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Abstract—Usage of code-mixed text has increased in re-
cent years among Indonesian internet users, who often mix
Indonesian-language with English-language text. Normalisation
of this code-mixed text into Indonesian needs to be performed to
capture the meaning of English parts of the text and process them
effectively. We improve a state-of-the-art code-mixed Indonesian-
English normalisation system by modifying its pipeline modules.
We further analyse the effect of code-mixed normalisation on
emotion classification tasks. Our approach significantly improved
on a state-of-the-art Indonesian-English code-mixed text normal-
isation system in both the individual pipeline modules and the
overall system. The new feature set in the language identification
module showed an improvement of 4.26% in terms of F1 score.
The combination of machine translation and ruleset in the lexical
normalisation module improved BLEU score by 25.22% and
lowered WER by 62.49%. The use of context in the translation
module improved BLEU score by 2.5% and lowered WER by
8.84%. The effectiveness of the overall pipeline normalisation
system increased by 32.11% and 33.82%, in terms of BLEU score
and WER, respectively. Code-mixed normalisation also improved
the accuracy of emotion classification by up to 37.74% in terms
of F1 score.

Keywords—Code-mixed normalisation; Indonesian; English;
emotion classification

I. INTRODUCTION

One common form of the phenomenon of multilingualism
is code-mixing. It is a linguistic phenomenon that mixes
two or more language variations in one utterance [1]. This
phenomenon can be found in various contexts, including social
media [2], news articles [3], lectures [4], and even sermons [5].

Indonesia is highly multilinguistic, with more than 700
languages spoken across the nation. A 2015 report noted
that 57.5% of Indonesian people are bilingual and 17.4% are
trilingual, among whom the most popular language combi-
nation is Indonesian, English and Javanese.1 Multilingualistic
phenomena such as code-mixing have recently become increas-
ingly common due to more widespread usage of the internet,
especially social media.

Recently, code-mixing of Indonesian and English has be-
come popular in Indonesia and has become widely known
as “Bahasa Anak JakSel”. JakSel stands for “Jakarta Sela-
tan” (“South Jakarta”); thus “Bahasa Anak JakSel” essentially
means “a language of South Jakarta teenagers”, so named

1https://www.inlingua-edinburgh.co.uk/how-multilingual-is-your-country/

Fig. 1. Example of Indonesian-English Code-mixed Text.

because combining English and Indonesian words or phrases
first become popular amongst teenagers in South Jakarta.

A previous linguistic study found there are four main rea-
sons why Indonesian-Englis code-mixing (i.e. “Bahasa Anak
JakSel”) has become a trend today [6]. The first is language
pride: people in Indonesia who can speak or write English are
considered prestigious, since not all Indonesians have mastered
English. The second is social status and style: some groups
frequently use some English words in their conversations be-
cause of social demands that arise if many people in the group
are also used to speaking English. The third is the existence
of English words that can not be translated into Indonesian:
some topics are much more familiar and easier to discuss using
English terms instead of the equivalent Indonesian expressions.
The fourth is the desire to increase English vocabulary use:
practicing using English words in conversation or writing helps
people master English.

There are no noticeable differences in how code-mixing
occurs for Indonesian-English versus other language pairs.
English words that are mixed with the other language may
be nouns, verbs or adverbs, among other parts of speech
(POSs). Like code-mixing in other language pairs, Indonesian-
English code-mixing can happen within a sentence (intra-
sentential), across different sentences (inter-sentential) or even
within a word (intra-lexical/sub-word). The distinction be-
tween Indonesian-English code-mixed text and code-mixed
text in other language pairs mainly involves the syntactic and
semantic aspects of the languages themselves. Fig. 1 illustrates
an example of an Indonesian-English code-mixed tweet.

The increase of code-mixed text in social media has
invoked research interest in studying various forms of pro-
cessing such text. However, code-mixed text is more diffi-
cult to analyse than monolingual text. Analysing code-mixed
text using only one language means that information written
in other languages cannot be analysed effectively. On the
other hand, analysing code-mixed text using two languages
increases the complexity of the model due to the larger amount
of vocabulary that needs to be processed and the different
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language characteristics that need to be taken into account.
A simple alternative option is to translate the code-mixed
text to monolingual text. Translation of code-mixed text has
been done previously for various language pairs, including
Hindi-English [7], Chinese-English [8], Arabic-English [9] and
Indonesian-English [10].

Barik et al. [10] built a system pipeline to normalise and
translate Indonesian-English code-mixed tweets. The system
pipeline consists of four modules: tokenisation, language iden-
tification, lexical normalisation, and translation. We see some
potential points of improvement for Barik et al.’s code-mixed
normalisation pipeline. First, in the language identification
module, the features used in the language identification process
could be expanded to improve the identification results. Sec-
ond, in the lexical normalisation module, Barik et al.’s method
– which only relies on a ruleset and a lexicon – was unable
to determine whether an ambiguous word was a formal word
or slang; their method always considered the word slang if it
appeared in the lexicon. To overcome this issue, we propose
combining a machine translation (MT) approach with a ruleset
to perform lexical normalisation. Finally, in the translation
module, Barik et al.’s method translates each token separately,
meaning that the system lacks context when performing the
translation. This research tackles this problem by translating
neighboring tokens simultaneously.

Although extensive research has been performed on code-
mixed text normalisation, very few studies have actually in-
vestigated the effect of this normalisation on text process-
ing. Goot and Çetinoğlu [11] studied the effect of code-
mixed normalisation on a POS-tagging task for Turkish-
German text and obtained significant improvement in task
performance as a result of normalisation. Singh et al. [12]
investigated the effect of code-mixed text normalisation on
sentiment analysis and POS-tagging for several language pairs,
including Bengali-English, Hindi-English, and Tamil-English.
Their results showed that code-mixed normalisation improved
performance on both tasks.

No research has yet investigated the effect of Indonesian-
English code-mixed text normalisation on a specific text-
processing task. Therefore, in this research we also analysed
the effects of code-mixed normalisation on an emotion classi-
fication task using social media data. Emotion classification
tasks often rely on detecting certain phrases or words that
signify emotions. Therefore, performing this task on code-
mixed data is difficult when the emotion phrases or words are
written in different languages. We argue that first normalizing
code-mixed text into monolingual text may have benefits for
emotion classification. In this work, we examine the extent to
which code-mixed normalisation affects the accuracy of emo-
tion classification systems. In general, our research questions
are as follows:

1) To what extent the addition of some features to the
language identification module, the combination of
MT & rule-based approaches in the lexical normal-
isation module and the addition of context to the
translation module can improve the state-of-the-art
pipeline system for Indonesian-English code-mixed
text normalisation?

2) Does the use of code-mixed text normalisation system
affect the accuracy of emotion classification system?

II. RELATED WORK

A. Code-mixed Text Normalisation

The simplest way to normalise and translate code-mixed
text is by using an existing MT system to translate the portion
of the text that is in a foreign language. Patel and Parikh
[13] translated Gujarati-English code-mixed text to Gujarati.
The Gujarati token was transliterated using a handcrafted
dictionary, whereas the English token was translated using an
existing MT system. Dhar et al. [7] proposed using an existing
monolingual translation system using the Matrix Language-
Frame (MLF) model to translate Hindi-English code-mixed
text. Their approach was adapted from the MLF linguistic
theory developed by Myers-Scotton [14], which involves first
determining the matrix language (dominant language) and
embedding language (non-dominant language), then translating
the token in the embedding language to the matrix language
and finally translating the text to a desired language, if needed.

Another way to translate code-mixed text is by using a
parallel corpus of code-mixed and normalised text to train
an MT system. Menacer et al. [9] used this approach to
translate Arabic-English code-mixed text into English. Mahata
et al. [15] used deep learning for Bengali-English code-mixed
normalisation, employing a character-level long-short term
memory network to perform language identification. Next, the
English text was translated using a neural MT system, whilst
the Bengali text was transliterated back to its Devanagri form.
Finally, bigram and trigram language models were used to
reorder the tokens to fix grammatical errors.

Relatively very few studies have explored code-mixed
normalisation for Indonesian-English text. The only work that
we could find on Indonesian-English code-mixed normalisa-
tion was Barik et al.’s study [10], which performed code-
mixed normalisation using a pipeline system consisting of
four modules: tokenisation, language identification, lexical
normalisation, and translation. They used the condition random
field (CRF) sequence labelling model for the tokenisation and
language identification modules; rule-based, spelling correc-
tion and word embedding for the lexical normalisation module;
and MLF (as in [7]) for the translation module. In this work,
we wanted to improve Barik et al.’s code-mixed normalisation
system by modifying its pipeline modules.

B. Emotion Classification

Emotion classification is a specific task in natural language
processsing to identify emotion contained in a particular doc-
ument. The dataset used for emotion classification can be in
a variety of forms, including video [16], speech [17], text
[18], or even electroencephalography signals [19]. Classes or
categories for emotion classification tasks are usually limited
to basic emotions as defined based on research in the field
of psychology. The emotion theory developed by Ekman
[20] proposed six basic emotions: anger, joy, sadness, fear,
disgust, and surprise. There are also Shaver’s [21] six basic
emotions, according to which love is categorized as a basic
emotion instead of disgust. Another popular emotion theory is
Plutchik’s [22] eight basic emotions, which are the same as in
Ekman’s theory but with the addition of anticipation and trust.

A popular approach to performing emotion classification
based on textual data is to utilise an emotion lexicon containing

www.ijacsa.thesai.org 675 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 11, 2021

TABLE I. THE STATISTIC OF CODE-MIXED TEXT DATASET FOR
CODE-MIXED NORMALIZATION

Item Value
#Tweet 825
#Token 22,725
#Character 105,955
#Indonesian Token 11,200
#English Token 5,608
Code Mixing Index (CMI) 19.4

a list of words and the emotion associated with each word. The
lexicon can be either semi-automatically generated or manually
handcrafted [23], [24]. The emotion label of a document can be
determined by computing the point mutual information (PMI)
value of affect words [25]. The lexicon can be used as a feature
for supervised machine learning models in combination with
other features, such as POS tags.

Saputri et al. [18] performed emotion classification on a
dataset of Indonesian tweets. They classified each tweet as
belonging to one of five emotion categories: angry, happy,
sad, fear, and love. They explored various features, includ-
ing emotion lexicon, sentiment lexicon, bag of words, word
embedding, POS tags and morphological information. In this
work, we use the five emotion labels used by Saputri et al.
[18] in our emotion classification task.

III. DATASET

The dataset used in this research is taken from previous re-
search [10]. It consists of 825 Indonesian-English code-mixed
tweets along with annotations for all steps in their pipeline
normalisation system (i.e. tokenisation, language identification,
lexical normalisation and translation). The statistics of the
dataset are presented in Table I. The data consist of 22,725
tokens and 105,955 characters. The average tweet lengths is
27.54 tokens and the average token length is 4.66 characters.
There are 11,200 tokens in Indonesian (49.28% of overall
tokens) and 5,608 in English (24.67% of overall tokens).

The code-mixing index (CMI) value for this dataset was
19.44. CMI is a metric used to measure how often code mixing
occurs in a text [26]. This CMI value is rather high; almost
20% of the overall non-neutral language tokens in this dataset
are code-mixed text.

To analyse the effect of code-mixed normalisation on emo-
tion classification, we needed a ground truth of emotion labels
for each Indonesian-English code-mixed tweet in our dataset.
For this purpose, human annotation was performed to assign
emotion labels to the tweets. This process was conducted by
two annotators (both master’s students in computer science
who were familiar with the annotation tasks). Before perform-
ing the annotations, the annotators were given guidance on
how to label the emotions for each tweet. Our annotation
procedure followed previous research on emotion classification
using Indonesian tweets [18]. Each tweet in the dataset was
assigned to one of seven possible emotion labels: anger, joy,
sadness, fear, love, mixed and neutral. Tweets labeled as mixed
or neutral were filtered out and were not used in the emotion
classification task; neutral tweets were those not associated
with any emotion, whereas mixed label was assigned to tweets
to which multiple emotion labels could be applicable, which
is beyond the scope of this task. The annotators achieved a

Fig. 2. The Distribution of Emotion Labels in Our Dataset.

TABLE II. THE STATISTIC OF CODE-MIXED TEXT DATASET FOR
EMOTION CLASSIFICATION

Item Value
#Tweet 584
#Token 16,939
#Character 77,041
#Indonesian Token 8,539
#English Token 4,289
Code Mixing Index (CMI) 24.26

Cohen’s kappa coefficient of 64.72 before consolidating the
final label for each tweet, representing substantial inter-rater
agreement according to Landis and Koch [27]. Our code-mixed
dataset for emotion classification has been made available for
research purposes.2

The distribution of emotion labels after the annotation
process is shown in Fig. 2. In total, 66 tweets were labelled
as mixed and 175 as neutral, meaning that 241 of the 825
tweets from the original dataset could not be used in the
emotion classification task. Fig. 2 also indicates imbalances
in the emotion labels in the dataset. The emotion associated
with the smallest number of tweets is love, with 36 tweets. In
comparison, tweets expressing anger and joy were associated
with the highest number of tweets (192 and 185, respectively).
Meanwhile, 68 tweets were labelled as expressing fear and 103
as expressing sadness.

The summary statistics of the final dataset for emotion
classification task are shown in Table II. The emotion classi-
fication dataset was reduced to 584 tweets with 16,939 tokens
(including 8,539 Indonesian tokens and 4,289 English tokens)
and 77,041 characters. The CMI value increased to 24.26,
meaning that, on average, code-mixing occurred more often
in this dataset compared to the original dataset (see Table I
for comparison).

The other dataset used in this research was a corpus of
Indonesian-English code-mixed tweets, consisting of 900,000
Indonesian-language tweets and 1.6 million English-language
tweets. This corpus was taken from Barik et al.’s work and was
used as training data to build word embedding for the emotion
classification process.

2https://github.com/ir-nlp-csui/CodeMixedEmotion
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Fig. 3. The Framework of Indonesian-English Code-mixed Normalisation
Pipeline.

IV. METHODS

A. Code-Mixed Normalisation

Given Indonesian-English code-mixed text, our normalisa-
tion system will transform the text into Indonesian. In general,
our approach follows Barik et al.’s [10] pipeline system,
which consists of four sequential modules: tokenisation, lan-
guage identification, lexical normalisation, and translation. We
choose to improve their pipeline because it is the most recent
work in Indonesian-English code-mixed normalisation. They
proposed the use of four modules in an attempt to perform
comprehensive preprocessing (by adding dedicated tokeni-
sation and lexical normalisation modules) before translating
code-mixed text into one language. Some previous researchers
have used simpler methods than Barik et al.’s, including Patel
and Parikh [13], Dhar et al. [7], and Menacer et al. [9], who es-
sentially omitted the special tokenisation (by tokenising simply
using space characters), lexical normalisation, and/or language
identification modules. We decided to use four modules in our
system because Barik et al. has reported that the use of all four
modules was more effective than using only some modules.
Three of their modules are modified in this work with the
aim to improve their system. Briefly, our modifications are as
follows: (i) adding some features of the language identification
module, (ii) using different approaches by combining rule-
based and MT approaches in the lexical normalisation module,
and (iii) adding context to the MLF approach in the translation
module.

The flow of our system’s pipeline is illustrated in Fig. 3.
The modules of Barik et al.’s pipeline are shown in blue box.
The modules modified in this work are shown in the green box.
The following subsections explain the details of each module
in our code-mixed normalisation pipeline system and how it
differs from previous research.

1) Tokenisation: Tokenisation is the process of splitting
text into tokens, which can be a single word or multi-word ex-
pression. Our tokenisation method follows the same procedure
as Barik et al.; in other words, we did not make any changes
to this module. The strategy is to classify each character in
the text to a beginning–inside–outside (BIO) tag label. The
label is then used to split the text into tokens. The label B
(for “beginning”) represents a character at the beginning of
a token, the label I (for “inside”) represents characters in the
middle of a token, and the label O (for “outside”) represents

characters not in any tokens. For example, the BIO tag label
for the text “top text” is “BIIOBIII”, so the sequence token
result is “top” and “text”. This approach has some advantages
compared with the common tokenisation method of using
whitespace as the delimiter of a token. This is supported by
Barik et al.’s results, which showed that this approach was
more effective than tokenisation using whitespace and a ruleset
(e.g. the TweetTokenizer module from the nltk package) for
informal text with high levels of noise. In total, there are 8
features used in this module.

2) Language Identification: This module identifies the lan-
guage for each token. This process is important because, in
this code-mixed normalisation work, the English part of the
Indonesian-English code-mixed text will be translated into
Indonesian. Therefore, we need to identify which tokens are in
Indonesian and which are in English in the code-mixed text.
The language identification method used by Barik et al. applied
a sequence labelling approach. A CRF model is trained to
identify the language for each token based on the tokenisation
result. The language labels are “id”, “en”, and “un”. The label
“id” represents a token in Indonesian, “en” represents a token
in English, and “un” refers to a language-neutral token (i.e. a
token that cannot be identified as either Indonesian or English,
such as punctuation, named entities, emoji, and tokens in other
languages).

This research expands the language identification features
from Barik et al.’s work. The window token feature was
expanded to window size of 4 to capture more contextual
information and it showed good performance in our early ex-
perimental results. Additional questions such as “is title case”
and “has punctuation” were added to the token morphology
feature to enrich the morphology information. The previous
research only used the character n-gram feature with the size
of 5. We believe that this restriction prevents the model from
capturing the variety of unique character sequences and other
sub-word information that is unique in each language, such
as affixes. Affixes in English are very different from affixes
in Indonesian. To capture this information, we decided to add
more character n-grams to the feature set to add more sub-
word information. Specifically, we used character n-grams
ranging from unigram through 6-gram as features. Lastly,
we added one feature, called morphology sequence, to better
understand how the morphology of each character changed in a
token. This feature is obtained by converting all lowercase and
uppercase alphabet characters to “a” and “A” (respectively), all
numeric characters to “0”, all whitespace characters to “ ”, all
punctuation to “-” and removing character repetition. In total,
19 features were used in this module.

3) Lexical Normalisation: Lexical normalisation is the
process of transforming informal or slang words into their
formal variants. The previous model by Barik et al. used a
combination of rule-based and spelling-correction approaches
for this process. Their ruleset was composed of six rules
that normalise tokens containing specific language. Spelling
correction normalises tokens that are not in the formal lexicon
using edit distance and word embedding. Our model replaces
the spelling-correction part of the model with an MT approach.

Our method for lexical normalisation combines rule-based
and MT approaches. The rule-based method was applied as a
pre-normalisation stage before the text was inputted into the
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TABLE III. RULESET FOR LEXICAL NORMALISATION

No Rule Description Lang Example
1 Reduce character repetition to

maximum 2
id, en “aaamiiin” => “aamiin” (amen)

2 Reduplicate token ends with
character “2”

id “baik2” => “baik-baik” (“fine”)

3 Add “-” in the middle of a
duplicate token

id “baik baik” => “baik-baik”
(“fine”)

4 Extend contracted words us-
ing Kooten

en “I’m” => “I am”

5 Delete prefix “nge-” en “ngevote” => “vote”
6 Delete suffix “-nya” and add

“the” at the start of the token
en “jobnya” => “the job”

MT stage. This idea is supported by previous work [28], [29],
[30]. Veliz et al. [28] found that a ruleset could be used for
lexical normalisation as a pre-normalisation step before the text
was processed using MT. Kurnia and Yulianti [29] confirmed
that a ruleset could be applied and proved to be useful for
lexical normalisation. Yulianti et al. [30] applied rule-based
MT (RBMT) before the text was inputted into statistical MT
(SMT), and showed that the resulting hybrid MT was more
effective than using RBMT or SMT alone.

The ruleset used in this work is taken from Barik et al.’s
work. The details of the ruleset are listed in Table III. In total,
six rules are used in our ruleset, which only applies to alphanu-
meric tokens with a minimum of one alphabet character. It
does not apply to emoji, emoticons, URLs, hashtags, and user
tags. This restriction was implemented to avoid transforming
already-formal tokens, known as over-normalisation.

The goal of the first rule is to reduce the amount of
character repetition variations of a token. This rule applies to
all non-restricted tokens, regardless of language. The second
and third rules normalise informal reduplicated words (applied
only to tokens in the Indonesian language). The fourth rule
extends contracted English words. The fifth and sixth rules
normalise sub-word code-mixed tokens. For the Indonesian-
English language pair, sub-word code-mixing occurs when
combining English words with Indonesian affixes.

The MT approach to lexical normalisation works by trans-
lating text in informal language to formal language. This
approach has been used to normalise text in various languages,
such as English [31] Dutch [28], and Indonesian [32]. The MT
model used in this research is SMT with a phrase translation
unit, also known as phrase-based statistical MT (PBMT). The
PBSMT model was implemented with the mosesdecoder tool
[33]. The alignment model used for the PBSMT model is IBM
Model 5 with MGIZA [34]. The language models (3-gram,
4-gram, and 5-gram) were trained with a normalised corpus
on training data using KenLM [35]. Tuning was performed in
batches with the margin-infused relax algorithm (MIRA) using
bilingual evaluation understudy (BLEU) as a tuning metric
[36]. Special tokens – such as URLs, hashtags, and user tags
– were converted to “[URL]”, “[HASHTAG]”, and “[USER]”
in the training and tuning process.

4) Translation: The translation module translates code-
mixed text to monolingual text – here, Indonesian-English
code-mixed text to Indonesian-language text. We slightly mod-
ified the MLF approach used by Barik et al. by grouping
neighbouring tokens with the same language in the text as
one language segment; thus the translation is not performed for

each token, but for each segment, similar to the approach taken
in [15]. Because Barik et al. separately applied translation to
individual tokens, it potentially produces incorrect translation
results since it prevents the MT system to know the correct
context of the token. In our method, we added context to the
MT by translating a group of neighboring tokens together. The
use of language partitions serves as context during translation
to improve translation results.

Given the code-mixed text input, we first determine the
text’s matrix and embedding languages. Neighboring tokens
with similar language are then grouped to form one segment.
Using MLF method, each segment from the embedding lan-
guage is translated to the matrix language. If the embedding
language is English and the matrix language is Indonesian,
translate the English segment into Indonesian. If the em-
bedding language is Indonesian and the matrix language is
English, first translate the Indonesian segment into English,
then translate the overall text into Indonesian (This is important
because the goal of this work is to normalise Indonesian-
English code-mixed text into Indonesian).

The difference between the MLF method used in previous
work by Barik et al. and that used in this work is illustrated
in Fig. 4. Previous work separately applied translation to
individual tokens, which may result in translation errors. In our
method, we added context to the MT by translating a sequence
of tokens together. As shown in the figure, using our modified
MLF, the English text “It is not that hard” is translated as a
unit and produces an accurate translation result in Indonesian,
whereas the MLF used in previous work produces a translation
error as a result of translating each token separately.

B. Emotion Classification

The emotion classification process begins by preprocessing
data using a code-mixed normalisation system. In this research,
we compared two different classification systems. The first
uses a classic approach, following the research in [18]. The
second is a more modern approach based on deep learning.

The first system uses word embedding as a feature to
represent each sentence. We take the average word embedding
of all the tokens in a sentence as a feature when training the
classifier model. Based on the results of previous research, we
used the word embedding Word2Vec: a dense representation
of a word based on its context [37]. This representation is
obtained using a neural network that attempts to predict a
word based on its context or vice-versa. We chose a word
embedding size of 300 based on our early experimental results.
The emotion classifier for the first system is SVM, based on
the results in [18] as well as our early experimental results.

The second system fine-tunes a deep pretrained language
model on emotion classification task. The popularity of deep
pretrained language model has been on the rise since the orig-
inal release of BERT [38]. Such model has been extensively
researched, and have become the state of the art for many
text-processing tasks, including classification. Deep pretrained
language models are deep learning models (usually transform-
ers) trained on a large corpus with tasks that the dataset can
easily generate. For example, BERT is pretrained on a masked
language model task and a next sequence prediction task (see
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Fig. 4. Example of Indonesian-English Code-mixed Text.

TABLE IV. EXPERIMENT SCENARIO

No Experiment Baseline Measure
1 Code-Mixed Normalisation

(individual modules)
a. Language Identification CRF [10], CNN,

RNN, CNN+CRF
Accuracy, Precision,
Recall, F1 score

b. Lexical Normalisation raw data, ruleset +
spell correction [10],
SMT

BLEU, WER

c. Translation Direct translation,
MLF[10]

BLEU, WER

2 Code-Mixed Normalisation
(the whole pipeline)

raw data, Barik et al.’s
system [10]

BLEU, WER

3 Using Code-mixed Normali-
sation for Emotion Classifica-
tion

tokenisation-only,
simple preprocessing

Accuracy, Precision,
Recall, F1 score

the original paper for a more in-depth explanation). The pre-
trained language model used in this experiment is IndoBERT,
a BERT-based model trained on Indonlu corpus (Indonesian
corpus containing approximately four billion words) [39].

V. EXPERIMENT

Three experiments were performed in this research. All
models in our experiments were trained with five-fold cross
validation. Significance was measured using t-test with a 0.05
significance level. A summary of all of our experiments,
including the baseline methods and evaluation measures, is
presented in Table IV.

The first experiment separately tested the individual
modules of the code-mixed text normalisation system. This
experiment was performed to examine the effectiveness of our
modifications to each module (except tokenisation, as we did
not make any changes to the tokenisation module). During
this experiment, the input for each module used gold-standard
or reference data from the previous step in the pipeline. This

configuration makes it possible to safely assume that the input
from the previous normalisation step is free of errors.

The modified language identification model is compared
with four other models as baselines. They include the Condi-
tional Random Field (CRF) model from Barik et al.’s work,
Convolutional Neural Network (CNN) on character level [40],
Recurrent Neural Network (RNN) [41], and CRF model using
CNN as feature (CNN+CRF). The CNN architecture used
in this work consist of one convolution layer and one fully
connected layer. The CNN+CRF method replaces the fully
connected layer with CRF.

Next, the modified lexical normalisation module is com-
pared wth three other models as baselines. They include
using unprocessed input text (raw data), the combination of
rule-based and spell correction model from Barik et al., and
SMT model alone. We used SMT model alone as one of
our baselines to analyse the effect of ruleset in our lexical
normalisation module.

At last, the modified translation module is compared with
two baselines: MLF method used by Barik et al., and di-
rect translation method using machine translations. In direct
translation method, we simply translate the Indonesian-English
code-mixed text into Indonesian language using two popular
machine translations: Microsoft3 and Google. Translate4

The second experiment tested the entire code-mixed
text normalisation system to normalise the given Indonesian-
English code-mixed text into Indonesian, which is the main
goal of the system. The input for this experiment was code-
mixed Indonesian-English tweets, which were put through
the tokenisation, language identification, lexical normalisation,

3https://translator.microsoft.com/
4https://translate.google.com/
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and translation modules, resulting in normalised Indonesian-
language tweets. Baselines for this experiment included unpro-
cessed input text (raw data), and the code-mixed normalisation
pipeline system from Barik et al.’s work.

The third experiment performed emotion classification
using a code-mixed text normalisation system to preprocess
the data. The aim of this experiment was to analyse the effect
of code-mixed normalisation on effectiveness in the emotion
classification task. For this purpose, we compared the results
of emotion classification methods that used code-mixed nor-
malisation in the preprocessing step and the baseline methods
that did not use code-mixed normalisation (tokenisation-only
and simple preprocessing methods). In the tokenisation-only
method, the tweets are simply tokenised before an emotion
classification method is applied. We used Tweet-Tokenizer
from NLTK library5 to perform this tokenisation. In the
other baseline, i.e. simple preprocessing method, common
preprocessing data methods including tokenisation, stopword
removal, punctuation removal, and character repetition removal
were performed. The stopword list for Indonesian and English
languages were taken from NLTK library .

This research uses varieties of evaluation metrics to mea-
sure the system performance on each experiment. Accuracy,
precision, recall, and F1 score are common metrics to compare
a set of labels between gold standard (reference) and the
prediction from the model. In this work, they are used for eval-
uating language identification module in the first experiment,
and emotion classification in the third experiment. Accuracy
measures the rate of correct prediction over the entire test
data. Precision measures how many predictions of a relevant
classes that are actually correct. Recall measures how many
relevant classes the model could find. F1 score is a harmonic
mean between precision and recall. The formula to calculate
Accuracy, Precision, Recall, and F-1 measures are as follows:

Accuracy =
TP + TN

TP + TN + FP + FN
(1)

Precision =
TP

TP + FP
(2)

Recall =
TP

TP + FN
(3)

F1 =
2 ∗ Precision ∗Recall

Precision+Recall
(4)

TP (True Positive) defines the correctly predicted positive
values. TN (True Negative) defines the correctly predicted neg-
ative values. FP (False Positive) defines the value of incorrect
positive predictions. FN (False Negative) defines the value of
incorrect negative predictions.

Bilingual Evaluation Understudy (BLEU) and Word Er-
ror Rate (WER) are used to evaluate task that produce a
correctness of a free form text compared to gold standard
text. BLEU score measures the similarity of the text produced
by the model and the gold standard. While this measure is

5https://www.nltk.org/

TABLE V. THE RESULTS OF LANGUAGE IDENTIFICATION EXPERIMENT

Model Precision Recall F1 score Accuracy
CRF[10] 91.22 88.60 89.72 90.40
CNN 92.58 91.70 92.08 92.70
CNN+CRF 92.00 91.63 91.79 92.42
RNN 85.71 84.38 84.77 86.09
CRF++ 94.56⋆†‡× 93.53⋆†‡× 93.98⋆†‡× 94.41⋆†‡×

Note: Significant differences of our method (CRF++) against CRF[10], CNN, CNN+CRF,
and RNN are denoted by ⋆, †, ‡, and ×, respectively.

commonly used for evaluating machine translation system,
previous researches also use this metric to measure lexical
normalisation performances that use machine translation [31],
[42], [43]. Since there is translation task in our lexical normali-
sation module, translation module, and overall code-mixed text
normalisation system, then we use BLEU for the experiments
on these systems. WER measures how many edits (substitution,
deletion, insertion) it takes from the predicted model to the
gold standard with respect to the length of the gold standard
text. In other words, WER measures the error of a system.
This metric is commonly used on speech recognition task
and expanded to measure performance on other task such as
translation and lexical normalisation [42], [28]. The formula
to calculate BLEU and WER are as follows:

BLEU = p ∗ bp (5)

WER =
ed

N
(6)

BLEU score is computed by multiplying the geometric
mean of the corpus precision scores (p) by the exponential
brevity penalty factor (bp). For more detailed explanation,
please refer to the original paper of BLEU metric [44]. WER is
computed by taking the ratio between edit distance (ed) and the
number of token in the reference text (N ). Here, edit distance
is measured by finding the minimum number of insertion,
deletion, and substitution operations required to perform the
alignment between the predictive text and the reference text.

VI. RESULTS AND ANALYSIS

A. Effectiveness of Individual Modules of Code-Mixed Nor-
malisation System

1) Results of Language Identification Module: Table V
shows the experimental results for the language identification
module. The model created in this research achieved the
highest score, outperforming the CRF model used by Barik et
al. by 3.33% on precision, 4.92% on recall, 4.26% on F1 score,
and 4.01% on accuracy. This improvement comes from the
new feature set for language identification. The deep learning
baseline was unable to outperform our CRF++ model. The
RNN model achieved the worst performance. One possible
cause for this was the low amount of sequences in the training
data. The data that the RNN processed included entire tweets
or the whole sequence of a token, and there are only 825
tweets in the dataset. The same problem did not occur with
the CNN model because CNN attempts to classify each token
separately; thus the processed data are individual tokens. Note
that there are 22,725 tokens available in the dataset.
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TABLE VI. THE RESULTS OF LEXICAL NORMALISATION EXPERIMENT

Model Precision Recall
Raw Data 47.79 15.18
Ruleset+Spell Correction [10] 71.67 12.45
SMT 88.14 5.63
Ruleset+SMT 89.75⋆†‡ 4.67⋆†‡

Note: Significant differences of our method (ruleset+SMT) against raw data, rule-
set+spell correction [10], and SMT are denoted by ⋆, †, and ‡, respectively.

Whilst the evaluation shows promising results, the CRF
model in this research still has some difficulty classifying
certain specific tokens (e.g. named entity tokens, such as a
place or person) as either “id” or “en” when they should be
labelled “un”. The model also often misclassifies Indonesian
loan words that are taken from English words such as “stop”
(“stop”). Loan words present ambiguity that makes it difficult
for the model to correctly label the token. Another challenge
for the model is sub-word code-mixing, which happens when
Indonesian affixes are added to English words – for example,
“gap-nya” (“the gap”). In this case, the correct label is the
language of the root word, but sub-word code-mixed tokens
are often misclassified as Indonesian rather than English.

2) Results of Lexical Normalisation Module: The results
for the lexical normalisation module are shown in Table VI.
The new model outperformed the Barik et al.’s model by 18.08
on BLEU score and 7.78 on WER. Raw data exhibited the
worst performance, with 47.79 BLEU score and 15.18 WER.
This result shows that our model is able to perform normali-
sation properly. Table VI also shows that the ruleset slightly
helps the SMT model when performing lexical normalisation,
increasing BLEU score by 1.61 higher and reducing WER by
1.04.

The SMT model can properly normalise ambiguous slang
tokens that can serve as both a formal word and a slang word.
This was a problem in Barik et al.’s model that relied on
a formal lexicon to differentiate between formal and slang
words. For example, the Indonesian word “aja” can serve as
slang for the formal word “saja” (“only”), but may also be
the formal word “aja”, an archaic way to refer to the daughter
of a noble. The SMT model relies on the context of a word
during the training process to normalise that word. Another
problem in Barik et al.’s model is that the model was unable to
properly normalise slang words that were very different from
their formal versions. Their model normalised the slang word
“ga” (“no”) into the letter “g”, but the actual formal version
of this word is “tidak” (“no”). This occurred because Barik et
al.’s model relied only on rules. However, our method, which
uses SMT in addition to a ruleset, did not have this problem.

The problem with the SMT model is that it is fully
supervised. Therefore, it is only able to normalise slang
words that appear in the training phase and cannot process
slang tokens that appear only during testing. This becomes a
prominent issue in low-resource settings. However, the use of
a ruleset enables our model to normalising some words that
the SMT might have not encountered during training. This also
explains why the combined model was able to achieve the best
performances (see Table VI).

3) Results of Translation Module: Table VII presents the
experimental results for the translation module. Google’s MT

TABLE VII. THE RESULTS OF TRANSLATION EXPERIMENT

Translation System Model BLEU WER

Microsoft
Direct Translation 62.19 21.19
MLF[10] 74.49 15.06
MLF[10]+context 75.36⋆ 14.36⋆

Google
Direct Translation 72.63 16.56
MLF[10] 75.87 14.36
MLF[10]+context 77.77⋆† 13.09⋆†

Note: Significant differences of our method (MLF[10]+context) against direct transla-
tion and MLF[10] are denoted by ⋆ and †, respectively.

TABLE VIII. THE RESULTS OF OVERALL CODE-MIXED NORMALISATION
SYSTEM PIPELINE

Model BLEU WER
Raw Data 30.01 42.18
Barik et al.’s system [10] 48.86 28.18
Our System 64.55⋆† 18.65⋆†

Note: Significant differences of our method against raw data and Barik et al.’s system [10]
are denoted by ⋆ and †, respectively.

system produced better translation results than Microsoft’s on
every translation configuration. The modified MLF produced
more accurate translation results than the baselines, achieving
a BLEU score 1.9 higher and a WER 1.27 lower than the MLF
method on Google ’s MT system. Direct translation had the
worst performance, with a BLEU score of 5.14 and WER of
3.47 on Google’s MT system. A similar result was observed
when using Microsoft’s MT system.

This improvement shows that the use of a group of neigh-
boring tokens or a language segment for translation process
can produce more accurate translations than using individual
token. The language segment provides sufficient context for the
translation system to translate ambiguous words better than the
original MLF used by Barik et al. However, our model still
struggles to translate certain ambiguous words. For example,
the English word “I” can be translated as either “saya” or
“aku” in Indonesian; both have the same meaning, except that
“saya” is often used in formal settings, whereas “aku” is often
used in casual conversation.

B. Effectiveness of Overall Code-Mixed Normalisation System
Pipeline

Table VIII shows the evaluation results for the code-mixed
text normalisation system experiment. We used Google’s MT
system for the translation module, following the results of
the previous experiment. The new system demonstrated better
code-mixed text normalisation performance compared with
the Barik et al.’s system, increasing BLEU score by 15.69%
absolute improvement or 32.11% relative improvement and
lowering WER by 9.53% absolute improvement or 33.82%
relative improvement. This indicates the effectiveness of our
modifications on Barik et al.’s modules. Both code-mixed text
normalisation systems outperformed the evaluation results for
the raw data baseline, which highlight the merit of normalizing
the code-mixed text.

To understand the contribution of each module modified in
this work with regard to improving the code-mixed normali-
sation system pipeline proposed by Barik et al., we conducted
an additional experiment using each of our individual modules
in Barik et al.’s system. The increases or decreases resulting
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TABLE IX. THE CONTRIBUTIONS OF EACH MODULE

Model △BLEU %△BLEU
Language Identification 2.03 4.15%
Lexical Normalisation 14.08 28.82%
Translation 15.69 32.11%

TABLE X. THE EXAMPLE OF RESULTS GENERATED BY OUR
CODE-MIXED NORMALISATION SYSTEM AND BARIK ET AL.’S SYSTEM

Input Argh gimana cara save gif nya. [URL] (Argh
how to save the gif [URL])

Output from Barik et al.’s system
[10]

Tokenisation Argh, gimana, cara, save, gif, nya, ’.’, [URL]
Language Identification id, id, id, id, id, id, un, un
Lexical Normalisation karuan, kenapa, cara, edit, klik, ya, ’.’, [URL]
Translation karuan, kenapa, cara, edit, klik, ya, ’.’, [URL]

Output from our system
Tokenisation Argh, gimana, cara, save, gif, nya, ’.’, [URL]
Language Identification id, id, id, en, en, id, un, un
Lexical Normalisation argh, gimana, cara, save, gif, nya, ’.’, [URL]
Translation argh, gimana, cara, simpan, gif, nya, ’.’,

[URL]
Gold standard argh, gimana, cara, menyimpan, gifnya, ’.’,

[URL]

from this addition were then examined. For example, to see
the contribution of our language identification module, we
replaced Barik et al.’s language identification module with
our module. The difference in BLEU scores (△ BLEU) was
calculated for the scores of Barik et al.’s system using our
modules versus the original system. A positive contribution
is indicated by a positive △ BLEU score, whilst a negative
contribution is indicated by a negative △ BLEU score. The
results are summarized in Table IX.

As shown in Table IX, all of our modules positively con-
tributed to the Barik et al.’s code-mixed normalisation system
pipeline, since all △ BLEU scores are positive. The most
important module is the translation module, which improved
on Barik et al.’s system by 32.11%, followed by the lexical
normalisation module (28.82% improvement) and the language
identification module (4.15% improvement).

Table X compares the code-mixed text normalisation pro-
cess for Barik et al.’s system and the new system implemented
in this work. The former system detects the words “save” and
“gif” as Indonesian words, whereas the latter properly detects
them as English. Barik et al.’s system changes most tweets
during lexical normalisation, leaving only “cara” (“method”),
“.”, and “[URL]” unchanged. The new system, however, did
not perform any changes during lexical normalisation. Next,
Barik et al.’s system does not perform any translation because
all words are detected as Indonesian, whereas the new system
translates “save gif” to “simpan gif ”. A comparison of both
results indicates that the new system can produce results that
are closer to the gold standard.

C. Effect of Code-Mixed Normalisation System on Emotion
Classification

The result of emotion classification is presented in Table
XI. The best overall result is achieved by using code-mixed
normalisation in data preprocessing and the more modern ap-
proach with BERT. In terms of the results of using normalised
code-mixed text, BERT is superior to Word2Vec by 16.56%

TABLE XI. THE RESULTS OF EMOTION CLASSIFICATION

Model Preprocessing Precision Recall F1 Score Accuracy

Word2Vec
TO 37.82 33.38 32.99 45.87
SP 42.49 38.36 39.20 46.41
CN 53.15⋆† 44.13⋆ 45.44⋆ 54.97⋆†

BERT
TO 45.85 43.98 43.92 50.33
SP 47.82 45.21 45.92 50.34
CN 54.06⋆† 51.44⋆† 51.93⋆† 56.84⋆†

Note: Significant differences of our emotion classification method using code-mixed
normalisation (CN) as the preprocessing method against the methods that do not use
code-mixed normalisation, but using tokenisation-only (TO) and simple preprocessing
(SP) methods are denoted by ⋆ and †, respectively.

TABLE XII. THE CLASSIFICATION RESULTS FOR EACH EMOTION CLASS

Class Precision Recall F1 score Accuracy
Love 68.75 30.56 42.31 94.86
Anger 59.46 68.75 63.77 74.32
Sadness 46.84 35.92 40.66 81.51
Joy 54.58 70.81 61.64 72.09
Fear 37.04 14.71 21.06 87.16

according to F1 score. In both models, the best performance
is achieved when code-mixed normalisation is applied as a
preprocessing step before classification. This demonstrates the
advantage of normalizing the code-mixed text before a main
text processing task is conducted. Two factors could explain
this result: lexical normalisation and translation.

The tokenisation-only and simple preprocessing approaches
did not have a robust lexical normalisation step. This may
result in some key emotion words or phrases involving some
informal token becoming out of vocabulary (OOV) or the
words being incorrectly represented by both classification
models. The performance gap between using versus not using
code-mixed normalisation indicates that the classic method is
more affected than the BERT model. This is because the BERT
model uses a sub-word tokeniser and is able to handle OOV
tokens to some degree. In this case, code-mixed normalisation
improved the F1 score and accuracy of the Word2Vec model by
37.74% and 19.77%, respectively. The improvement obtained
by the BERT model is slightly lower: 18.24% for F1 score and
12.93% for accuracy.

Some key emotion words are also written in English. This
leads to better performance on classification systems which
applied code-mixed text normalisation in the preprocessing
step. It is because they translate these words into Indonesian
and therefore enables us to capture their meanings.

Table XII presents a breakdown of classification results
for each emotion class. Since our dataset has uneven class
distribution, F1 score is more representative than accuracy
because the values of false positives and false negatives do
not have similar cost. The highest F1 score was obtained by
the class “anger”, followed by the class “joy”. This can be
understood because these classes have the highest number
of tweets in our dataset. Consequently, the classifier can
successfully learn the characteristics of tweets expressing the
emotions anger and joy. Therefore, the ratios of correctly
predicted labels for these classes to the total predicted labels
and to the total actual labels for these classes are high.

To better illustrate the number of correct and incorrect
classifications for each class, a confusion matrix is displayed
in Fig. 5. The confusion matrix shows that imbalance in
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Fig. 5. Confusion Matrix of Emotion Classification Results.

TABLE XIII. EXAMPLE OF EMOTION CLASSIFICATION RESULTS

Input: Not good, not good.. Maag gue selalu kambuh sejak kerja di sini.. Setres (Not
good, not good.. My ulcer always relapses since working here.. stress)
Gold standard class: Sad
Preprocessed input (TO): Not good , not good .. Maag gue selalu kambuh sejak
kerja di sini .. Setres
Predicted class: Joy
Preprocessed input (SP): good good maag gue kambuh kerja setres
Predicted class: Fear
Preprocessed input (CN): tidak bagus , tidak bagus, . mag saya selalu kambuh sejak
kerja di sini. setres
Predicted class: Sad

Note: TO, SP, and CN stands for ”Tokenisation-Only”, ”Simple Preprocessing”, and
”Code-mixed Normalisation”, respectively.

the dataset affects the emotion classification results. This can
be seen from the two classes with the highest frequency of
occurrence in our dataset, i.e. anger and joy, which showed
a low proportion of false negatives and a high proportion of
false positives relative to the total number of instances for
these classes. The opposite happened for the emotion labels
with the lowest frequency in our dataset, i.e. love and fear.
Compared to other labels, both of these labels obtained the
highest proportion of false negatives and the lowest proportion
of false positives. The true positive values for these classes
were also much lower than the false negative values.

In Table XIII, we demonstrate how different preprocessing
methods may affect the classification results. Word2Vec was
used to implement the classification model. According to the
human annotation label, the input tweet expresses a sad emo-
tion. This emotion is indicated by terms such as “not good”,
“selalu kambuh” (“always relapses”), “setres” (“stress”).

A classification method using tokenisation-only prepro-
cessing misclassifies the tweet’s emotion as joy, presumably
because the model cannot properly detect the emotion con-
tained in the phrase “not good”. Because this phrase is not
translated into Indonesian and it may appear infrequently in
the data, the Word2vec model is unable to learn the semantics
of the phrase well, which may lead to an incorrect classification
result. A classification method using simple preprocessing also

misclassifies the tweet’s emotion as fear. This preprocessing
method removes the term “not” from phrase “not good”. This
means that all tweets in the collection that contain the phrase
“not [ADJECTIVE]” and “[ADJECTIVE]” will have similar
preprocessing results for that phrase, eventhough they actually
convey opposite emotions, since the term “not” indicates a
contrast in meaning. We argue that this causes the model
to be inaccurate in classifying the emotion. A classification
method using a code-mixed text normalisation pipeline, on the
other hand, can properly classify the tweet’s emotion as sad.
Translating the English phrase “not good” into the Indonesian
phrases “tidak bagus” enables the Word2vec model to capture
the semantics of the phrase since the translation phrase appears
frequently in the collection.

VII. DISCUSSION AND FUTURE WORK

The number of code-mixed text used in this work is still
relatively small when compared to the code-mixed text in other
language pairs such as Bengali-English [45], Malayam-English
[46], and Hindi-English [47]. Our dataset consists of 825
sentence pairs for our experiment on code-mixed normalisation
and 584 sentences for our experiment on the effect of the code-
mixed normalisation on emotion classification. Note that it is
because a large dataset of Indonesian-English code-mixed text
is still unavailable. The dataset from Barik et al. [10] that
we use in this work is the only dataset of Indonesian-English
code-mixed text that is available. Using this data also enables
us to directly comparing our result with Barik et al. Therefore,
further experiments using larger data may be useful to confirm
the results reported in this work.

Our approach for code-mixed normalisation has some
advantages compared to end-to-end deep learning approaches.
Our approach does not require big data resources to achieve
good results compared to deep learning methods. So, it is suit-
able for low-resource languages, such as Indonesian language.
In addition, our approach is also more flexible in which users
can easily add new rules or features in the individual modules
of code-mixed normalisation system if needed.

The approach used in this task is aimed for code-mixed
normalisation. However, each individual module in the pipeline
can also be used separately for a specific task. For example,
users can adopt the tokenisation module only if they just want
to have more accurate tokenisation. Since our methods are
mostly data driven (except the ruleset on lexical normalisation
module), then with some tuning on the ruleset, we believe the
individual modules as well as the overall system pipeline is
applicable to other languages (or language pairs) as long as
the data is available.

We are aware there are more modern methods that utilize
Neural Machine Translation (NMT) model for lexical nor-
malisation [48], [49]. However, we decided not to use this
method because the dataset used in this research is too small
for NMT to be able to learn an accurate model for this complex
task. This effect has been demonstrated before by Matoz, et.
al. [28] that utilizes RNN encoder-decoder to perform lexical
normalisation on English-Dutch and Wibowo et. al.[32] that
utilizes GPT-2 to normalise Indonesian text. Both of these
research showed that on low resource settings, SMT model still
gives on par performance if not better than the NMT model
because of the insufficient amount of training data.
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There are several avenues through which future research
might improve on the results of our proposed system. The SMT
model in the lexical normalisation module could be improved
by using an additional corpus for the language model. A large
dataset could be built containing formal Indonesian-English
code-mixed text to improve the accuracy of the lexical nor-
malisation module. Another possible improvement that could
be made to the lexical normalisation module involves the
ruleset. The ruleset used in this work are still limited for
normalising informal Indonesian words that contain character
repetitions and reduplication shortening; and informal English
words that contain contractions and code-mixed prefixes /
suffixes. Therefore, some extra rules can be added to improve
the accuracy of the lexical normalization module in our system.
An example of additional rules could be derived from informal
affixes that are common in Indonesian, such as the informal
suffixes “-ny” or “-x”, which can be converted to “-nya” and
then prefix “ng-”, which can be converted to “meng-”.

Next, in this research, the effect of code-mixed normalisa-
tion was examined for an emotion classification task. Whilst
the results showed a positive effect, this cannot be generalised
to many other language processing tasks. Thus, similar analysis
could be performed for other tasks – such as sentiment analy-
sis, POS tagging and so on – to examine whether performing
code-mixed normalisation can offer significant improvemenet
for these tasks as well.

VIII. CONCLUSION

In this research, we improved a state-of-the-art code-mixed
text normalisation system for Indonesian-English tweets.
Specifically, we improved three modules of the original code-
mixed normalisation system pipeline, including improving the
feature set in the language identification module, combining
an MT approach and a ruleset in the lexical normalisation
module and adding some context in the translation module.
Our experimental results show that our approach outperformed
a state-of-the-art Indonesian-English code-mixed normalisation
system. The new feature set in the language identification
module showed an improvement of 4.26% in F1 score. The
use of an MT approach in the lexical normalisation module
improved BLEU score by 25.22% and lowered WER by
62.49%. The addition of context to the translation process
improved BLEU score by 2.5% and lowered WER by 8.84%.
The overall effectiveness of the code-mixed text normalisation
system was improved, with an increase of 32.11% in BLEU
score and a decrease of 33.82% in WER.

This research also analysed the effect of code-mixed
text normalisation process on emotion classification. Apply-
ing code-mixed normalisation process resulted in increased
effectiveness of emotion classification systems. The systems
that used code-mixed normalisation in the preprocessing step
were more effective than those that did not. Compared with
tokenisation-only preprocessing method, the code-mixed nor-
malisation system achieved better evaluation results by up to
37.74% in F1 score. The code-mixed normalisation system also
outperformed a simple preprocessing method by up to 15.92%
in F1 score.
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