1–8. doi:10.1109/ICCCN.2013.6614106.

[18] Carofiglio G, Gallo M, Muscariello L. Joint Hop-by-hop and Receiver-
Driven Interest Control Protocol for Content-Centric Networks.

https://conferences.sigcomm.org/sigcomm/2012/paper/icn/p37.pdf.
Accessed 11 Mar 2018.

[19] XIA Y, WANG L, HOU F, WANG Y. Congestion Control for Content-
Centric Networking Based on Protocol-Oblivious Forwarding. DEStech
Trans Comput Sci Eng. 2017; wcne.

[20] Zhang F, Zhang Y, Reznik A, Liu H, Qian C, Xu C. A transport protocol
for content-centric networking with explicit congestion control. In: 2014
23rd International Conference on Computer Communication and
Networks (ICCCN). IEEE; 2014. p. 1–8.
doi:10.1109/ICCCN.2014.6911765.

[21] Yi C, Afanasyev A, Moiseenko I, Wang L, Zhang B, Zhang L. A case
for stateful forwarding plane. Comput Commun. 2013;36:779–91.
doi:10.1016/j.comcom.2013.01.005.

[22] Kato T, Bandai M. Congestion control avoiding excessive rate reduction
in named data network. 2017 14th IEEE Annu Consum Commun Netw
Conf CCNC 2017. 2017;:108–13.

[23] Kato T, Bandai M. Avoiding excessive rate reduction in rate based
congestion control for named data networking. J Inf Process.
2018;26:29–37.

[24] Nguyen D, Fukushima M, Sugiyama K, Tagami A. Efficient multipath
forwarding and congestion control without route-labeling in CCN. 2015
IEEE Int Conf Commun Work ICCW 2015. 2015; Scpa:1533–8.

[25] Muchtar F, Al-Adhaileh MH, Alubady R, Singh PK, Ambar R, Stiawan
D. Congestion Control for Named Data Networking-Based Wireless Ad
Hoc Network. Springer Singapore; 2020. doi:10.1007/978-981-15-3369-
3_10.

[26] Alwahab DA, Laki S. A simulation-based survey of active queue
management algorithms. ACM Int Conf Proceeding Ser. 2018;:71–7.

[27] Floyd S, Jacobson V. Random Early Detection Gateways for Congestion
Avoidance. IEEE/ACM Trans Netw. 1993;1:397–413.

[28] Nichols K, Jacobson V. Controlling queue delay. Commun ACM.
2012;55:42. doi:10.1145/2209249.2209264.

[29] Pan R, Natarajan P, Piglione C, Prabhu MS, Subramanian V, Baker F, et
al. PIE: A lightweight control scheme to address the bufferbloat
problem. IEEE Int Conf High Perform Switch Routing, HPSR.
2013;:148–55.

[30] Wang M, Yue M, Wu Z. WinCM: A Window based Congestion Control
Mechanism for NDN. 2019; HotICN:80–6.

[31] Liu Y, Piao X, Hou C, Lei K. A CUBIC-Based explicit congestion
control mechanism in named data networking. Proc - 2016 Int Conf
Cyber-Enabled Distrib Comput Knowl Discov CyberC 2016.
2017;:360–3.

[32] Floyd S. TCP and explicit congestion notification. ACM SIGCOMM
Comput Commun Rev. 1994;24:8–23.

[33] Nichols K, Pollere I, Jacobson V, A. McGregor E, J. Iyengar E.
Controlled Delay Active Queue Management draft-ietf-aqm-codel-03. J
Chem Inf Model. 2016;53:1689–99.

[34] Alrshah MA, Othman M, Ali B, Hanapi ZM. Agile-SD: A Linux-based
TCP congestion control algorithm for supporting high-speed and short-
distance networks. J Netw Comput Appl. 2015;55 August 2018:181–90.
doi:10.1016/j.jnca.2015.05.011.

[35] Mastorakis S, Afanasyev A, Moiseenko I, Zhang L. ndnSIM 2 . 0 : A
new version of the NDN simulator for NS-3. NDN Proj. 2015;:1–8.

[36] Ha S, Rhee I, Xu L. CUBIC: A new TCP-friendly high-speed TCP
variant. Oper Syst Rev. 2008;42:64–74.

[37] Kelly T. Scalable TCP: Improving performance in highspeed wide area
networks. Comput Commun Rev. 2003;33:83–91.

[38] El-Bakkouchi A, El Ghazi M, Bouayad A, Fattah M, El Bekkali M.
Performance analysis of TCP variants in named data networking. Int J
Adv Trends Comput Sci Eng. 2020;9 1.5 Special Issue:13–20.

