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Abstract—False Positive Alerts (FPA), generated by Static
Analyzers Tools (SAT), reduce the effectiveness of the automatic
code review, letting them be underused in practice. Researchers
conduct a lot of tests to improve SAT accuracy while keeping
FPA at a lower rate. They use different simulated and production
datasets to validate their proposed methods. This paper surveys
recent approaches dealing with FPA filtering; it compares them
and discusses their usefulness. It also studies the used datasets
to validate the identified methods and show their effectiveness
to cover most program defects. This study focuses mainly on the
security bugs covered by the datasets and handled by the existing
methods.
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I. INTRODUCTION

Software coding and implementation have grown fastly
during the last years. This is due to the rapid migration towards
bits and the extensive use of digital technologies. The more
software applications become relevant, the more security as-
surance of programs gets essential. However, software security
defects increased due to implementation failures regarding
security best coding practices. Escaping software faults into
later stages of software development will increase the main-
tenance cost[1],[2]. Also, after application deployment, cy-
berhackers will try to detect these coding vulnerabilities and
exploit them to achieve their goals. Thus, coding review and
auditing is a primordial task before software use.

Static Analysis Tools (SAT) play an essential role in
automatically detecting these vulnerabilities and alerting the
programmer, which reduces the auditing time, effort, and cost.
SAT automatically examines the code for any programming
defects without executing the code and generates alerts about
possible errors. Alerts provide the auditor with useful infor-
mation such as the location of the purported defect in the
source code, the nature of the fault, and additional contextual
information. However, the SAT still suffers from several issues,
letting them underused in practice. Among them, this study
focuses on the large number of warnings generated by SAT;
most of them are false positives, which is a time-consuming
and painstaking task to review them all.

One approach to deal with a large number of FPAs is by un-
soundly processing source code. Almost all existing SATs are
uniformly unsound [3]. Loops and unknown external libraries
call, for instance, are a significant source of imprecision.
Unsound SAT considers only a fixed number of loops while
ignoring the rest and assumes any unknown external library

call as predefined behaviors such as skip[3]. This unsoundness
regarding loops and unknown external libraries causes the
analysis to miss a significant amount of real bugs and reduce
false-positive alerts.

In this study, any paper that sacrifices SAT soundness to
reduce false-positive alerts is ignored. Ideally, an SAT must be
precise and scalable while avoiding false positives.

Existing efforts dealing with the false-positive alert reduc-
tion face several challenges, mainly are:

• Handling of a large code base will decrease SAT
precision; most of them perform better in a small
set of problems. Besides, processing a significant
codebase causes the SAT over-approximation of the
input program behavior, which may consider correct
program properties as errors.

• Increasing SAT precision raises much more false-
positive alerts. The challenge is how to keep a high
detectability rate without throwing FPAs.

• The inability of the SAT to get knowledge about the
software architecture, its dependencies, and the man-
ner of how data flows through the system, which may
result in throwing FP alerts considered as potential
errors [4].

So researchers are trying to solve one challenge or some of
them to reduce false-positive alerts.

To our best knowledge, these different approaches have
not been studied rigorously and comprehensively. Thus, the
objective of this paper is the investigation of current methods
dealing with false alert elimination. It mainly presents the most
significant efforts in this field and their scalability in the last ten
years. It defines new criteria to compare different approaches.
Also, this study focuses on showing the most effective dataset
used in the literature and provides statistics about them.
Finally, the paper discusses the advantages and shortcomings
of FPA handling approaches and presents recommendations to
improve the SAT.

This paper is divided into eight parts; after introducing the
research subject in Section 1, it presents the related works
in Section 2. The paper shows the research methodology
for selecting the relevant articles in Section 3 and existing
approaches identified categories in Section 4. The paper com-
pares, in Section 5, the different methods used to reduce false
alerts. Section 6 provides an overview of the used datasets, then
discusses the shortcomings and proposes recommendations to
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deal with these limitations in Section 7. Finally, the paper is
concluded in Section 8.

II. RELATED WORKS

In paper [5], authors studied the existing efforts aiming
at combining static analysis and dynamic quality assurance
techniques to improve SAT bugs detection with reduced false
alerts. They finally selected 51 articles for their mapping study.
Thus, they include only papers that consist of the integration of
combined technologies so that the output of one method is the
input of the second. However, this paper shows the different
approaches categories and any possible combination used to
improve SAT precision or reduce FP alerts.

Heckman et al in [6] investigates 18 research effort to
identify actionable alert identification techniques. They cat-
egorize the approaches as classification or ranking methods.
The authors also conducted a comparative study to identify the
approaches having the best accuracy. In this effort, articles that
improve SAT precision to reduce FP alerts, not only improving
the bugs detection rate, are also studied.

Similar as [5], authors in the paper [7] identified 51 papers
for their mapping study. They focus on the study of the existing
static analysis tools and techniques to reduce false alerts.
However, this article covers only methods handling false alerts.

The paper [8] surveys 79 articles that handle the enormous
amount of FP alerts after their generation. The authors focus
on the methods dealing with the reduction of SAT alert reports.
While, this study considers all kinds of unique approaches
that help minimize FP alerts, whether the method is for the
refinement of the software source code, the improvement of
SAT precision, or the post-handling of SAT alerts report.

It is worthy to note that all the reviewed papers by the
above surveys were published four years ago since the last
study [8] at our best knowledge published in 2016. Thus,
this effort focuses on the recent papers fitting the selection
requirement as maximum to provide researchers with a recent
and accurate literature review.

This study outperforms the above surveys by:

• the selection and presentation of relevant datasets to
test and validate the SAT tools. It collects the different
open source datasets along with information about
their size and features (see Section VI).

• the presentation of the features used by the identified
methods for their model training and alerts prediction
or classification(see Section V).

• providing the reader with the different types of
security bugs handled by the identified approaches
alongside with the paper reference (see Section VI-B).

• the comparison of the different false alert handling
techniques according to their scalability in order to
study their ease of integration and application (see
Section V).

• depicting ongoing projects and competition aiming
at boosting the researches to improve SATs and at
providing accurately labeled datasets (more details in
VI).

TABLE I. SEARCH KEYWORDS CATEGORIES

Category
Number

Keywords

1 defects, bugs, faults
2 false alerts, false warnings, false alarms
3 static analysis, source code analysis, automatic static bugs detection
4 filtering, elemination, reduction, handling

Several other existing studies, such as [9], [10], [11], [12],
[13], evaluate the SAT in terms of precision and alert handling
and conduct a comparison study between them. This paper has
a different objective by only presenting the approaches that
improve SAT alerts handling, not testing their precision.

III. RESEARCH METHODOLOGY

This survey starts by identifying relevant papers that deal
with false alert reduction. Fig. 1 depicts the main steps to select
pertinent articles and extract information from them.

A. Research Questions

The process of relevant paper selection goes through the
precise definition of the research topic, enabling identifying the
keywords used for the scientific database search. This study
aims at answering the following questions:

• RQ.1: What are the different techniques used to
reduce FPAs?

• RQ.2: How extend human effort is required to execute
the proposed approach?

• RQ.3: Are the proposed approaches scalable?

• RQ.4: Are security bugs considered during the FPAs
reduction?

• RQ.5: What are the datasets used to validate the
different methods?

B. Used keywords and Search Engine Configuration

The relevant keywords are determined based on the re-
search questions identified in Section III-A. Keywords could be
classified into four categories representing the most used terms
and their synonyms. Then for each search round, a combination
of keywords taken from each set is used. The used keywords
are listed in Table I.

The first category encompasses the most used names of
program errors. The second category contains the different
terms of alerts; more specifically, it focuses on false-positive
alerts. The third category includes possible static analysis
names that different researchers may use, and finally, the
last category contains the used keywords to describe alert
reductions.

So, this study makes 108 = 3 × 3 × 3 x 4 separate search
strings rounds at Google scholar, which ranks research papers
based on their relevance. It refines the search by showing
only articles published after 2010 to ensure that the selected
documents consider recent programming technologies and new
trends of SATs. The first 50 papers that match all the searched
keywords combinations are chosen. So, this paper identified
540 articles before proceeding with the selection process.

www.ijacsa.thesai.org 703 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 12, No. 11, 2021

Fig. 1. Research Methodology Diagram.

C. Relevant Papers’ Selection Process

This section presents the paper selection process that
consists mainly of the quick and peer review of the candidate
articles from the previous steps. Papers are filtered quickly at
the second filtering round based only on the title, abstract, eval-
uation, and conclusion. Only papers satisfying the following
criteria are included in the final peer review:

• papers that explicitly aim to reduce false alerts. Thus,
any effort based on improving the precision of the
static analyzer or modifying the software source code,
or post handling of SAT alert reports is included.

• papers that have an evaluation and test of their ap-
proach.

Also, this study excludes papers that:

• sacrifices the soundness of the SAT to reduce false-
positive alerts.

• aims only to detect true positive alerts without reduc-
ing FPAs.

• only surveys existing efforts without providing any
new technique or approach to reduce FPAs.

• mostly uses similar techniques and datasets to another
already selected paper. The aim is to keep the unique-
ness and originality of each chosen article.

After this process, 30 relevant articles that summarize
almost all approaches and efforts dealing with SAT false
alert handling are finally selected. The distribution number of
chosen papers according to the Scientific publisher databases
are shown in Table II

D. Information Extraction Process

In this step, this study proceeds for peer review of the iden-
tified papers to extract the relevant and targeted information,
which are:

TABLE II. DISTRIBUTION OF THE SELECTED PAPERS ACCORDING TO
THE PUBLISHERS

Publisher # of papers Journal/Conference name

hal.archives- 1 10th European Congress on Embedded Real Time Software and Systems 2020
ouvertes.fr

ScienceDirect 2 Journal of Systems and Software 137 (2018): 766-783
Information and Software Technology 52.2 (2010): 210-219

Springer 6 Asian Symposium on Programming Languages and Systems. Springer, Cham, 2014
IFIP Int. Conference on Open Source Systems. Cham, 2018
Int. Static Analysis Symposium.Berlin, Heidelberg, 2016
Int. Conference on Software Analysis, Testing, and Evolution. Cham, 2018
Int. Symposium on Formal Methods.Cham, 2015
OTM 2017 Conferences, Part II, LNCS 10574, pp. 99–106, 2017

ACM 8 ACM Transactions on Programming Languages and Systems, Vol. 39, No. 4, 2017
15th Int. Symposium on Open Collaboration. 2019.
33rd Annual Computer Security Applications Conference. 2017
27th ACM SIGSOFT international symposium on software testing and analysis. 2018
27th Annual ACM Symposium on Applied Computing. 2012
ACM on Programming Languages 1.OOPSLA (2017): 1-30-journal
40th Int. Conference on Software Engineering: Companion Proceedings
MAPL’17, June 18, 2017, Barcelona, Spain - conference

IEEEXPLOR 13 26th Int. Symposium on Software Reliability Engineering (ISSRE)
12th IEEE Conference on Software Testing, Validation and Verification (ICST).2019
27th Int.Symposium on Software Reliability Engineering.2016
6th Int.Workshop on Software Engineering Research and Industrial Practice. 2019
41st Int. Conference on Software Engineering: Software Engineering in Practice.2019
10th Int. Conference on Fuzzy Systems and Knowledge Discovery (FSKD). 2013
15th Int.Conference on Computer Systems and Applications (AICCSA). 2018
Formal Methods in Computer Aided Design., 2010
39th Int.Conference on Software Engineering (ICSE). 2017
Int. Conference on Big Data (Big Data),2018
1st Int. Workshop on Software Qualities and their Dependencies (SQUADE). 2018.
38th Int. Conference on Software Engineering Companion (ICSE-C).2016.
2014 21st Asia-Pacific Software Engineering Conference

• the used approaches or techniques.

• the application level of the approach. It means if the
proposed method deals with improving the precision
of SAT or modifying the software source code before
analyzing it, or post handling of SAT reports.

• the coverity of the approaches to detect most pro-
gramming bugs since several articles only reduce false
alerts generated by specific bugs.

• the human intervention effort during the false alert
filtering.

• the FPAs reduction percentage, whether explicitly
mentioned or could be deduced from the other metrics
presented in the paper. In some articles, it is not
possible to extract the FPA reduction rate due to the
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lack of specific measures.

• the programming language of the examined applica-
tion.

• the SAT used for code examination.

• the dataset used to evaluate the proposed approach.

All gathered information is carefully saved in an Excel
sheet database created to facilitate their mining. The extracted
data contains the required information to answer this study’s
research questions.

IV. FALSE ALERTS HANDLING APPROACHES: A
CLASSIFICATION

To answer RQ1, the paper starts by identifying the used
approach of each article and categorizes them based on the
similarities of the used techniques. This study distinguishes
mainly seven categories, as shown in Fig. 2, which are:
Machine Learning (ML) based approaches, Root Causes (RC)
based approaches, Model Checking (MC) based approaches,
Data Mining (DM) based approaches, and Semantics (SM)
based approaches, Rule(RU) based approaches, and Slicing
(SG)Based approaches.

A. Machine Learning-based Approaches

Machine Learning is the science of teaching a computer
how to learn from data and create a model used after that to
predict/classify new data[14]. It works mainly with algorithms,
not raw data. ML is widely used in the field of static analysis to
improve the SAT precision or post-handle the SAT-generated
alarms and predict their truthness (resp. falseness).

Authors in [15], [16] have similar works that consist
of establishing a new classifier based on additional learning
features, which is the program structure patterns that correlate
similar false alarms. They use mainly Naı̈ve Bayes, LSTM
(long-short term memories), and SVM to predict new alerts. In
[17]and [18], the authors propose a clustering-based approach
to classify and correlate similar alerts generated from the SAT.
They formalize new methods to find dependencies between
alarms caused by the buffer overflow error. Then, they cluster
dependent warnings in the same cluster. After that, they tag the
groups based on the dominant sound alerts. In [19], authors
train a decision tree ML technique using ensemble learning
(i.e.training several weak classifiers to form a new combined
stronger model; authors use AdaBoost for ensemble learning)
to classify alerts. They labeled the training dataset generated
from multiple SATs to train the created model. Their approach
is based only on the SAT reports, which provide their solution
better scalability( no code pre-processing is required to try their
approach) Authors in [20] proposed an approach that merges
several SAT alerts to extract features used in the prediction
model. They use four machine learning techniques to identify
the best reducing false alarms. The paper [3] tries to deal with
unsoundness static analysis and the tradeoff between False
Negative rate (FNR) and False Positive Rate (FPR). Since
reducing FPR increases the FNR, which is more critical and
vise versa. They proposed to selectively learn their SVM model
by only harmless codeset structures used to predict only FPAs.
In [21] and [22] authors uses ML techniques to reduce false

Fig. 2. False Positives Alerts Reduction Approaches.

alarms. They use typestate variables and software engineering
metrics to learn their model and predict false alerts.

Authors in [23] use lexical tokenization labeled by the
human to learn their CNN classifier to reduce false alerts.
They propose a continuous mechanism for code integration
after review.

B. Root Causes based Approaches

Root causes analysis is the process of identifying and
investigating the causes of events occurrences. Therefore,
investigators could specify effective corrective measures [24].
This technique is used to identify SAT false alerts root causes
to eliminate or filter them. In [25], authors conduct a manual
inspection of 30 javascript web application alerts generated
by the static analyzer, and they conclude seven root causes of
alarms. Then they use a different technique for each identified
root cause to eliminate any generated alert. Authors[26] aims
to reduce false alerts by reporting to the SAT user the alarm
root causes to be inspected instead of the alarm itself. Also,
they ask the user to answer questions related to the root causes
to fix the error until no more alarm is triggered. Their approach
requires extensive interaction with humans to validate root
causes and define the corrective measures. The paper [27] aims
to overcome the issues of the alert propagation technique. It
consists of inserting new alerts before or after their causes
location and removing original alarms generated by the SAT.
However, the number of warnings may increase in several
cases. Their paper overcomes this issue by repositioning alerts
to their causes instead of creating new alerts and removing the
original alert after that.

C. Model Checking based Approaches

Model Checking is a formal verification technique that
investigates all possible states of a given system based on a
model that defines the system behavior properties. The MC
verification technique is as proper as the model representing
the system [28]. SATs widely use MC techniques to reduce
false-positive alerts by verifying their correctness according to
the predefined model. The paper [29] aims at implementing
a software analyzer that could process large-scale lines of
codes with high precision at the expense of completeness and
possible missing of potential defects. Their main idea is the
use of specialized abstraction based on both data and predicate
abstraction bounded on several model checkers. Similarly,
Microsoft uses MC based static analyzer to review its software
codes. Their product SLAM2 uses a model checking approach
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over abstract C program statements to identify program defects
and eliminate false warnings[30]. In [31], authors made a
benchmark using the LABMC model checking for false alert
reduction. They add loop abstraction before the use of the
LABMC model checker. Authors in [32] aim to detect FPAs
via the use of deductive checking to verify the conforms of
source code position reported by the alert with a standard
coding protocol such as Sei Cert C and ANSI/ISO. Authors
in [33] aim to improve the scalability of model checking to
handle the massive amount of generated SAT false positive
alerts. They introduce a new variable named complete-range
non-deterministic values (cnv) to reduce and avoid redundant
verification calls of the model checker, mostly responsible
for generating false-positive alerts. Another use of system
verification techniques is the employment of Satisfiability
modulo theories (SMT) solvers to identify the true/false alerts.
In paper [34], authors use first abstract based analysis to fastly
review codes, then link alarms to the related code snippet.
After transforming alerts to SMT acceptable formulae, they
use it to check the properness of such warnings.

D. Data Mining based Approaches

Data Mining (DM) techniques are used to identify hidden,
potential, and valuable patterns from extensive data [35]. It
is designed to extract the rules from a vast amount of data
to be used by the human or other automated techniques [36].
Frequently, DM is used in combination with ML techniques
that use DM-generated patterns as features to learn ML model
[37]. SAT uses DM techniques to identify false-positive alert
patterns for further filtering. Authors in [38] use a frequency-
based algorithm to discover similar warnings patterns of SAT
alerts. They transform generated warnings to composed traces
and then compute their similarity using a DM-based technique
that calculates similar patterns’ frequencies. Then they use
the patterns to filter false alerts. In [39], the authors use the
Stochastic gradient descent (SGD) DM technique to reduce
the complexity of finding patterns from important alerts set
of several SAT’s reports. Then, the authors use the Adaboost
ML-based technique to create a stronger classifier trained from
the SGD output.

E. Rule based Approaches

Rule-based approaches are used to manipulate knowledge
to interpret information in a useful way. Rules are provided
by a human or automatically generated using machine learn-
ing algorithms [38]. The latter is called Rule-based machine
learning, considerably used in SAT precision enhancement
and FPA reduction. Authors in [40] design and implement
a bug detection software based on a set of rules extracted
from manual inspection of software patches. They refine rules
using a feedback-based approach by iteratively improving them
each time their SAT reports a false alert. In [41], authors
propose a new extension to the industrial static analyzers to
fix the multiple locations of frequent warnings using experts’
knowledge in the form of rules. Their expansion reduces only
one false alert type by detecting the alert’s name and applying
a rule-based knowledge algorithm to check its truth. Authors
in [4] propose a new algorithm to distinguish true positive
from false-positive alerts. They try to identify the connection
between the CWE and false positives to extract new rule-based
patterns.

F. Semantics based Approaches

Semantic approaches refer to the meaning of language
constructs. It ”provides the rules for interpreting the syntax
which does not provide the meaning directly but constrains the
possible interpretations of what is declared,” according to Eu-
zenat [42]. The semantic approach uses mathematical logic to
build rules describing constructs and relations identified in the
program code. In [43] use logic programming language named
DataLog to build their declarative static analyzer called URSA
with the help of interactive user questions to identify alarm
root causes. This tool augments the semantics of DataLog
to control its over-approximation. Authors in [44] define new
abstract domains that specify software violations. They apply
the finite state machine technique to determine these domains
and use them with a semantic-based static analyzer. In paper
[45], authors propose an algorithm to generate a program graph
that is used along with a static analyzer report to prioritize
true bugs and reduce false alerts. Their main contribution is
extracting semantic information to calculate the severity level
of warnings and then using the graph algorithm to prioritize
SAT alerts.

G. Slicing based Approaches

The program slicing approach is mainly used to avoid
the complexity analysis of codes by reducing the original
program to its minimal form called slice while keeping the
same program behavior [46]. It consists of the computation
of a program statement set, called program slices, that may
affect the values at some point of interest. The slicing approach
is used widely in program debugging to locate errors more
easily [47]. There exist two types of Slicing techniques: static
program slicing and dynamic slicing. The first, according to
the original definition of Weiser, consist of all statements in a
program that may affect the value of a specific variable in a
certain statement [46]. In contrast, dynamic program slicing
”contains all statements that actually affect the value of a
variable at a program point for a particular execution of the
program rather than all statements that may have affected
the value of a variable at a program point for any arbitrary
execution of the program” [48].

The main idea of the slicing approach proposed by [49] is
the decomposition of the program into several executable slices
and run dynamic analysis over each of them, which will reduce
the processing time and complexity and consequently reduce
the false alarms. Authors in [50] aim to focus directly on the
sliced code generated by the alarm and verify its correctness.
After applying static analysis over JAVA EE code, they slice
the code based on the linked alert, transform it into executable
slices and verify the code again while filtering any false alarm.

V. COMPARISON AND ANALYSIS OF RECENT EXISTING
EFFORTS

This section provides the different extracted data from
the 30 selected papers after several rounds of peer-reviewing
depicted in Table III.

This effort starts by depicting the papers processed bugs
called bugs coverity aiming at knowing whether the proposed
approach deals with all security bugs or just focuses on some
types. According to the Table III, 53.3% of the approaches
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filter all kinds of defects in general. However, a considerable
effort, about 46%, focuses only on specific types of defects,
and therefore they could not be used without combining with
other methods. Also, only 43% of papers explicitly aim to
reduce false-positive alerts while maintaining high accuracy in
detecting true security bugs.

Then, the paper show the categorization of the different
approaches as detailed in S IV. The extensive use of ML
based approaches to reduce false alerts is very observable,
which is very expected since ML techniques outperform other
methods when treating big data. However, the main issue of
ML-based approaches is the need for a large amount of labeled
data to obtain satisfactory accuracy. ML-based techniques are
combined with model checking methods to verify source code
properties better, extract features, and predict or classify the
alerts. All identified papers that use ML techniques are applied
to the source code or SAT alert reports.

Data mining-based approaches are used in four papers to
reduce false-positive alerts. Also, none of the identified articles
using DM methods are applied to the SAT source code level.
It is explained by the SAT use of verification techniques based
on knowledge rules to check software source code rather than
ML or DM based models.

Model Checking based approaches used logical rules to
verify source code properties or alerts truthiness. MC methods
are applied and used for all integration levels.

Root causes based approaches as well are used to identify
the location of alert causes from the examined software source
code. Thus, all papers using root causes-based approaches
apply their methods to both software source code and SAT
alert reports.

Semantic based approaches is generally used to extract
source code properties used further as patterns and features
by SAT.

Slicing based approaches most times used to reduce source
code complexity by decomposing it into small slices having
the same behavior then run SAT over reduced programs which
improve its soundness without throwing a large number of
false alerts. Rule based approaches are only used with software
source code for rule patterns extraction used after that by ML
or DM based techniques to predict or classify alerts.

The supported languages feature aims to understand the
research direction focus on the handled languages. Since C
language is unsafe, most SAT analyzers are dedicated to
analyzing C codes. Consequently, most approaches dealing
with FP alert handling are generated from the static analysis
of C implemented applications.

The Scalability feature seeks to depict the extend of a
proposed approach to easily being used by most users. In Fig.
3, this article distinguishes three application levels of false alert
handling approaches, which are Software source code level,
Static analyzer source code, and Static analyzer alerts report.
Also, Fig. 3 summarizes each application level’s most used
approach categories.

This paper consider approaches dealing false alert handling
only from SAT reports as the most scalable. It is explained

Fig. 3. Approaches Application Levels.

by the direct processing of SAT reports without any pre-
processing, which will avoid any inconvenience when trying to
adopt the approach. Meanwhile, approaches already integrated
with SAT tools are also easy to use since the difficulty is only
in the integration step already made by the approach’s authors.

The human effort feature shows the approach reliance
extend of human intervention. Of course, each time the
proposed method does not require human interaction, it is
considered more effective, scalable, and time/cost-saving. Al-
most all ML and DM-based approaches require moderate to
extensive human intervention. This is due to the labeling
effort required to train the created models. Few ML-based
approaches require reduced human efforts explained by using
a clustering approach to label the dataset then use it to lean
an ML model. It is observable from the Table III that almost
proposed approaches, that do not require human intervention,
are applied to the SAT alerts report.

The False Alerts Reduction Rate feature extracts the
reduction rate of false alerts, as mentioned by the paper
authors. Some papers explicitly present the reduction rate
while, in other articles, the FPA reduction rate is deduced.
Almost approaches do not exceed 90% of reduction rate except
one paper [41] that reaches a 100% reduction rate but for only
one type of alert.

VI. AN OVERVIEW OF THE USED DATASETS

Finding or creating an effective dataset that reflects the
real issues and complexity of software source code analysis
to validate SATs is of paramount importance. To facilitate
the identification of valuable datasets, this study extracts the
relevant datasets used by the selected papers and shows their
related information. It is worthy to note that several papers
do not explicitly provide the used dataset, while others use
an anonymous dataset for privacy issues. Thus, this article
presents only the papers providing open datasets. The Table
IV provides the dataset name or the paper reference using it.
All the programs are available through quick Google searching.

This study depicts if provided by the paper’s authors,
the features extracted from the dataset used to train their
models that has the potential to predict or classify the alerts.
The number of Lines Of Code (LOC) for each program to
better know the used dataset’s size is also depicted. It is very
observable that almost all datasets are not labeled, and authors
do not share their manual labeling of SAT alert reports. Only
two datasets from NIST and OWASP provide guidelines to
label SAT alerts.
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TABLE III. COMPARISON OF THE IDENTIFIED APPROACHES

Paper/
Cri-
teria

Security Bugs
coverity Categories Supported

Languages
Scalability Human label-

ing effort False alert
reductionrateMost

Bugs
coverity

Only Spe-
cific kind
of bugs

Machine
learning

Data
Mining

Model
Checking

Root
causes

Semantics
based

Slicing
based

Rule
based

Software
source
code level

Analyzer
source
code level

Report
Directly None Few Moderate High

[15][2017] Java 81.3%– 85%
[39][2017] Java not specified
[16][2014] Java 37.33% – 86.79%
[29][2014] C++ 84% – 84%
[31][2015] C 70% – not specified
[33][2015] C 76% – 97.3% (precision)
[17][2017] C 45%
[40][2018] OOP Langauges not specified
[19][2019] C/C++ 61% – 80%
[43][2017] Java 74%
[25][2016] JavaScript 36%
[20][2018] Java/C/C++ not specified
[23][2019] C/C++ 66% – 79%
[4][2018] Php/Java/C/C++ not specified
[45][2018] C prioritization approach
[26][2016] C 42%
[3][2017] C 80%
[18][2016] C not specified
[34][2010] C 68%
[49][2012] C 82%–86%
[50][2018] Java EE not specified
[21][2017] C/C++ 81%
[27][2018] C 6%
[30][2010] C 96% *
[32][2019] C 90%
[51][2018] C not specified
[44][2020] C not specified
[22][2018] C/C++ not specified
[41][2019] Java EE 100% **
[38][2013] C 23.2%

* for only microsoft codes.
** for only one false alert type

A. Interesting Dataset Projects and Competitions

This section presents interesting community projects aim-
ing to provide accurate datasets and enhance static analysis
verification research.

1) Juliet Dataset: The National Institue of Standards and
Technology (NIST) provides the Software Assurance Refer-
ence Dataset (SARD) 1to users, researchers, security assurance
developers to evaluate SAT and test their methods. SARD
includes a set of well-known security flaws as test cases
covering all software development lifecycles. Also, it covers
a large variety of vulnerabilities, languages, platforms, and
compilers. The dataset fits all user’s needs since it includes
wild, synthetic, and academic test cases. It is intended to be a
broad effort contributed from many sources2.

Juliet 3, one of the SARD provided datasets, is a collection
of test cases dedicated to C, C++, and Java languages. Juliet’s
first version 1.0 appeared in December 2010, and its last
release, 1.3 delivered in October 2017. It contains examples
organized under 118 different CWEs for C/C++ and 112
different CWEs for Java. NIST labels through the methods
nominations bad and good codes.

2) OWASP Benchmark Project: OWASP Benchmark
Project 4 aims to address the difficulties of testing software
defects detection tools and study their weakness, strengths, and
analysis time. OWASP provides a Java test suite designed to
investigate and evaluate the accuracy, coverage, and speed of
Software vulnerabilities analysis and detection tools. OWASP
benchmark provides the users with test cases covering all kinds
of vulnerabilities and a scoring tool to score the SAT-generated
alert and compute the True Positive, False Negative, True
Negative, and False Positive alerts percentages.

1https://samate.nist.gov/index.php/SARD.html
2https://samate.nist.gov/index.php/Software Assurance

Reference Dataset.html
3https://samate.nist.gov/SRD/testsuite.php
4https://owasp.org/www-project-benchmark/

3) Competition on Software Verification: The European
Joint Conferences on Theory & Practice of Software, ETAPS5

organizes each year, starting from 2012, an international
competition on software verification to boost the invention of
new methods, technologies, and tools to improve the software
analysis process.

In the training phase, they provide several benchmark
programs, each covering a wide range of CWEs weaknesses
to SAT developers. Then, the submitted verifiers’ tool will be
executed in the evaluation phase, and the number of solved
instances and runtime is measured. Researchers could find
valuable programs to use as a dataset within the ETAPS
website and competition results of each year.

B. Papers’ Identified Security Bugs

Table V presents the security bugs handled on different
papers to enhance SAT precision to detect potential security
bugs without increasing the FPA rate. The paper [19] is the
only one that considers almost security bugs during the FPA
reduction process.

This section answered the research questions RQ4 and RQ5
by presenting the used datasets, the identified bug types, and
the relevant projects and competitions.

VII. DISCUSSION: SHORTCOMINGS AND
RECOMMENDATIONS

In the review of the identified approaches, this study
depicted several shortcomings that decrease the effectiveness
of false alert handling methods. We cite mainly:

• almost cited papers use open programs labeled by
themselves without providing their alerts labeling
datasets. Which will prohibit other researchers from
reproducing the papers’ proposed method.

5https://etaps.org/about/conferences
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TABLE IV. SELECTED SAT DATASETS

Dataset
Name Provider Type Language Labeled Programs Name LOC Extracted Fea-

tures

Open source code [16] projects Java axiom
guava
ivy
jenkins-core
mahout
maven-core
opennlp
poi
rav
tika

57,650
64,629
64,629
77,157
264,374
32,322
36,151
292,967
30,762
15,037

# of conditional statements
# of loop statements
# of return statements
# of break or continue statements
# of exit or assert method invocations
# of null expressions
# of comparisons with a null value
# of null assignments
# statements that return a null value

Open Source [18] programs C – brutefir-1.0f
consolcalculator-1.0
id3-0.15
mp3rename-0.6
irmp3-0.5.3.1
httptunnel-3.3
e2ps-4.34
less-382
bison-2.5
pies-1.2
icecast-server-1.3.12
raptor-1.4.21
dico-2.0
lsh-2.0.4

103
298
512
2,466
3,797
6,174
6,222
23,822
56,361
66,196
68,564
76,378
84,333
110,898

–

Open source [3] libraries C – BIND-1
BIND-2
BIND-3
BIND-4
SM-1
SM-2
SM-3
SM-4
SM-5
SM-6
SM-7
FTP-1
FTP-2
FTP-3

– is the loop condition contains nulls or not
is the loop condition contains constants or not
is the loop condition contains array accesses or not (
is the loop condition contains && or not
is loop condition contains an index for a single array
is loop condition contains an index for multiple arrays
is the loop condition contains an array index outside the loop
is an index is initialized before the loop
# of exits in the loop
the (normalized) size of the loop
# of array accesses in the loop
# of arithmetic increments in the loop
# of pointer increments in the loop
is the loop condition prunes the abstract state or not

Industrial application [20] Applications Java/C++/C – Not provided – name of the codebase where the alert was detected
audit determination
full path to the file where the alarm occurs
line number in the file where the alert occurs
name of the CERT rule associated with the alert
title of the CERT rule associated with the alert
severity field of the CERT rule
likelihood field of the CERT rule
remediation field of the CERT rule
priority field of the CERT rule
level field of the CERT rule
name of the function where the alert occurs
#of lines of code in the function
cyclomatic complexity of the function
#of significant lines of code in the function
cyclomatic complexity of the function
# of parameters to the function
# of lexical tokens in the function
line number where the function definition starts
line number where the function definition ends
# of alert that occur in this function
Filename
# of significant lines of code in the file
# of functions/methods in the file
average significant lines of code in functions in the file
average number of tokens in functions in the file
# of alerts that occur in the file
depth of the file where the alert occurs

Juliet 1.0 – 1.3 NIST Test cases C/C++/JAVA test cases covering
118 C/C++ CWEs
and 112 Java CWEs

– –

Owasp benchmark Owasp Test cases Java 2,371 data points
1,193 false positive
1,178 true positive error

. – –

Juliet version 1.2 [19] Test case + Alarms C – – Name of the tool generating the warning
# alerts in the same file
Category of the warning
# alerts triggered for the same line by any tool
# of alerts less than 4 lines away from the triggered alert
is the tool triggered an alert for that location

Open Source [21] programs C/C++ – bitlbee 4.2
nghttp2 1.6.0
mupdf 1.2.337
h2o 1.7.2
xserver 1.14.3
php 5.6.7

68,413
71,387
122,481
517,731
568,964
709,356

–
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TABLE V. SOFTWARE CODING SECURITY BUGS

Paper refference Language Bug name

[16] Java General null dereference
Dereferencing of an unchecked null value
Dereferencing of a returned null value

[27][17] C Buffer overflow

[19] C Buffer overflow related issues
Integer overflow and underflow
Divisions by zero
Uninitialized variable
Unused variable
Pointer issues (e.g.: Null pointer dereference)
Misused operators (e.g.: i f (myVar = bu f [i])fg)
Issues with function parameter
Expression is either always true or always false
Memory issues (e.g., Memory leak, Double free)

[3] C Format-string vulnerabilities
Buffer-overflow

[15] C SQL inject flaw

• only a few papers consider the combination of more
than one technique to handle alerts.

• almost proposed methods deal with the software
source code refinements and analysis, which is not
scalable as handling the SAT report directly.

• machine learning-based techniques require labeling
efforts to examine and validate the proposed approach,
which inhibits several researchers from using ML
techniques.

• most of the proposed SAT false alert reduction ap-
proaches cover C, C++, and Java languages. However,
languages such as Python used extensively with big
data are rarely focused on by researchers.

To address these shortcomings, this study recommends focus-
ing more on:

• combining several techniques parallelly or sequen-
tially to get better accuracy and lower FPA rate. Exist-
ing studies on methods combination shows promising
results [5].

• focusing more on the slicing approach to decompose
extensive application on small slices is highly encour-
aged since SATs are very useful with small programs.

• focusing on the processing of SAT report directly to
provide better scalability and testing easiness. The
significant size of the alerts report is a suitable dataset
to examine through deep learning techniques.

• thinking on labeling SAT alert report using active
learning techniques to reduce the human effort [52].

VIII. CONCLUSION

This paper studied the recent efforts dealing with SAT
alerts handling. It provides a new categorization of the used
techniques as well as a comparison between the proposed
methods. Then, it presents the datasets used to test and validate
the different approaches along with information about their

size, features, and contained bugs. It summarizes the short-
comings of existing approaches and cites recommendations for
future research to improve SAT false alerts handling.

As future plans, profoundly investigating the slicing ap-
proach of SAT alert reports and their processing using ML-
based techniques will help preserve the SAT scalability and
benefit from the high classification accuracy of ML-based
methods.
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